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Abstract: One of the most important and challenging jobs that any manager can take in the management of a large 

scale project that requires coordinating numerous activities throughout the organization. Initially, the activity times 

are static within the CPM technique and probabilistic within the PERT technique. Since neutrosophic set is the 

generalization of fuzzy set and intuitionistic fuzzy set, a new method of project evaluation and review technique for a 

project network in neutrosophic environment is proposed in this paper. Considering single valued neutrosophic 

number as the time of each activity in the project network, neutrosophic expected task time, neutrosophic variance, 

neutrosophic critical path and the neutrosophic total expected time for completing the project network are calculated 

here. The main concept of Neutrosophic Project Evaluation and Review Technique(NPERT) method is to solve the 

ambiguities in the activity times of a project network easily than other existing methods like classical PERT, Fuzzy 

PERT etc.The proposed method is explained by an illustrative example and the results are discussed here. 

 

Keywords: Neutrosophic set, Single Valued Neutrosophic Numbers, Neutrosophic critical path, 

Neutrosophic expected task times, Neutrosophic variance. 

 

 

1. Introduction 

 

The success of any large-scale project is very much dependent upon the quality of the planning, 

scheduling, and controlling of various phases of the project. Unless some type of planning and coordinating tool 

is used, the number of phases does not need to be very large before management starts losing control. Project 

Evaluation and Review Technique (PERT) is the best project management tool used to schedule, organize and 

coordinate the tasks in such type of large-scale project[3]. It is originally designed to plan a manufacturing 

project by employing a network of interrelated activities, coordinating optimum cost and time. It also emphasizes 

the relationship between the time of each activity, the costs associated with each phase, and the resulting time 

and cost for the anticipated completion of the entire project (Harry, 2004). PERT is also an integrated project 

man-agement system to manage the complexities of major manufacturing projects and the time deadlines created 

by defence industry projects. Most of these management systems were developed following World War II, and 

each has its advantages. PERT was first developed in 1958 by the U.S. Navy Special Projects office on the 

Polaris missile system. Existing integrated planning on such a large scale was deemed inadequate, so the Navy 

pulled in the Lockheed Aircraft Corporation and the management consulting firm of Booz, Allen, and Hamilton. 

Traditional techniques such as line of balance, Gantt charts and other systems were eliminated and PERT 

evolved as a means to deal with various time periods and it takes to finish the critical activities of an overall 

project. All defence contractors adopted PERT to manage the massive one-time projects associated with the 

industry after 1960. Smaller businesses awarded defence related government contracts, found it necessary to use 

PERT[9]. A typical PERT network consists of activities and events. An event is the completion of one program 

component at a particular time. An activity is defined as the time and resources required to move from one event 

to another. Therefore, when events and activities are clearly defined, progress of a program is easily monitored, 

and the path of the project proceeds toward termination. PERT mandates that each preceding event be completed 

before succeeding events and thus the final project can be considered complete. The critical path is a 

combination of events and activities. Slack time is defined as the difference between the total expected activity 

time for the project and the actual time for the entire project. Slack time is the spare time experienced in the 
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PERT (Ghaleb, 2001). PERT plays a major role whenever uncertainity occurs in activity times of a project 

network[3]. Several researchers are introduced and discussed the concept of PERT/CPM in various 

situations[1,2,5,6,7,10,14,16,17,18,19]. Neutrosophic sets have been introduced as a generalization of crisp sets, 

fuzzy sets, and intuitionistic fuzzy sets to represent uncertain, inconsistent and incomplete information about real 

world problems. Elements of neutrosophic set are characterized by a truth-membership, falsity-membership and 

indeterminacy membership functions[11,12]. Neutrosophic set theory is applied in multi attribute decision 

making[15]. The subtraction and division of neutrosophic numbers were discussed in [13]. In this paper, new 

algorithm for finding project evaluation and review technique(NPERT) by neutro-sophic numbers for a given 

network is introduced in a better way than other existing methods. Neutrosophic critical path and their variance 

of a project network are calculated here. The neutrosophic expected task times for completing the project and the 

probability of time for completing the project within a expected period of time are also derived. 

 

2.Preliminaries 

 

Some basic definitions in neutrosophic set and neutrosophic numbers which are very useful in the construction of 

NPERT presented here. 

 

Definition 2.1. [8]. Let E be a universe. A neutrosophic set A in E is characterized by a truth-membership 

function TA, a indeterminacy-membership function IA and a falsity-membership function FA. TA(x), IA(x) and 

FA(x) are real standard elements of [0,1]. It can be written as 

A = {< x, (TA(x), IA(x), FA(x)) >: x ϵ E; TA(x), IA(x), FA(x) ϵ ] 0; 1+[ } 

There is no restriction on the sum of TA(x) IA(x) and FA(x). So, 0≤ TA(x) + IA(x) + FA(x)≤3+: 

 

Definition 2.2. [8]. Let E be a universe. A single valued neutrosophic set A, which can be used in real scientific 

and engineering applications, in E is characterized by a truth-membership function TA, an indeterminacy-

membership function IA and a falsity-membership function FA. TA(x), IA(x) and FA(x) are real standard elements 

of [0,1]. It can be written as 

 

A = {< x; (TA(x), IA(x), FA(x)) >: x ϵ E, TA(x), IA(x), FA(x) ϵ [0; 1] } 

 

Definition 2.3. [4]. Let ã =< (a1, b1, c1); w̃a, ũa, ỹa >, and b̃ =< (a2, b2, c2); w̃b, ũb, ỹb > be two single valued 

triangular neutrosophic numbers and γ ≠ 0 be any real number. Then, 

1. ba
~~   = < (a1 + a2, b1 + b2, c1 + c2); w̃a ˄ w̃b, ũa ˅ ũb, ỹa ˅ ỹb > 

2. ba
~~  =< (a1 - c2, b1 - b2, c1 - a2);w̃a ˄ w̃b, ũa ˅ ũb, ỹa ˅ ỹb >  

 

 

< (a1a2, b1b2, c1c2); w̃a ˄ w̃b, ũa ˅ ũb, ỹa ˅ ỹb > (c1 > 0; c2 > 0) 

3. ba
~~  =    < (a1c2, b1b2, c1a2); w̃a ˄ w̃b, ũa ˅ ũb, ỹa ˅ ỹb > (c1 < 0; c2 > 0) 

                     < (c1c2, b1b2, a1a2); w̃a ˄ w̃b, ũa ˅ ũb, ỹa ˅ ỹb > (c1 < 0; c2 < 0) 

 

< (a1/c2, b1/b2, c1/a2); w̃a ˄ w̃b, ũa ˅ ũb, ỹa ˅ ỹb > (c1 > 0; c2 > 0) 

4. 
b

a
~

~
 =     < (c1/c2, b1/b2, c1/c2); w̃a ˄ w̃b, ũa ˅ ũb, ỹa ˅ ỹb > (c1 < 0; c2 > 0)  

 < (c1/a2, b1/b2, a1/c2);); w̃a ˄ w̃b, ũa ˅ ũb, ỹa ˅ ỹb > (c1 < 0; c2 < 0) 

 

5. γã=   < (γa1, γb1, γc1); w̃a , ũa, ỹa >(γ> 0)   

              < (γc1, γb1, γa1); w̃a , ũa, ỹa >(γ> 0)  

 

6. =< (1/c1, 1/b1, 1/a1); w̃a , ũa, ỹa >(ã≠ 0)  
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Definition 2.4. [8]. Let Ã1 =< T1, I1, F1 > be a single valued neutrosophic number. Then, the score function 

s(Ã1), accuracy function a(Ã1), and certainty function c(Ã1) of an single valued neutrosophic numbers are defind 

1. s(Ã1) = (T1 + 1 -  I1 + 1 - F1)/3 

 

2. a(Ã1) = T1 -  F1 

3. c(Ã1) = T1 

 

Definition 2.5. [13]. Let A = (t1, i1, f1) and B = (t2, i2, f2) be two single-valued neutrosophic numbers, where t1, i1, 

f1, t2, i2, f2 ϵ [0; 1] , and 0≤ t1, i1, f1 ≤3 and 0≤ t2, i2, f2 ≤3. The division of neutrosophic numbers A and B is de-

fined as follows: 

A B = (t1, i1, f1)  (t2, i2, f2) =( , ,  ), where t1, i1, f1, t2, i2, f2 ϵ  [0; 1], with the restriction that     t2 ≠ 0, i2 ≠ 

1 and f2 ≠ 1 

Similarly, the division of neutrosophic numbers only partially works, i.e. when t2 ≠ 0, i2 ≠ 1 and f2 ≠ 1. In the 

same way, the restriction that 

( , ,  ) ϵ ([0, 1], [0,1], [0, 1]) is set when the traditional case occurs, when the neutrosophic number components t, 

i, f are in the interval [0, 1]. 

 

 

3 NPERT Analysis 

 

NPERT computations are the same as those of NCPM[8]. The main difference is that instead of activity duration 

we use neutrosphic expected time for the activity. Activity times are represented by a neutrosphic probability 

distribution. This neutrosphic probability distribution is based on three different time estimates are as follows: 

 

1. Neutrosophic Optimistic Time [ to
N = (tT

o, tI
o, tF

o )N ]: 

 

In this time, each and every activity of a network is going well without any disturbance like shortage of money, 

labour and raw materials etc., and the project will be completed within a period of expected time. 

 

2. Neutrosophic Pessimistic Time [ tp
N = (tT

p,  tI
p, tF

p )N ]: 

 

In this time, most of the activities in a project are disturbed when the work is going. So, the project will not be 

completed in an expected period of time. The time of completion of the project will go more than the expected 

time. 

  

3. Neutrosophic Most likely Time [ tm
N = (tT

m, tI
m, tF

m)N ]: 

 

In this time, some of the activities are disturbed when the work is going. So the time of completion will extend 

slightly more than the expected time 

 

Also the neutrosophic expected mean time [te
N

 =  (te
T,te

I,te
F)N  and the neutrosophic variance = ( )N 

of  the project network are given as follows:  

]4[
6

1
0

N

p

N

m

NN

e tttt  and  = 
)

6
(

0
NN

p tt 

 

The neutrosophic earliest and latest start time as well as neutrosophic earliest and latest finish time of each 

activity for finding neutrosophic critical path of a project are derived by using forward pass and backward 

pass calculations as follows: 
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(a). Forward Pass Calculations: 

 

Here, we start from the initial node 1 with starting time zero in increasing order and end at final node n. At 

each node, neutrosophic earliest start and finish times are calculated by considering E( μi)
N . 

 

Step:1 Set E(μ1)N =< 0, 0, 0 >, i=1 for the initial node. 

 

Step:2 Set neutrosophic earliest start for each activity as ES(μij)N = E(μi) for all activities (i,j) that start at 

node i. 

 

Step:3 Compute neutrosophic earliest finish for each activity as EF (μij)N = E(μij)N + (tij)N = E(μi)N + (tij)N , 

for all activities (i,j) that start at node i and move on to next node. 

 

Step:4 If node j > i, compute neutrosophic earliest occurance for each node j using E(μj)N = max{EF (μij)N } = 

max{E(μi)N + (tij)N}, for all immediate predecessor activities. 

 

Step:5 If j=n(final node), then the neutrosophic earliest finish time for the project is given by E(μn)N = 

max{EF (μij)N} = max{E(μn-1)N + (tij)N}: 

 

(b). Backward Pass Calculations: 

 

Here, we start from last(final) node n of the network in decreasing order and end at initial node 1. At every 

node, neutrosophic latest finish and start times for each activity are calculated by considering L(μ j)N . 

 

Step:1 L(μn)N = E(μn)N, j=n. 

 

Step:2 Set neutrosophic latest finish time for each activity as LF (μij)N = L(μj) that ends at node j. 

 

Step:3 Compute neutrosophic latest occurence time for all activities ends at j as LS(μij)N = LF(μ ij)N (tij)N = 

L(μj)N (tij)N , for all activities (i,j) that start at node i and move on to next node. 

 

Step:4 If node i < j, compute neutrosophic latest occurence time for each node i, using L(μi)N  

= min{LS(μ ij)N } = min{L(μi)N -(tij)N } by proceeding backward process from node j to node 1. 
 
Step:5 If j=1(initial node),then we have L(μ1)N = min{LS(μij)N } = min{L(μ2)N -  (tij)N }: 

 

From the above calculations, an activity (i,j) will be critical if it satisfies the following conditions: 
(i). E(μi)N = L(μi)N and E(μj)N = L(μj)N 

(ii). E(μj)N - E(μi)N = L(μj)N - L(μi)N = (tij)N . 
An activity which does not satisfies the above conditions is called non critical activity. 

 

3.1 Neutrosophic Float or Slack of an activity and event: 
 
The neutrosophic time of an activity which makes delay in its completion time without affecting the total 

project completion time is called neutrosophic float. Neutrosophic event float and neutrosophic activity 

float are two types of neutrosophic floats. 

  
1. Neutrosophic Event float:  
The neutrosophic float of an event is the difference between its neutrosophic latest and 
earliest time. (i.e). Neutrosophic event float = L(μi)N - E(μij)N 

 
2. Neutrosophic activity float:  
Neutrosophic total float and neutrosophic free float are two types of neutrosophic activity floats.They are 

calculated as follows: 
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a. Neutrosophic total float(NTF)  
Neutrosophic total float is the positive difference between the neutrosophic earliest finish(start) time and 

neutrosophic latest finish(start) time of an activity. 
Neutrosophic total float (NTF) = LF (μij)N - EF (μij)N (or) LS(μij)N - ES(μij)N  
 
b. Neutrosophic free float(NFF)  
The delay in neutrosophic time of an activity which does not cause delay in its immediate successor 

activities is called neutrosophic free float of an activity. 
Neutrosophic free float(NFF) = ( E(μj)N - E(μi)N ) - (tij)N 

 

3.2 Neutrosophic Project Evaluation an Review Technique Algorithm: 
 
In this section, NPERT algorithm for a project network is established. This algorithm is used to find the 

neutrosophic critical path, neutrosophic expected time to complete each activity in a project and to 

calculate the probability of the neutrosophic expected time to compete the total project within a given 

period of time when it is not able to find best solution using existing methods in uncertain environment. 

 

Step:1 Calculate neutrosophic earliest and latest work time for every activity using forward pass and 

backward pass calculations. 

 

Step:2 Using neutrosophic earliest and latest work time of every activity, determine neutrosophic critical 

path for the given network. 

 

Step:3 Calculate neutrosophic expected time of every activity for the given network. 

 

Step:4 Calculate neutrosophic expected variance. 

 

Step:5 Calculate neutrosophic total float of every activity. 
 

Step:6 Find neutrosophic standard normal  =  using the neutrosophic critical path. 
 
 
Step:7 Finally estimate the probability of completing the project within a due date. 

 

Illustrative Example:  
The neutrosophic estimate times for all activities in a project network are given in the following table. 

 

Task Neutro. optimistic time (to
N ) Neutro. Most likely time(tm

N ) Neutro. Pessimistic time(tp
N ) 

A(1,2) < 0.1, 0.7, 0.8 > < 0.2, 0.3, 0.5 > < 0.1, 0.2, 0.3 > 

A(1,3) < 0.2, 0.8, 0.9> < 0.3, 0.5, 0.7 > < 0.1, 0.4, 0.6 > 

A(2,3) < 0.1, 0.4, 0.7 > < 0.2, 0.4, 0.6 > < 0.2, 0.3, 0.4 > 

A(2,4) < 0.2, 0.6, 0.7 > < 0.3, 0.4, 0.5 > < 0.1, 0.4, 0.7 > 

A(2,5) < 0.1, 0.3, 0.6 > < 0.1, 0.4, 0.5 > < 0.2, 0.5, 0.7 > 

A(3,4) < 0.2, 0.5, 0.9 > < 0.1, 0.4, 0.6 > < 0.3, 0.5, 0.8 > 

A(4,5) < 0.1, 0.2, 0.4 > < 0.2, 0.4, 0.7 > < 0.1, 0.3, 0.5 > 

A(4,6) < 0.2, 0.4, 0.6 > < 0.1, 0.3, 0.4 > < 0.3, 0.4, 0.5 > 

A(5,6) < 0.1, 0.5, 0.7 > < 0.1, 0.2, 0.3 > < 0.2, 0.3, 0.5 > 
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Determine the following:  
i. Neutrosophic earliest and neutrosophic latest expected times for each node  
ii. Neutrosophic critical path  
iii. Neutrosophic expected task times and their variance  
iv. The probability that the project will be completed within [DN =] < 0.8, 2, 3 > 

 
Solution: 

 

i(a).Neutrosophic earliest expected task times: 
 

E(μ1)N =  < 0, 0, 0 > 
E(μ2)N =  < 0, 0, 0 > + < 0.17, 0.35, 0.52 >  

=  < 0.17, 0.35, 0.52 >  
E(μ3)N =  max{< 0, 0, 0 > + < 0.25, 0.53, 0.72 >, < 0.17, 0.35, 0.52 > + < 0.18, 0.38, 0.58 >}  

=  < 0.35, 0.73, 1.1 > 
 

Similarly,  
E(μ4)N =  < 0.5, 1.16, 1.78 > 
E(μ5)N =  < 0.67, 1.51, 2.4 > 
E(μ6)N =  < 0.79, 1.78, 2.8 > 

 

 

i(b). Neutrosophic latest expected task times: 
 

L(μ6)N =  < 0.79, 1.78, 2.8 > 
L(μ5)N =  < 0.79, 1.78, 2.8 > - < 0:12, 0:27, 0:4 > 
L(μ4)N =  min{< 0.79, 1.78, 2.8 > - < 0.13, 0.33, 0.45 >, < 0.69, 1.51, 2.4 > - < 0.17, 0.35, 0.62 >}  

=  < 0.5, 1.16, 1.78 > 
 
Similarly,  

L(μ3)N =  < 0.35, 0.73, 1.1 > 
L(μ2)N =  < 0.17, 0.35, 0.52 > 
L(μ1)N =  < 0, 0, 0 > 

 

 

ii. From i(a) and i(b), we conclude that the neutrosophiic critical path is 1 → 2 → 3→  4→  5→ 6. 

 

iii. From above neutrosophic critical path, the total neutrosophic expected task time for completing the 

project is < 0.79, 1.78, 2.8 > 
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Also, the neutrosophic variance for the critical activities are: 

 

 

 

Task te N = 

1 
[ toN + 4tm

N + tp
N ]  =( tp

N  to
N )2 

 

   

   6  6   

 (1,2)  < 0.17, 0.35, 0.52 > < 0, 0.0064, 0.0064 >  

 (2,3)  < 0.18, 0.38, 0.58 > < 0.0004, 0.0004, 0.0025 >  

 (3,4)  < 0.15, 0.43, 0.68 > < 0.0004, 0, 0.0004 >  

 (4,5)  < 0.17, 0.35, 0.62 > < 0, 0.0004, 0.0004 >  

 (5,6)  < 0.12, 0.27, 0:4 > < 0.0004, 0.0009, 0.0009 >  

 Total  < 0.79, 1.78, 2.8 > < 0.0012, 0.0081, 0.0106 >   
 

Table.1 

 
Hence, from table(1), the neutrosophic expected mean time [E( μe

N )] = < 0.79, 1.78, 2.8 > and the neutrosophic 

expected vaiance  [ ] =<0.0012, 0.0081, 0.0106>   

 

So,    = < 0.0346, 0.09, 0.103 > . 

 

Now, 

                                                                          =  

            






103.0,09.0,0346.0

8.2,78.1,79.03,2,8.0
 

       






103.0,09.0,0346.0

2.0,22.0,01.0
 

       = <0.29,0.143,0.108> 

       = 0.6796 

by score function in definition 2.4. 

 

iv. From the table of area under normal curve, P (ZN ≤   0.6796) = 0.5 + 0.2517 = 0.7517. 
Therefore, the requried probability that the project will be completed within the time < 0.8, 2, 3 > is 0.7517. 
 
 
4 Applications 

 
This method is very useful than other existing methods like PERT, fuzzy PERT and intuitionistic fuzzy PERT 

etc., whenver uncertainty occurs in various activities like planning, scheduling, developing, designing, testing, 

maintaining and advertising for the fields of administration, construction, manufacturing and marketing etc., 

 

5 Advantages 

 

1. It gives the better accuracy than other methods for each and every activity of a project. 

 

2. Due to its accuracy, it is easy to find the best optimum schedule for every project. 

 

3. Also the level of performance of each and every activity will be increased by interrelating them. 

 

4. Controlling each activity in a project become very simple. 
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Conclusion 

 
In this paper, NPERT calculation with single valued neutrosophic numbers for finding the total neutrosophic 

expected task time for completing a project network is introduced. The proposed method helps the users to take 

right decisions in scheduling, organizing and completing the project within a minimum duration. Also, it helps to 

find the probability of neutrosophic estimate time of a project. Comparing with other existing meth-ods, this 

method gives better results and also the NPERT algorithm is explained by an example using a set of 

neutrosophic numbers as length of arcs in a network. The applications and advantages of proposed method are 

also given. In future, we have planned to use this NPERT method in various network models. 
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Abstract. In this paper we have obtained the similarity measures between single valued neutrosophic rough sets by analyzing the 

concept of its distance between them and studied its properties. Further  we have studied its similarity based on its membership degrees 

and studied its properties. We have also defined the cardinality of two single valued neutrosophic rough sets. A numerical example in 

medical diagnosis is given for the proposed similarity measure of the single valued neutrosophic rough sets which helps us to prove the 

usefulness and flexibility of the proposed method. 

 
Keywords:  Single valued neutrosophic rough sets, similarity measure, cardinality.

 

1 Introduction 

Fuzzy sets are generalizations of classical (crisp) sets which is based on partial membership of the elements 
and this was proposed by Zadeh [32] in 1965.. In 1983,K. Atanassov [2]  proposed the concept of Intuitionistic 

fuzzy set which is a generalization of  fuzzy set theory and is based on the degree of membership and non-
membership and is described in the real unit interval [0,1], whose sum also belongs to the same interval. 

           IFS has numerous applications in decision making problems, medical diagnosis etc. After the theory  of  IFS 

many theories have been developed which are suitable in their respective areas. 
 
           In 1995 Florentin Smarandache [27] proposed the concept of  Neutrosophic logic which provides the main 

distinction of fuzzy and IFS. It is a logic which is based on degree of truth (T), degree of indeterminacy (I) and 
degree of falsity (F) and lies in the nonstandard unit interval   . Neutrosophic set theory deals with 
uncertainity factor i.e, indeterminacy factor which is independent of truth and falsity values. Neutrosophic theory is 
applicable to the fields which is related to indeterminacy factor i.e, in the field of image processing, medical 

diagnosis and decision making problem. 
 
         In 1982, Pawlak [18] introduced the concept of rough set which is based upon the approximation of sets 

known as lower and upper approximation of a set. These two lower and upper approximation operators based on 
equivalence relation. 
 
        Rough fuzzy sets, intuitionistic fuzzy rough sets, neutrosophic rough sets are introduced by combining the 

rough sets respectively with fuzzy, intuitionstic, neutrosophic sets. In particular rough neutrosophic set initiated by 
Broumi and Smarandache (2014) [5]. C. Antony Crispin Sweety & I. Arockiarani(2016)[1] studied the concept of 
neutrosophic rough set algebra[1]. Wang (2010) [30]  proposed the concept of SVNS which is a very new hot 

research topic. 
 
        SVNS and rough sets both deals with inaccuracy information and both combined together to provide a new 
hybrid model of single valued neutrosophic rough set. Many authors [3,4,6,8,9,19,31] studied the concept of  

10
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similarity and entropy between the two single valued neutrosophic sets which helps to identify whether two sets are 

identical or atleast to what degree they are identical by using the concept of distance formula and membership 
function. Similarity plays a vital role in many fields like computational intelligence, psychology and linguistics, 
medical diagnosis, multi-attribute decision making problems.  

 
     Smarandache.F introduced the “Neutrosophic Sets and Systems“ and its applications have been spreaded in all 
directions at an amazing rate. Smarandache, F. & Pramanik, S. (Eds). (2016)[28] New trends in neutrosophic 
theory and applications emphases on theories, procedures, systems for decision making, medical diagnosis and also 

discussed  the topic includes e-learning, graph theory and some more. Recently Smarandache, F. & Pramanik, S. 
(Eds). (2018) and Mondal, K., Pramanik, S., & Giri, B. C.  (2018) [29,17] studies New trends in neutrosophic 
theory and applications, Fuzzy Multicriteria Decision Making Using Neutrosophic Sets which provides the 

innovative study and application papers from diverse viewpoints covering the areas of neutrosophic studies, such as 
decision making, graph theory, image processing, probability theory, topology, and some abstract papers.  
 
     Pramanik, S., Roy, R., Roy, T. K., & Smarandache, F.  (2018)[24]  studied multi-attribute decision making based 

on several trigonometric hamming similarity measures under interval rough neutrosophic environment. Pramanik, S., 
Roy, R., Roy, T. K. & Smarandache, F. (2017)[23] also proposed the concept of multi criteria decision making using 
correlation coefficient under rough neutrosophic environment. Pramanik, S., & Mondal, K. (2015)[20] Mondal, K., 

Pramanik, S., & Smarandache, F. (2016) [9] studied several trigonometric Hamming similarity measures of rough 
neutrosophic sets and their applications in decision making. 
 

     Medical diagnosis is the process of determining which disease or condition explains a person’s symptoms and 
signs. Similarity measures plays a efficient role in analysing the medical diagnosis problem. S. Pramanik, and K. 
Mondal. (2015)[12] described the cotangent similarity measure of rough neutrosophic sets and its application to 
medical diagnosis. And also Pramanik, S., & Mondal, K. (2015)[13] studied Cosine similarity measure of rough 

neutrosophic sets and its application in medical diagnosis. 
 

        In this paper Section 2 gives some basic definitions of rough sets, neutrosophic sets, SVNSs and single valued 

neutrosophic rough sets. Section. 3 provides the distance and cardinality of  two single valued neutrosophic rough 
sets  with suitable example. In Section.4, we investigate the similarity measure of  two single valued neutrosophic 
rough sets based on distance formulae and membership degrees. Section 5 gives a numerical example in medical 
diagnosis for the proposed similarity measure of single valued neutrosophic rough sets. Section 6 concludes the 

paper. 
 
2  Preliminaries 

    In this section we recall the basic definitions of  rough sets, Neutrosophic sets and single valued neutrosophic 
rough sets which will be used in the rest of the paper. 

 

 

2.1 Definition 2.1[5] 

     Let U be any non-empty set. Suppose R is an equivalence relation over U. For any non – null subset X of U, 

the sets    }][:{)(1 XxXxA R   and }][:{)(2  XxXxA R  are called the lower approximation 

and upper approximation respectively of X where the pair S=(U,R) is called an approximation space. This 

equivalence relation R is called indiscernibility relation. The pair ))(),(()( 21 XAXAXA   is called the 

rough set of X in S. Here Rx][ denotes the equivalence class of R containing X. 

 

2.2 Definition 2.2[27] 

         Let X be an universe of discourse, with a generic element in X denoted by x , the neutrosophic (NS) set is an 

object having the form, },)(),(),(:{ XxxxxxA AAA    where the functions 



Neutrosophic Sets and Systems, Vol. 24, 2019  

 

 

 

K.Mohana, M.Mohanasundari, On Some Similarity Measures of Single Valued Neutrosophic Rough Sets. 
 

12 

  1,0:,, X    define respectively the degree of membership ( or truth) , the degree of indeterminacy, 

and the degree of non-membership ( or falsehood ) of the element Xx   to the set A with the condition, 

  3)()()(0 xxx AAA   

 

2.3 Definition 2.3[30] 

     Let U be a space of points (objects), with a generic element in U denoted by x . A single valued neutrosophic 

set (SVNS) A in U is characterized by a truth-membership function 
AT  , an indeterminacy- membership 

function 
AI  and a falsity membership function AF  , where ]1,0[)(,)(,)(,  xFxIxTUx AAA  

and 3)()()(0  xFxIxT AAA A SVNS A can be expressed as 

},)(),(),(:{ UxxFxIxTxA AAA   

 

2.4 Definition 2.4[7] 

  A SVNS R in UU   is referred to as a single valued neutrosophic relation (SVNR) in U, denoted by  

  }),/(),(),,(),,(:),({ UUyxyxFyxIyxTyxR RRR   

where ]1,0[:]1,0[:,]1,0[:  UUFandUUIUUT RRR represent the truth – membership  

function, indeterminacy-membership function and falsity-membership function of R respectively. Based on a SVNR, 

Yang et al.[4] gave the notion of single valued neutrosophic rough set as follows. 

        Let R
~

 be a SVNR in U, the tuple )
~

,( RU is called a single valued neutrosophic approximation space 

)(
~

USVNSA , the lower and upper approximations of A
~

 with respect to )
~

,( RU  , denoted by 

)
~

(
~

)
~

(
~

ARandAR  are two SVNS’s whose membership functions are defined as ,Ux  

 

 ))(),(()( ~~
)

~
(

~ yTyxFxT
ARUyAR




, 

)),(),(1(()( ~~
)

~
(

~ yIyxIxI
ARUyAR




 

))(),(()( ~~
)

~
(

~ yFyxTxF
ARUyAR




, 

)),(),(()( ~~
)

~
(

~ yTyxTxT
ARUyAR




 

)),(),(()( ~~
)

~
(

~ yIyxIxI
ARUyAR




 

)).(),(()( ~~
)

~
(

~ yFyxFxF
ARUyAR




 

The pair ))
~

(
~

),
~

(
~

( ARAR is called a single valued neutrosophic rough set of A
~

  with respect to )
~

,( RU . 

RandR
~~

are referred to as single valued neutrosophic lower and upper approximation operators respectively. 

3 Distance between two single valued neutrosophic rough sets 

      In this section we define the distance between two single valued neutrosophic rough sets of A
~

and B
~

with 

respect to andRU )
~

,( 1 )
~

,( 2RU in the universe }........,,,{ 321 nxxxxU   
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3.1 Definition 3.1 
 

       Let us consider two single valued neutrosophic rough sets of A
~

 and B
~

with respect to 

andRU )
~

,( 1 )
~

,( 2RU in the universe }........,,,{ 321 nxxxxU  Here RandR
~~

are referred to as the 

single valued neutrosophic lower and upper approximation operators respectively. Throughout this section A
~

and 

B
~

denote the single valued neutrosophic rough sets with respect to andRU )
~

,( 1 )
~

,( 2RU . 

 

(i) The Hamming distance of two single valued neutrosophic rough sets A
~

and B
~

 with respect to its lower 

approximation: 

}|)()(||)()(||)()(|{)
~

,
~

(
)

~
(

~
)

~
(

~
)

~
(

~
)

~
(

~
)

~
(

~

1
)

~
(

~ iBRiARiBRiARiBR

n

i

iARN xFxFxIxIxTxTBAd 


                   (1) 

(ii) The Hamming distance of two single valued neutrosophic rough sets A
~

and B
~

 with respect to its upper approximation: 
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                   (2)    

(iii) The normalized Hamming distance of A
~

and B
~

 with respect to its lower approximation: 
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              (3)  

 

(iv) The normalized Hamming distance of A
~

and B
~

 with respect to its upper approximation: 
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            (4)  

 

(v) The Euclidian  distance of two single valued neutrosophic rough sets A
~

and B
~

 with respect to its lower approx-

imation: 
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

         (5) 

 

(vi) The Euclidian  distance of two single valued neutrosophic rough sets A
~

and B
~

 with respect to its upper ap-

proximation: 
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

        (6) 

 

(vii) The normalized  Euclidian  distance of two single valued neutrosophic rough sets A
~

and B
~

 with respect to its 

lower approximation: 
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   (7) 

 

(viii) The normalized Euclidian  distance of two single valued neutrosophic rough sets A
~

and B
~

 with respect to its 

upper approximation: 
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2

)
~

(
~

)
~

(
~

2

)
~

(
~

)
~

(
~

2

)
~

(
~

1
)

~
(

~ ))()(())()(())()((
3

1
)

~
,

~
( iBRiARiBRiARiBR

n

i

iARN
xFxFxIxIxTxT

n
BAq  



   (8)     

 

Now for equations (1) – (8) the following conditions holds: 

       (a)            )9(3)
~

,
~

(0,3)
~

,
~

(0 nBAdnBAd
NN   

       (b)           )10(1)
~

,
~

(0,1)
~

,
~

(0  BAlBAl
NN  

 (c)          )11(3)
~

,
~

(0,3)
~

,
~

(0 nBAenBAe
NN   

 (d)           )12(1)
~

,
~

(0,1)
~

,
~

(0  BAqBAq
NN  

Example 3.2 
 

         Let },,{ 321 xxxU  be the universe and )(
~

,
~

21 UUSVNSRR  is given in Table 1 and Table 2  

         Let })6.0,3.0,4.0(,,)3.0,1,0(,,)5.0,4.0,3.0(,{
~

321  xxxA  

         })0,3.0,5.0(,,)1,3.0,1(,,)1.0,8.0,2.0(,{
~

321  xxxB  are SVNS’s in U. 

     

1

~
R  1x  

2x  3x  

1x  )4.0,6.0,0(  )4.0,0,1(  )2.0,7.0,3.0(  

2x  )5.0,1.0,0(  )4.0,0,5.0(  )8.0,4.0,3.0(  

3x  )6.0,0,1(  )1,1,6.0(  )1,0,0(  

     Table 1: SVNR 1

~
R  

 

2

~
R  1x  

2x  3x  

1x  )1,0,0(  )6.0,1.0,2.0(  )5.0,0,1(  

2x  )3.0,1.0,0(  )1,4.0,5.0(  )0,1,5.0(  

3x  )0,1,1(  )1,1,4.0(  )0,0,1(  

Table 2: SVNR 2

~
R  

 

         According to Definition 2.4 , we have 

 

               4.0))(),(()( ~1~1)
~

(
~ 


yTyxFxT

ARUyAR
 

   1))(),(1(()( ~1~1)
~

(
~ 


yIyxIxI

ARUyAR
 

  3.0))(),(()( ~1~1)
~

(
~ 


yFyxTxF

ARUyAR
, 

  3.0))(),(()( ~1~1)
~

(
~ 


yTyxTxT

ARUyAR
 

  6.0))(),(()( ~1~1)
~

(
~ 


yIyxIxI

ARUyAR
 

  4.0))(),(()( ~1~1)
~

(
~ 


yFyxFxF

ARUyAR
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Hence,  

 

)4.0,6.0,3.0()()
~

(
~

)3.0,1,4.0()()
~

(
~

11  xARandxAR  

 

Similarly we can obtain, 

 

)4.0,4.0,3.0()()
~

(
~

)3.0,1,4.0()()
~

(
~

22  xARandxAR  

)6.0,3.0,3.0()()
~

(
~

)5.0,4.0,6.0()()
~

(
~

33  xARandxAR  

)5.0,3.0,5.0()()
~

(
~

)2.0,8.0,5.0()()
~

(
~

11  xBRandxBR  

)0,4.0,5.0()()
~

(
~

)5.0,8.0,3.0()()
~

(
~

22  xBRandxBR   

)0,3.0,5.0()()
~

(
~

)4.0,3.0,2.0()()
~

(
~

33  xBRandxBR  

 

Then the distance between BandA
~~

will be as follows : 
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iAR
xFxFxIxIxTxT 



 

              = 5.1  

5.1)
~

,
~

( BAdN  

 

Similarly the other distances will be, 

 

  )
~

,
~

( BAd
N

2 

2222.0)
~

,
~

(,1666.0)
~

,
~

(  BAlBAl
NN  

86023.0)
~

,
~

(,5745.0)
~

,
~

(  BAeBAe
NN  

30916.0)
~

,
~

(,1916.0)
~

,
~

(  BAqBAq
NN  

 

 

 

3.3 Definition 3.3 ( Cardinality) 

       The cardinality of a single valued neutrosophic rough set of A
~

 with respect to )
~

,( RU is denoted as 

][
~

][
~

cRandcR , where ])(
~

,)(
~

[][
~ ul cRcRcR   is known as single valued neutrosophic lower approximation 

cardinality and, ])(
~

,)(
~

[][
~ ul cRcRcR   is known as single valued neutrosophic upper approximation cardinality. 

      Here )(
~ lcR  , )(

~ ucR  denotes  minimum and maximum cardinality of a single valued neutrosophic rough set with 

respect to lower approximation and is defined as , 
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



n

i

iAR

l xTcR
1

)(
~ )()(

~
     and     }))(1()({)(

~
)(

~

1
)(

~ iAR

n

i

iAR

u xIxTcR 


                  (13) 

Here )(
~ lcR  , )(

~ ucR  denotes  minimum and maximum cardinality of a single valued neutrosophic rough set with respect 

to upper approximation and is defined as , 

)(
~ lcR 




n

i

iAR
xT

1
)(

~ )(      and     }))(1()({)(
~

)(
~

1
)(

~ iAR

n

i

iAR

u xIxTcR 


                 (14) 

 

Example 3.4 

Let us consider the single valued neutrosophic rough set of B
~

 from Example 3.2 we have the following cardinality, 





n

i

iAR

l xTcR
1

)(
~ )()(

~
 

         =


3

1
)(

~ )(
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iAR
xT  

 )(
~ lcR  =1 

}))(1()({)(
~

)(
~

1
)(

~ iAR

n

i

iAR

u xIxTcR 


 

         = }))(1()({
)(

~

1
)(

~ iAR

n

i

iAR
xIxT 



 

)(
~ ucR = 2.1 

]1.2,1[])(
~

,)(
~

[][
~

 ul cRcRcR  

 

Similarly we can obtain, 

 

]5.3,5.1[])(
~

,)(
~

[][
~

 ul cRcRcR  

 

 4 Similarity measure between two single valued neutrosophic rough sets: 
 

           In this section we have defined the similarity measure between two single valued neutrosophic rough sets  by the 
following  two methods . 

 
(i) Distance based similarity measure 

(ii) Membership degree based similarity measure 

      

         A similarity measure between two single valued neutrosophic rough sets is a function defined as 

]1,0[)(]1,0[)(: 22  UNandUNS   which satisfies the following properties. 

(i) ]1,0[)
~

,
~

(]1,0[)
~

,
~

(  BASandBAS
NN  

(ii) BABASandBABAS
NN

~~
1)

~
,

~
(

~~
1)

~
,

~
(                                    (15) 

(iii) )
~

,
~

()
~

,
~

()
~

,
~

()
~

,
~

( ABSBASandABSBAS
NNNN   

(iv) )
~

,
~

()
~

,
~

()
~

,
~

()
~

,
~

()
~

,
~

()
~

,
~

(
~~~

CBSBASCASandCBSBASCASCBA
NNNNNN    
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where    )
~

,
~

()
~

,
~

( BASandBAS
NN denotes the similarity measure of  two single valued neutrosophic rough sets with 

respect to lower and upper approximation respectively. 

 

4.1 Distance based similarity measure: 

 

            In general similarity measure or similarity function is a real-valued function that quantifies the similarity 

 between two objects. It is the inverse of distance metrics.  

Using the distance formulae it is generally defined as, 

 

                
),(1

1
),(1

BAd
BAS


                                                                           (16) 

 

For example if we consider the Euclidian distance of two single valued neutrosophic rough sets of A
~

and B
~

 with respect to 

its lower approximation then it’s associated similarity can be calculated as, 

 

                
)

~
,

~
(1

1
)

~
,

~
(1

BAe
BAS

N

N


  

 

Example 4.1.1 

 

         From Example 3.2 the similarity measure can be calculated as, 

 

             6351.0
)

~
,

~
(1

1
)

~
,

~
(1 




BAe
BAS

N

N  

Proposition 4.1.2 

        The distance based similarity measure NN SandS 11
with respect to lower and upper approximation of two 

single valued neutrosophic rough sets of BandA
~~

 satisfies the following properties. 

(i) 1)
~

,
~

(01)
~

,
~

(0 11  BASandBAS NN  

(ii) BABASandBABAS NN
~~

1)
~

,
~

(
~~

1)
~

,
~

( 11                                    (17) 

(iii) )
~

,
~

()
~

,
~

()
~

,
~

()
~

,
~

( 1111 ABSBASandABSBAS NNNN   

(iv) )
~

,
~

()
~

,
~

()
~

,
~

()
~

,
~

()
~

,
~

()
~

,
~

(
~~~ 111111 CBSBASCASandCBSBASCASCBA NNNNNN    

 

Proof: 

 

        The results (i) – (iii) holds trivially from definition. It is enough to prove only (iv). 

Let us consider three single valued neutrosophic rough sets A
~

, B
~

and C
~

with respect to )
~

,( RU in the universe  
 

}........,,,{ 321 nxxxxU   Let CBA
~~~

   then we have 

 

            andxIxIxIxTxTxT
CRBRARCRBRAR

)()()(;)()()( ~~~~~~~~~~~~   

      UxxFxFxF
CRBRAR

 )()()( ~~~~~~  
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Now 

andxTxTxTxT
CRARBRAR
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~
)

~
(

~
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Similarly,  
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~   

holdsxFxFxFxF
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~
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~
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~
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~
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Thus 

andCASBASCAdBAd NNNN )
~

,
~
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~

,
~
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~

,
~
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~

,
~

( 11   

)
~

,
~

()
~

,
~

()
~

,
~

()
~

,
~

( 11 CASCBSCAdCBd NNNN   

)
~

,
~

()
~

,
~

()
~

,
~

( 111 CBSBASCAS NNN   

          This is true for all the distance functions defined in equations (1) to (8) 

Hence the result. 

 
4.2 Similarity measure based on membership degrees 

 

         Another similarity measure of NN SandS 22
 between two single valued neutrosophic rough sets of 

BandA
~~

with respect to lower and upper approximation will be defined as follows: 


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
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(
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(
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Example 4.2.1 

 

From  Example 3.2 the similarity measure can be calculated as, 














n
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iBRiARiBRiARiBRiAR
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(
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(
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(
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




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,
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Proposition 4.2.2 
 

   The membership degree based similarity measure NN SandS 22
with respect to lower and upper approximation of 

two single valued neutrosophic rough sets of BandA
~~

 satisfies the following properties. 

 (i) 1)
~

,
~

(01)
~

,
~

(0 22  BASandBAS NN  

      (ii) BABASandBABAS NN
~~

1)
~

,
~

(
~~

1)
~

,
~

( 22                                    (18) 

      (iii) )
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~
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~

,
~
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5 Applications to Medical Diagnosis: 
                      In this section we present some real life applications of the similarity measure of single valued 
neutrosophic rough sets. Many real life practical problems consist of more uncertainty and incomplete information. 

To deal this problem effectively , rough neutrosophic set helps to deal with uncertainty and incompleteness. 
                      Let us consider a medical diagnosis problem for the illustration of the proposed approach. Medical diagnosis is     

the process of determining which disease or condition explains a person’s symptoms and signs. Diagnosis is a challenging 

one which consists of uncertainties and many signs & symptoms are non-specific. To handle this way of problem, rough 

neutrosophic set provided a good way in which several possible explanations are compared and contrasted must be perfomed 

by the method of similarity measure. So similarity measure helps to identify whether two sets are identical or atleast to what 

degree they are identical by using the concept of distance formula and membership function. 

                  Let us consider the same example which we have discussed in earlier Section 3 in Example 3.2 and  apply that 

example to medical diagnosis problem, let },,{ 321 xxxU  be the universe of patients. Consider the same two SVNS’s A 

and B  with respect to SVNR’s )(
~

,
~

21 UUSVNSRR  respectively which  is given in Table 1 and Table 2. Let D = 

{Viral fever, Malaria, Typhoid} be the set of diseases and also 21

~
,

~
RR   denotes the relation between the patients and diseases 

of the SVNS’s A and B respectively. 

Hence, this section provides relative study among  similarity measures proposed in this paper. The comparision 

study of similarity measures based on different distances formulae and membership degree is given in Table 3 in 

detail. 
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Table 3: Similarity values 

Similarity measure 

based     on 
)

~
,

~
( BAS N  )

~
,

~
( BAS

N
 

Hamming distance 0.4 0.3333 

Normalized hamming 

distance 

0.8572 0.8182 

Euclidian distance 0.6351 0.5376 

Normalized euclidian 

distance 

0.8392 0.7638 

Membership degree 0.7115 0.5349 

     

  In Table 3 )
~

,
~

( BAS N , )
~

,
~

( BAS
N

 denotes the similarity lower and upper approximation measure of the two 

single valued neutrosophic rough sets respectively. In practical it represents the lower and upper approximation 

similarity measures between patients and diseases of two single valued neutrosophic rough sets.That is through 

hamming distance the similarity lower and upper  measure between patients and diseases  of two single valued 

neutrosophic rough sets A and B will be 0.4 and 0.3333 respectively.  
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   Table 3 represents that each method has its own way to calculate the similarity measure and also any method can 

be preferrable to calculate the similarity measure between two single valued neutrosophic rough sets. 

  

6 Conclusion 

              Single valued neutrosophic set (SVNS) is an instance of NS and it is an extension of fuzzy set and IFS. Compare to 
previous traditional models like fuzzy set, IFS, NS, crisp set , it provides more precise, compatible and flexible in comparison. 
By combining the concept of SVNS with rough set a new hybrid model of single valued neutrosophic rough set was introduced 

and now-a-days it is a very new hot research topic. In this paper we have defined the notion of similarity between two single 
valued neutrosophic rough sets based on distance formulae and membership degrees. We have also studied some properties on 
them and proved some prepositions and a numerical example is given in medical diagnosis for the proposed similarity measure 

concept. 
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Abstract. Blockchain Technology (BCT) is a growing and reliable technology in various fields such as developing business 
deals, economic environments, social and politics as well. Without having a trusted central party this technology, gives the 
guarantee for safe and reliable transactions using Bitcoin or Ethereum. In this paper BCT has been considered using Bitcoins. 
Also Blockchain Single and Interval Valued Neutrosophic Graphs have been proposed and applied in transaction of Bitcoins. 
Also degree, total degree, minimum and maximum degree have been found for the proposed graphs. Further, comparative 
analysis is done with advantages and limitations of different types of Blockchain graphs.  

 
Keywords: Blockchian Technology, Bitcoins, Fuzzy Graph, Neutrosophic Graphs, Properties 

 

1. Introduction 

A completely peer-to-peer form of electronic cash will permit payments through online and direct 
transaction can be done from one participant to another without facing any financial organization. If a central 

party wants to avoid double-spending then the main gain will be lost even though digital signatures contribute 

part of the solution.  This issue was the reason of bargain a solution to this problem based on peer-to-peer 

network. For direct transaction of two willing parties without having a trusted third party, an electronic system 

using cryptographic proof (signaling code) can be used. Fuzzy logic is introduced  by Zadeh to deal uncertainty 

of the problem. Fuzzy graphs are playing an important role in network where impreciseness exists on the vertices 

and egdes. Yeh and Banh also proposed the fuzzy graph independently and examined various connectedness 

theories [1-4].  

The universal problems namely sustainable development or transformation of assets can be dealt 

effectively by Block chain technology than the existing financial systems. The financial sector acquires in 

various operative costs for the smooth and effective functioning of the entire system. These costs consist of time 

and money needed for investment in framework, electricity cost spent for operation and from Automated Teller 
Machines, consumption of water and gas by the employees and wastage production.  

Also there is no possibility of creating fiat currency without costs. In order to give assurance in a 

regular basis in the quality standards for the bank notes in circulation, the used ones are shredded. To find an 

overview of the overall cost of an existing financial system, the cost for the production of coins and noted will be 

included. Whereas in BCT, one needs only to connect to the network and do not obtain the electricity cost for 

any source. Also the production of the crypto currency (a digitalized currency, where encoding method is applied 

to control the production of currency and funds transference verification) [5-7].  

Platforms of Central banking, improvement of business processing, automotive ownership, sharing of 

health information, deals and voting can be potentially replaced by Block chain Technology. BCT plays an 

important role, in political components namely governmental interference, control leadership and taxation. Also 

BCT is very useful in Exchange rates of currency market growth and monetary as an economic component. BCT 
is very helpful in social components namely environmental situation, culture, behavior of the customer and 

demand. In the same way, BCT has a potential action in modern technologies and tendency [8-9].   

BCT permits an emerging set of participants to continue with a secure and alter–proof ledger for all the 

activities without having a third trusted party. Here, transactions are not actually documented but instead, every 

participant keeps a provincial copy of the ledger which is a related listing of blocks and they comprise agreed 

transactions [19]. Nagoorgani and Radha introduced the concept of degree of fuzzy vertex. A crypto currency is 
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nothing a Bitcoin which is a universal payment system and also the initial decentralized digital currency since 

the system works without a single administrator or central bank. Bitcoins made as a payment for a process called 

mining and can be exchanged for different currencies. Nakamoto and Satoshi were introduced the concept of 

Blockchain and applied as an important component of Bitcoin where it act as a public ledger for all the 

transactions. To solve double-spending problem, Blockchain for the Bitcoin has been an appropriate choice 

without the help of trusted third part as a central server. Block chain transactions will be done on the 

interchangeable ledger data saved at every node [42]. 

A Blockchain network can be seen as a reliable computer whose private states are auditable by anyone. 

A ledger of transactions may call as a Blockchain. Generally a physical ledger will be maintained by a 

centralized party whereas in Blockchain is a distributed ledger which locates on the device of every participants.  

Bitcoins are believable and best used [40, 45]. A Fuzzy Set (FS) can be described mathematically by assigning a 
value, a grade of membership to every desirable person in the universe of discourse. This grade of membership 

associates a degree for the participant is either identical or appropriate to the approach performed by FS. A fuzzy 

subset of FS, X is a function from membership to non-membership and is defined by : [0,1]X  continuous 

rather than unexpected. Fuzzy relationships are popular and essential in the fields of computer chains, decision 

making, neural network, expert systems etc. Direct relationship and also indirect relationship also will be 

considered in graph theory. 

Model of relation is nothing but a graph which is a comfortable way of describing information about the 

connection between two objects. In graph, points and relations are defined by vertices and edges respectively. 

While impreciseness exists in the statement of the phenomenon or in the communication or both, fuzzy graph 

model can be designed for getting an optimized output. Maximizing the Utility of the application is always done 

by the researchers during the constructing of a model with a key characteristics reliability, complexity and 

impreciseness.  Among these, impreciseness is a considerable one in maximizing the utility of the technique. 
This situation can be described by fuzzy sets, introduced by Lotfi. A. Zadeh [24, 25].  

Zadeh formulated, grade of membership in order to handle with impreciseness. Atannasov introduced 

intuitionistic fuzzy set by including the grade of non-membership in FS as a separate element. Samarandache 

introduced Neutrosophic set (NS) by finding the membership degree of indeterminacy, it can be viewed from the 

logical point of view as a self-ruling component to handle with uncertain, undetermined and unpredictable data 

which are exist in the real world problem. The NSs are defined by the membership functions of truth, 

indeterminacy and falsity whose values take from the real standard interval. Wang et al. proposed the theoretical 

concept of single-valued Neutrosophic sets (SVNS) and Interval valued Neutrosophic Sets (IVNSs) as well [26-

34]. 

If uncertainty exists in vertices or edges set or both then the structure turns into a fuzzy graph. It can be 

established by taking the set of vertices and edges as FS, in the same way one can model any other types of fuzzy 
graphs [21-15, 32].Graph theory defines the relationship between various individuals and has got many number 

of applications in different fields namely database theory, modern discipline and technology, neural networks, 

data scooping cluster analysis, knowledge systems image capturing and control theory. Handling Indeterminacy 

on the object or edge or both cannot be handled fuzzy graphs and hence Neutrosophic graphs have been 

introduced. [44, 47-48].  

A new perspective for neutrosophic theory and its applications also proposed [49].  There are many 

methods have been proposed under single valued neutrosophic, interval valued neutrosophic and neutrosophic 

environments by colloborating with other methods such as TOPSIS, DEMATEL, VIKOR. Also all these hybrid 

and extension methods applied in the process of decision making. Further, NS-cross entropy, hyperbolic sine 

similarity measure, hybrid binary algorithm similarity measure method and single-valued co-neutrosophic graphs  

play an important role in decision making. In fuzzy graph all the edges are represented by fuzzy numbers and 

that may be interval valued fuzzy number also. Whereas in neutrososphic graph the edges are represented by 
single valued neutrosophic numbers [50-62].  

The remaining part of the paper is organized as follows. In section 2, review of literature is presented. 

In section 3, basic concepts related to the presented work is given. In section 4,   Blockchain single valued and 

interval valued neutroosphic graphs are proposed and applied for Bitcoin transaction. Also degree, total degree, 

minimum and maximum degree have been found.  In section 5, qualitative analysis has been done with the 

limitations and advantages of various types of graphs. In section 6, conclusion of the paper is given with the 

future work.  

 

2. Review of Literature 
 
 [Yeh and Bang 1] proposed fuzzy relations, fuzzy graphs and applied them in cluster analysis. [Satoshi 
2] presented a solution for the problem of double-sending using a peer-to-peer network. [Leroy 3] portrayed the 

evolution and proof of linguistic care of an accumulator back-end. [Dey et al.4] have done a vertex colouring of 
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a fuzzy graph. [Dey et al. 5] applied the concept of fuzzy graph in light control in traffic control management. 

[Ober et al. 6] proposed a model and obscurity of the Bitcoin transaction graph. [Decker and Wattenhofer 7] ex-

amined about knowledge reproduction in the network of Bitcoin. [Fleder et al. 8] linked bit coin public keys to 

real people and commented about the public transaction graph and hence done a graph analysis scheme to find 

and compiled activity of known as well as unknown users.   

 [Stanfill and Wholey 9] proposed a transactional graph on the basis of computation with error manage-

ment. [Ye 10] proposed aggregation operators under simplified neutrosophic environment and applied them in a 

decision making problem. [Biswas et al. 11] introduced a new methodology for dealing unknown weight infor-

mation and applied in a decision making problem. [Biswas et al. 12] proposed grey relational analysis based on 
entropy under single valued neutrosophic setting and applied in a decision making process with multi attribute.   

 [Mondal and Pramanik 13] introduced a model for clay-brick selection based on grey relational analysis 

for neutrosophic decision making. [Mondal and Pramanik 14] proposed neutrosophic tangent similarity measure 

and applied in multiple attribute decision making. [Biswas et al. 15] introduced cosine similarity measure with 

trapezoidal fuzzy neutrosophic numbers and applied in a decision making problem. [Broumi et al. 16] introduced 

an extended TOPSIS methodology using interval neutrosophic uncertain linguistic variables. [Greaves and Au 

17] investigated the prognostic power of Blockchain network using lineaments on the future price of Bitcoin. 

[Pilkington 18] clarified the main ethics behind block chain technique and few of its application of cutting edge.  

 

 [Bonneau et al. 19] Analyzed invisibility problems in Bitcoin and contribute an evaluation plan for pri-

vate- enlarging proposals and contributed a new intuition on language disintermediation protocols. 
[Smarandache and Pramanik 20] introduced a new direction for neutrosophic theory and applications. [Biswas et 

al. 21] proposed TOPSIS methodology under single-valued neutrosophic setting for multi-attribute group deci-

sion making. [Biswas et al. 22] proposed aggregation operators for triangular fuzzy neutrosophic set information 

and used for a decision making problem. [Biswas et al. 23] introduced a ranking method based on value and am-

biguity index using single-valued trapezoidal neutrosophic numbers and its application to decision making prob-

lem. [Eyal et al. 24] designed a block chain protocol called Bitcoin –next generation. [Broumi et al. 25] intro-

duced operational laws on interval valued neutrosophic graphs.  

 [Broumi et al. 26] proposed the formulas to find degree, size and order of a single valued neutrosophic 

graphs.  [Pramanik et al. 27] proposed hybrid similarity measures under neutrosophic environment and applied 

them in decision making problem. [Dalapati et al. 28] introduced IN-cross entropy for interval neutrosophic set 

environment and applied in multi attribute group decision making process. [Broumi et al. 29] proposed uniform 
single valued neutrosophic graphs. [Cocco et al. 30] paid attention at the threats and opportunities of carrying out 

Blockchain mechanism across banking. [Jeoseph et al. 31] reviewed the approval and future use of block chain 

technology. 

 [Chan and Olmsted 32] proposed a design for prevailing transactions from Ethereum into a graph data-

base namely leveraging graph computer. [Illgner 33] proposed a blockchian to fix all Blockchains. [Swan and 

Filippi 34] explained about the philosophy of Bockchain technology. [Banuelos et al. 35] proposed an advanced 

method to implement business developments on top of commodity Blockchain technology. [Dinh et al. 36] sur-

veyed the case of the art targeting on private Blockchain where the parties are authenticated. [Desai 37] analysed 

industry application and have legal perspectives for Blockchain technology. [Jain et al. 38] analyzed asymmet-

rical associations using fuzzy graph and finding hidden connections in Facebook. [Raikwar et al. 39] proposed a 

framework of Blockchain for insurance processes.  

 [Ramkumar 40] proposed Blockchain integrity framework. [Hill 41] presented a review on Blockchain 
[Arockiaraj and Charumathi 42] introduced the Blockchain fuzzy graph and its concepts and properties. [Hala-

burda 43] answered for the question, Blockchain transformation without the Blockchain. [Gupta and Sadoghi 44] 

explained about Blockchain process in detailed manner. [Ramkumar 45] accomplished large scale measure in 

Blockchian. [Asraf et al. 46] proposed Dombi fuzzy graphs. [Marapureddy 47] introduced fuzzy graph for the 

semi group. [Quek et al. 48] introduced a few of the results for complex Neutrosophic sets on graph theory. 

[Smarandache and Pramanik 49] introduced a new perspective to neutrosophic theory and its applications.  

 [Basset et al. 50] proposed an extended neutrosophic AHP-SWOT analysis for critical planning and de-

cision making.  [Basset et al. 51] proposed association rule mining algorithm to analyze big data. [Basset et al. 

52] introduced Group ANP-TOPSIS framework under hybrid neutrosophic setting for supplier selection problem. 

[Basset et al. 53] presented a hybrid approach of neutrosophic sets and DEMATEL method to enhance the crite-

ria for supplier selection.   The same authors presented a series of article[63-69]. ([Pramanik et al. 54] proposed 
NS-cross entropy under single valued neutrosophic environment and applied in a MAGDM problem. [Biswas et 

al. 55] proposed neutrosophic TOPSIS method and solved group decision making problem.  

  [Pramanik and Mallick 56] proposed VIKOR method using trapezoidal neutrosophic numbers and 

solved MAGDM problem using proposed method. [Biswas et al. 57] solved MADM problem by introducing dis-

tance measure using interval trapezoidal neutrosophic numbers. [Biswas et al. 58] introduced TOPSIS strategy 

for solving MADM problem with trapezoidal numbers. [Biswas et al. 59] solved MAGDM problem using ex-
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pected value of neutrosophic trapezoidal numbers. [Mondal et al. 60] introduced hyperbolic sine similarity 

measure based MADM strategy under single valued neutrosophic environment. [Mondal et al. 61] proposed hy-

brid binary algorithm similarity measure under single valued neutrosophic set assessments for MAGDM problem.  

[Dhavaseelan et al. 62] proposed single-valued co-neutrosophic graphs.  

  The above literature survey motivated to propose Blockchain single and interval valued Neutrosophic 

Graphs and applied them in Blockchain technology using Bitcoins. 

 

3. Basic Concepts 
Some basic concepts needed for the proposed concepts and their application, are listed below.  

 

3.1 Bitcoins [40] 
 
Bitcoin is the digital currency and worldwide payment system and are believable and best used when,  

 There are a series of transaction 

 Need to be recorded 

 Need to be verified with respect to purity of the information and the order of the events.  

3.2 Blockchain [42] 
 
A Blockchain is a network and can be seen as a reliable computer whose private states are auditable by anyone. 

It can also be defined as follows. 

 Cryptographic approach for modeling an unalterable append-only public ledger 

 It includes a methodology for obtaining an open general agreement on each entry 

 Ledger entries are mappings of the states of processes by the Blockchain network. 

Uses of Blockchain 

 A uniform approach to execute a variety of application processes 

 Reliable and efficient Low upward approaches for stakeholders/users namely states with query applica-

tion and audit correctness of changes of states.  

3.3 Graph [46] 
 
A mathematical system  ,G V E  is called a graph, where a vertex set is  V V G and an edge set is  E E G . In 

this paper, undirected graph has been considered and hence every edge is considered as an unordered pair of 

different vertices. 

 
3.4 Fuzzy Graph [47] 
 

Consider a non-empty finite set V ,  be a fuzzy subsets on V and  be a fuzzy subsets on V V .A fuzzy graph is 

a pair  , G over the set V if       , min ,a b a b   for all  ,a b  V V where  is a fuzzy vertex and  is a 

fuzzy edge. Where: 

1. A fuzzy subset is a mapping  : 0,1 V of V . 

2. A fuzzy relation is a mapping  : 0,1  V V  on  of V  if       , min ,a b a b    

3. If       , min ,a b a b   then G is a strong fuzzy graph. 

 

3.5 Blockchain Fuzzy Graph (BCFG) [42] 
 

The pair  , G is a BCFG, where   is a fuzzy vertex set and  is symmetric on   such 

that       , min ,a b a b   , ,a b V with the following criterion.  

1. If i j then       , min , 1i j i ja b a b    
   

2. If i j then       , max , 1i j i ja b a b    
   

3. If i j then       , min , 0i j i ja b a b    
   
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3.6 Single Valued Neutrosophic Graph (SVNG) [26] 
 

A pair  ,R SG  is SVNG with elemental set V . Where: 

1. Grade of truth, indeterminacy and falsity memberships of ia V are defined by  : 0,1RT V , 

 : 0,1RI V and  : 0,1RF V respectively and      0 3, , 1,2,3,...,R i R i R i iT a I a F a a i n      V  

2. The above three memberships of the edge  ,i ja b E are denoted by  : 0,1ST   E V V , 

 : 0,1SI   E V V and  : 0,1SF   E V V respectively and are defined by  

       , min ,S i j R i R jT a b T a T b 
 

 

       , max ,S i j R i R jI a b I a I b 
 

 

       , max ,S i j R i R jF a b F a F b 
 

 

where             0 , , , 3, , , 1,2,...,S i j S i j S i j i jT a b I a b F a b a b i j n      E . 

Also Rand S are the single valued Neutrosophic vertex and edge set of V and E respectively. S is symmetric 

on R. 

 
3.7 Interval Valued Neutrosophic Graph (IVNG) [25] 
 

A pair  ,R SG is IVNG, where , , , , ,L U L U L U
R R R R R RR T T I I F F     

     
, is an IVN set on V and 

, , , , ,L U L U L U
S S S S S SS T T I I F F     

     
is an IVN edge set on E satisfying the following conditions: 

1. Here the lower and upper memberships functions of ia V are defined 

by  : 0,1L
RT V ,  : 0,1U

RT V ,  : 0,1L
RI V ,   : 0,1U

RI V  and  : 0,1 ,L
RF V  : 0,1U

RF V respective-

ly and      0 3, , 1,2,3,...,R i P i P i iT a I a F a a i n      V  

2. And the same for edge  ,i ja b E are denoted by  : 0,1L
ST  V V ,  : 0,1U

ST  V V  : 0,1L
SI  V V , 

 : 0,1U
SI  V V and  : 0,1L

SF  V V ,  : 0,1U
SF  V V respectively and are defined by  

       , min ,L L L
S i j R i R jT a b T a T b 

 
 

       , min ,U U U
S i j R i R jT a b T a T b 

 
 

       , max ,L L L
S i j R i R jI a b I a I b 

 
 

       , max ,U U U
S i j R i R jI a b I a I b 

 
 

       , max ,L L L
S i j R i R jF a b F a F b 

 
 

       , max ,U U U
S i j R i R jF a b F a F b 

 
 

where             0 , , , 3, , , 1,2,...,S i j S i j S i j i jT a b I a b F a b a b i j n      E . 

Also R and S are the interval valued Neutrosophic vertex and edge set of V and E  respectively. S is symmetric 

on R.  

 

4. Proposed Concepts 
 In this section, Blockchian single valued neutrosophic graph is proposed and applied in Blockchain 
technology with Bitcoin transaction.   

 
4.1 Blockchain Single Valued Neutrosophic Graph (BCSVNG) 
 

A pair  ,R SG is BCSVNG with elemental set V . Where: 

1.  : 0,1RT V ,  : 0,1RI V and  : 0,1RF V  and      0 3, , 1,2,3,...,R i R i R i iT x I x F x x i n      V  

2.  : 0,1ST   E V V ,  : 0,1SI   E V V and  : 0,1SF   E V V  are defined by  
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Case (i): If i j then 

     , min , 1S i j R i R jT x y T x T y   
    

     , max , 1S i j R i R jI x y I x I y   
    

     , max , 1S i j R i R jF x y F x F y   
    

Case (ii): If i j then the above values are 0. 

Where,             0 , , , 3, , , 1,2,...,S i j S i j S i j i jT x y I x y F x y x y i j n      E  

Also R is a single valued Neutrosophic vertex of V and S is a single valued Neutrosophic edge set of E . S is a 

symmetric single valued Neutrosophic relation on R.  

 

 
4.1.1 Blockchain Single Valued Neutrosophic Graph in Bitcoin Transaction 
 

Let us consider there are 4 persons in the Blockchain and everyone is doing a transaction using Bitcoin 

and they are saving 40% and investing the remaining 60% in Bitcoin. 

 

1v 2v

3v4v

 0.8,0.2,0.1  0.7,0.3,0.2

 0.8,0.4,0.2 0.9,0.2,0.1
 

Figure 1: BCSVNG 

 

Party 1: investing 20 lakhs and doing 3 transactions 

Party 2: investing 15 lakhs and doing 3 transactions 

Party 3: investing 10 lakhs and doing 3 transactions 

Party 4: investing 5.5 lakhs and doing 3 transactions 
For example, assume that the party-1 (v1) has the total amount of 20 lakhs, from this he is saving 40% and invest 

the remaining 60% as Bitcoins for his crypto currencies.  

 

The following are the transactions of Party-1: 

 

Transaction 1: Party-1 to Party-2 : ( 1v  to 2v ) 

 0.7,0.3,0.2 12,00,000  

 

        1 1 , 1 1 , 1 1
k k k

R R RT T T       , 0k  (any arbitrary number) [10] 

 

        12,00,000 12,00,000 12,00,000
1 1 0.7 , 1 1 0.3 , 1 1 0.2        

 

        12,00,000 12,00,000 12,00,000
1 1 0.7 , 1 1 0.3 , 1 1 0.2        

 

1,1,1  

 
Similarly for other transactions namely 

 

Transaction 2: Party-1 to Party-3 : ( 1v  to 3v ) 

Transaction 3: Party-1 to Party-4 : ( 1v  to 4v )  
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All the possible transaction are listed out in Table 1 with the sum value of each row. 

 

    0.8,0.2,0.1   0.7,0.3,0.2   0.8,0.4,0.2   0.9,0.2,0.1  sum 

   1v  2v  3v  4v   

  0.8,0.2,0.1  1v  0  0.4,0.38,0.3   0.3,0.41,0.4   0.3,0.21,0.3   1,1,1  

  0.7,0.3,0.2  2v   0.4,0.38,0.3  0  0.4,0.37,0.3   0.2,0.25,0.4   1,1,1  

  0.8,0.4,0.2  3v   0.3,0.41,0.4   0.4,0.37,0.3  0  0.3,0.54,0.3   1,1,1  

  0.9,0.2,0.1  4v   0.3,0.21,0.3   0.2,0.25,0.4   0.3,0.54,0.3  0  1,1,1  

sum    1,1,1   1,1,1   1,1,1   1,1,1   

 

Table 1: Transaction Table for BCSVNG 

 

Where sum=  ,i jv v  

 

4.1.2 Properties of Blockchain Single Valued Neutrosophic Graph 
 

In this section, degree, total degree, minimum and maximum degrees are found for Blockchain Single Valued 

Neutrosophic Graph.    

 
(i).  Degree of Single Valued Neutrosophic Graph (SVNG) 
 

        1 1 1 1, ,T I Fd v d v d v d v [26] 

 1,1,1  

Where,        1 1 2 1 3 1 4, , ,T S S Sd v T v v T v v T v v   0.4 0.3 0.3 1     

       1 1 2 1 3 1 4, , ,I S S Sd v I v v I v v I v v   0.38 0.41 0.21 1     

       1 1 2 1 3 1 4, , ,F S S Sd v F v v F v v F v v   0.3 0.4 0.3 1     

Similarly         2 2 2 2, ,T I Fd v d v d v d v =  1,1,1  

        3 3 3 3, ,T I Fd v d v d v d v =  1,1,1  

        4 4 4 4 4, ,T Fd v d v d v d v =  1,1,1  

And        
1 1 1

1 1 1 12 , ,2 , ,2 ,

j j j

S j S j S j

v v v v v v

d v T v v I v v F v v

  

 
 
 
 
 

     

        2 1 ,2 1 ,2 1 2,2,2   

 

(ii). Total Degree of SVNG 
 

        , ,i T i I i F itd v td v td v td v  [26] 

Where      ,T i S i j R itd v T v v T v   

     1 1 1,T S j Rtd v T v v T v  1 0.8 1.8    

     1 1 1,I S j Rtd v I v v I v  1 0.2 1.2    

     1 1 1,F S j Rtd v F v v F v  1 0.1 1.1    

Therefore,           1 1 1 1, , 1.8,1.2,1.1T I Ftd v td v td v td v   

Similarly,           2 2 2 2, , 1.7,1.3,1.2T I Ftd v td v td v td v   
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              3 3 3 3, , 1.8,1.4,1.2T I Ftd v td v td v td v   

          4 4 4 4, , 1.9,1.2,1.1T I Ftd v td v td v td v   

 

(iii).  Minimum degree of SVNG 
 

It is         , ,T I F   G G G G , where  

    min /T Td v v  G V ,     min /I Id v v  G V and     min /F Fd v v  G V [15] 

 

For the Fig. 1, 

    min / 1T Td v v   G V  

    min / 1I Id v v   G V  

    min / 1F Fd v v   G V  

 

(iv). Maximum degree of SVNG 
 

It is defined by         , ,T I F   G G G G , where 

              max / , max / , max /T T T T F Fd v v d v v d v v       G V G V G V [26] 

For the Fig. 1, 

    max / 1T Td v v   G V  

    max / 1I Id v v   G V  

    max / 1F Fd v v   G V  

For the Fig. 1, 

              max / max / max / 1T T T T F Fd v v d v v d v v          G V G V G V  

 

4.2 Blockchain Interval Valued Neutrosophic Graph (BCIVNG)  
 

A pair  ,R SG is BCIVNG, where , , , , ,L U L U L UR T T I I F F
R R R R R R

     
          

, is an IVN set on V and 

, , , , ,L U L U L U
S S S S S SS T T I I F F                

is an IVN edge set on E satisfying conditions 1 and 2 as in the definition of 

IVNG and with the following criterions. 

 

Case (i): If i j then 

     , min , 0.5L L L
S i j R i R jT x y T x T y   

     

 

     , min , 0.5U U U
S i j R i R jT x y T x T y   

     

 

     , max , 0.5L L L
S i j R i R jI x y I x I y   

     

 

     , max , 0.5U U U
S i j R i R jI x y I x I y   

     

 

     , max , 0.5L L L
S i j R i R jF x y F x F y   

     

 

     , max , 0.5U U U
S i j R i R jF x y F x F y   

     

 

Case (ii): If i j then the above six values are 0. 

Where              0 , , , 3, , , 1,2,...,S i j S i j S i j i jT x y I x y F x y x y i j n      E  
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Also R is an interval valued Neutrosophic vertex of V and S is an interval valued Neutrosophic edge set of E . S 

is a symmetric interval valued Neutrosophic relation on R. 

 

4.2.1 Blockchain Interval Valued Neutrosophic Graph in Bitcoin Transaction 
 
Let us consider there are 3 persons in the Blockchain and everyone is doing a transaction using Bitcoin and they 
are saving 40% and investing the remaining 60% in Bitcoin.  

1v

2v3v

     0.5,0.7 , 0.2,0.3 , 0.1,0.3

     0.6,0.7 , 0.2,0.4 , 0.1,0.3     0.4,0.6 , 0.1,0.3 , 0.2,0.4
 

Figure 2: BCIVNG 

 

Party 1: investing 20 lakhs and doing 2 transactions 

Party 2: investing 15 lakhs and doing 2 transactions 
Party 3: investing 10 lakhs and doing 2 transactions 

 

For example, assume that the party-1 (v1) has the total amount of 20 lakhs, from this he is saving 40% and invest 

the remaining 60% as Bitcoins for his crypto currencies.  

 

The following are the transactions of Party-1: 

 

Transaction 1: Party-1 to Party-2: ( 1v  to 2v ) 

     0.6,0.7 , 0.2,0.4 , 0.1,0.3 12,00,000  

           1 1 ,1 1 , , , ,
k k k k k k

L U L U L U
R R R R R RT T I I F F

      
          

      
[25] 

 

            12,00,000 12,00,000 12,00,000 12,00,000 12,00,000 12,00,000
1 1 0.6 ,1 1 0.7 , 0.2 , 0.4 , 0.1 , 0.3         
          

 

 

            12,00,000 12,00,000 12,00,000 12,00,000 12,00,000 12,00,000
1 0.4 ,1 0.3 , 0.2 , 0.4 , 0.1 , 0.3       
          

 

 

      1 0,1 0 , 0,0 , 0,0    

 

 [1,1],[0,0],[0,0]  

 

Transaction 2: Party-1 to Party-3: ( 1v  to 3v )  [1,1],[0,0],[0,0]  
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Table 1represent all possible transactions from one vertex to all other verteices. Here edge represents the 

transaction and the vertex represents the parties.  

   

 

 

0.5,0.7 ,

0.2,0.3 ,

0.1,0.3

 

 

 

 

0.6,0.7 ,

0.2,0.4 ,

0.1,0.3

 

 

 

 

0.4,0.6 ,

0.1,0.3 ,

0.2,0.4

 

 ,i jv v  

  1v  
2v  

3v   

 

 

 

 

 

0.5,0.7 ,

0.2,0.3 ,

0.1,0.3

 

1v  0  

 

 

0.217,0.283 ,

0.211,0.289 ,

0.302,0.313

 

 

 

 

0.281,0.282 ,

0.198,0.199 ,

0.208,0.209

 

 1,1,1  

 

 

 

0.6,0.7 ,

0.2,0.4 ,

0.1,0.3

 

2v   

 

 

0.217,0.283 ,

0.211,0.289 ,

0.302,0.313

 

0  

 

 

0.28,0.283 ,

0.197,0.198 ,

0.208,0.209

 

 1,1,1  

 

 

 

0.4,0.6 ,

0.1,0.3 ,

0.2,0.4

 

3v   

 

 

0.281,0.282 ,

0.198,0.199 ,

0.208,0.209

 

 

 

 

0.217,0.283 ,

0.302,0.313 ,

0.292,0.302

 

0  1,1,1  

 ,i jv v  
  1,1,1  

 

 

 1,1,1   1,1,1   

 
Table 2: Transaction Table for BCIVNG 

From table 1 and table 2 it is observed that sum of all single /interval valued Neutrosophic edges of a particular 

Neutrosophic vertex is equal to (1, 1, 1). Hence the proposed method is an optimized one to deal indeterminacy 

of the data in Bitcoin transaction. 

 
5. Comparative Analysis (Qualitative)  
 

Blockchain approach has been applied in various fields as a growing technique. Here the advantages and 

limitations are listed out for Blockchian crisp, fuzzy and Neutrosophic graphs. This analysis will be very useful 

to understand the concept of Blockchian under different environments.  

 

Type of Blockchain Graph Advantages Limitations 

Blockchian Crisp Graph  Faster Process with purity 

and detectable  

 Process clarity 

 Data will be permanent  

 Unable to handle uncertain-

ties 

 Size of the network will de-

cide the security level 

Blockchain Fuzzy Graph  Can handle uncertainty ex-

ists in the vertex and edge 

sets 

 Invariable data 

 Incapable to handle inde-

terminacy of the data and 

interval data 

 Large network will give 

more level of security 

Blockchain Interval Valued 

Fuzzy Graph 
 Can able to deal with data in 

terms of range 

 Inadequate to handle unde-

termined data 

Blockchain Single Valued 

Neutrosophic Graph 
 Able to handle indetermina-

cy of the data 

 Unfit to handle interval data 

Blockchain Interval Valued  Capable to handle interval  Unsuited to handle criterion 
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Neutrosophic Graph data as the participant’s de-

cision is always lie in a 

range.  

insufficient information of 

the weights. 

 

6. Conclusion 
 Reliability and assurance of the dealing is very important for any business transaction. Blockchain 

technology is such a technology and recently it is widely applied in many fields. In any field uncertainty is 

unavoidable one as the human behavior always uncertainty in nature. Also indeterminacy does not deal in any 

area field of mathematics whereas Neutrosophic set deals indeterminacy and hence an optimized solution can be 

obtain for any problem. In this paper Blockchain network has been used in terms of Bitcoin transaction where 

the vertex and edges have been considered as single and interval valued Neutrosophic sets. Also the degree, total 
degree, minimum and maximum degree have been found for the proposed Blockchain single valued 

Neutrosophic graph. In addition to this, contingent study has been done for various types of Blockchain graphs.  
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1 Introduction
The concept of Neutrosophic set, first introduced by Smarandache [17],is a powerful general formal framework
that generalizes the concept of fuzzy set and intuitionistic fuzzy set. Recently, many researchers have been
involved in extending the concepts and results of abstract algebra to the broader framework of the neutrosophic
set theory[2, 3, 4, 5, 19]. Smarandache[17] and Wang et al.[18] introduced the concept of a single valued
neutrosophic set as a subclass of the neutrosophic set and specified the definition of a neutrosophic set to make
more applicable the theory to real life problems. In 1992, B. M. Schein have considered systems of the form
(Φ; ◦, \) [16], where Φ is a set of functions closed under the composition “◦” of functions (and hence (Φ; ◦)
is a function semigroup) and the set theoretic subtraction “\” (and hence (Φ; \) is a subtraction algebra in the
sense of [1]). Jun et al. introduced the concept of ideal in subtraction algebras and continued studying on
ideals in subtraction algebras[6, 8, 9, 14]. K. J. Lee and C. H. Park [11] introduced the concept of a fuzzy
ideal in subtraction algebras and investigated some conditions for a fuzzy set to be a fuzzy ideal in subtraction
algebras. Since then many reseachers worked in this area[7, 10, 12, 13].

In this paper, we apply the notion of neutrosophic sets in subtraction algebras. Also, we introduce the notion
of neutrosophic ideal and give some conditions for a neutrosophic set to be a neutrosophic ideal in substraction
algebras. Finally,we showed that neutrosophic image and neutrosophic inverse image of neutrosophic ideal are
both neutrosophic ideal under certain conditions

2 Preliminaries
We review some definitions and properties that are necessary for this paper.

Definition 2.1. [1] An algebra (X,−) is called a subtraction algebra if a single binary operation− satisfies the
following identities: for any x, y, z ∈ X ,

(SA1) x− (y − x) = x,
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(SA2) x− (x− y) = y − (y − x),

(SA3) (x− y)− z = (x− z)− y,

We introduced an order relation X on a subtraction algebras: a ≤ b ⇔ a− b = 0, where 0 = a− a is an
element that does not depend on the choice of a ∈ X .

Proposition 2.2. [9] Let (X,−) be a subtraction algebra. Then we have the following axioms:

(SP1) (x− y)− y = x− y,

(SP2) x− 0 = x and 0− x = 0,

(SP3) (x− y)− x = 0,

(SP4) x− (x− y) ≤ y,

(SP5) (x− y)− (y − x) = x− y,

(SP6) x− (x− (x− y)) = x− y,

(SP7) (x− y)− (z − y) ≤ x− z,

(SP8) x ≤ y if and only if x = y − w for some w ∈ X,

(SP9) x ≤ y implies x− z ≤ y − z and z − y ≤ z − x for all z ∈ X,

(SP10) x, y ≤ z implies x− y = x ∧ (z − y),

(SP11) (x ∧ y)− (x ∧ z) ≤ x ∧ (y − z), for all x, y, z ∈ X.

Definition 2.3. [9] A nonempty subset A of a subtraction algebra X is called an ideal of X, denoted by A�X,
if it satisfies:

(SI1) a− x ∈ A for all a ∈ A and x ∈ X,

(SI2) for all a, b ∈ A, whenever a ∨ b exists in X then a ∨ b ∈ A.

Proposition 2.4. [9] Let X be a subtraction algebra and let x, y ∈ X. If w ∈ X is an upper bound for x and y,
then the element

x ∨ y := w − ((w − y)− x)

is a least upper bound for x and y.

Definition 2.5. [11] A fuzzy set µ in X is called a fuzzy ideal of X if it satisfies:

(SFI1) µ(x− y) ≥ µ(x),

(SFI2) ∃x ∨ y ⇒ µ(x ∨ y) ≥ min{µ(x), µ(y)}) for all x, y ∈ X.

We give some preliminaries about single valued neutrosophic sets and set operations, which will be called
neutrosophic sets, for simplicity.
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Definition 2.6. [18] Let X be a space of points (objects), with a generic element in X denoted by x. A single
valued neutrosophic set A on X is characterized by truth-membership function tA, indeterminacy-membership
function iA and falsity-membership function fA. For each point x in X, tA(x), iA(x), fA(x) ∈ [0, 1]. A neutro-
sophic set A can be written as denoted by a mapping defined as A : X → [0, 1]× [0, 1]× [0, 1] and

A = {< x, tA(x), iA(x), fA(x) >, x ∈ X}

for simplicity.

Definition 2.7. [15, 18] Let A and B be two neutrosophic sets on X . Then
(1) A is contained in B, denoted as A ⊆ B, if and only if NA(x) ≤ NB(x). i.e., tA(x) ≤ tB(x), iA(x) ≤

iB(x) and fA(x) ≥ fB(x). Two sets A and B is called equal, i.e., A = B iff A ⊆ B and B ⊆ A.

(2) the union ofA andB is denoted byC = A∪B and defined as NC(x) = NA(x)∨NB(x) where NA(x)∨
NB(x) = (tA(x)∨tB(x), iA(x)∨iB(x), fA(x)∧fB(x)), for each x ∈ X. i.e., tC(x) = max{tA(x), tB(x)}, iC(x) =
max{iA(x), iB(x)} and fC(x) = min{fA(x), fB(x)}.

(3) the intersection of A and B is denoted by C = A ∩ B and defined as NC(x) = NA(x) ∧ NB(x)
where NA(x) ∧ NB(x) = (tA(x) ∧ tB(x), iA(x) ∧ iB(x), fA(x) ∨ fB(x)), for each x ∈ X.i.e., tC(x) =
min{tA(x), tB(x)}, iC(x) = min{iA(x), iB(x)} and fC(x) = max{fA(x), fB(x)}.

(4) the complement of A is denoted by Ac and defined as N c
A (x) = (fA(x), 1 − iA(x), tA(x)), for each

x ∈ X.

Definition 2.8. [4] Let g : X1 → X2 be a function and A,B be the neutrosophic sets of X1 and X2, respec-
tively. Then the image of a neutrosophic set A is a neutrosophic set of X2 and it is defined as follows:∀y ∈ X2

g(A)(y) = (tg(A)(y), ig(A)(y), fg(A)(y))

= (g(tA)(y), g(iA)(y), g(fA)(y)),

where

g(tA)(y) =

{ ∨
tA(x) if x ∈ g−1(y),

0 otherwise,

g(iA)(y) =

{ ∨
iA(x) if x ∈ g−1(y),

0 otherwise,

g(fA)(y) =

{ ∧
tA(x) if x ∈ g−1(y),

0 otherwise,

And the preimage of a neutrosophic set B is a neutrosophic set of X1 and it is defined as follows:

g−1(B)(x) = (tg−1(B)(x), ig−1(B)(x), fg−1(B)(x))

= (tB(g(x)), iB(g(x)), fB(g(x)))

= B(g(x)), ∀x ∈ X1.

Definition 2.9. [4] Let A = {< x, tA(x), iA(x), fA(x) >, x ∈ X} be a neutrosophic set on X and α ∈ [0, 1].
Define the α-level sets of A as follows: (tA)α = {x ∈ X | tA(x) ≥ α}, (iA)α = {x ∈ X | iA(x) ≥ α}, and
(fA)α = {x ∈ X | fA(x) ≤ α}.

Chul Hwan Park, Neutrosophic ideal of Subtraction Algebras.



39 Neutrosophic Sets and Systems, Vol.24, 2019

3 Neutrosophic ideals
In what follows, let X be a subtraction algebra unless otherwise specified.

Definition 3.1. A neutrosophic set A of X is called a neutrosophic ideal of X if the following conditions are
true: ∀x, y ∈ X,

(SNI1) NA(x− y) ≥ NA(x) i.e., tA(x− y) ≥ tA(x), iA(x− y) ≥ iA(x) and fA(x− y) ≤ fA(x);

(SNI2) ∃x ∨ y ⇒ NA(x ∨ y) ≥ NA(x) ∧ NA(y),i.e., tA(x ∨ y) ≥ tA(x) ∧ tA(y), iA(x ∨ y) ≥ iA(x) ∧
iA(y) and fA(x ∨ y) ≤ fA(x) ∨ fA(y) whenever there exists x ∨ y.

Proposition 3.2. If a neutrosophic set A of X satisfies

(∀x, a, b ∈ X)
(

NA(x− ((x− a)− b)) ≥ NA(a) ∧NA(b)
)

(3.1)

then A is a neutrosophic ideal of X.

Proof. Let A = {< x, tA(x), iA(x), fA(x) >, x ∈ X} be a neutrosophic set of X that satisfies (3.1). By (SP2)
and (SP3) we have (x− y)− (((x− y)−x)−x) = (x− y)− (0−x) = (x− y)−0 = x− y. From this we get

tA(x− y) = tA((x− y)− (((x− y)− x)− x)) ≥ tA(x) ∧ tA(x) = tA(x),

iA(x− y) = iA((x− y)− (((x− y)− x)− x)) ≥ iA(x) ∧ iA(x) = iA(x),

fA(x− y) = fA((x− y)− (((x− y)− x)− x)) ≤ fA(x) ∨ fA(x) = fA(x).

Now suppose x∨y exists for x, y ∈ X. If we take w = x∨y,we have x∨y = w−((w−x)−y) by Proposition
2.4. It follows from (3.1) that

tA(x ∨ y) = tA(w − ((w − x)− y)) ≥ tA(x) ∧ tA(y),

iA(x ∨ y) = iA(w − ((w − x)− y)) ≥ iA(x) ∧ iA(y),

fA(x ∨ y) = fA(w − ((w − x)− y)) ≤ fA(x) ∨ fA(y).

Hence A is a neutrosophic ideal of X.

Proposition 3.3. For every neutrosophic ideal A of X, we have the following inequality:

(∀x ∈ X) (NA(0) ≥ NA(x)). (3.2)

Proof. Let A = {< x, tA(x), iA(x), fA(x) >, x ∈ X} be a neutrosophic ideal of X. Putting y = x in (SNI1),
then

tA(0) = tA(x− x) ≥ tA(x), iA(0) = iA(x− x) ≥ iA(x), fA(0) = fA(x− x) ≤ fA(x).

Hence (3.2) is valid.

Proposition 3.4. Let A be a neutrosophic set of X such that

(SNI3) (∀x ∈ X) (NA(0) ≥ NA(x)),
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(SNI4) (∀x, y, z ∈ X) (NA(x− z) ≥ NA((x− y)− z) ∧NA(y).)

Then we have the following implication:

(∀a, x ∈ X)(x ≤ a ⇒ NA(x) ≥ NA(a)). (3.3)

Proof. Let a, x ∈ X be such that x ≤ a. Then

tA(x) = tA(x− 0) ≥ tA((x− a)− 0) ∧ tA(a) = tA(0) ∧ tA(a) = tA(a),

iA(x) = iA(x− 0) ≥ iA((x− a)− 0) ∧ iA(a) = iA(0) ∧ iA(a) = iA(a),

fA(x) = fA(x− 0) ≤ fA((x− a)− 0) ∨ fA(a) = fA(0) ∨ fA(a) = fA(a).

Hence NA(x) ≥ NA(a).

Theorem 3.5. If a neutrosophic set A in X satisfies (SNI3) and (SNI4), then A is a neutrosophic ideal of X.

Proof. Let A be aneutrosophic in X satisfying (SNI3) and (SNI4), and let x, y ∈ X . Then x−y ≤ x by (SP3).
It follows from Proposition 3.4 that

NA(x− y) ≥ NA(x),

i.e., (SNI1) is valid. Also, we have
NA(x ∨ y) ≥ NA(x)

whenever x ∨ y exists in X by using Proposition 3.4 and so

NA(x ∨ y) ≥ NA(x) ∧NA(y).

Thus (SNI2) is valid. Therefore NA is a neutrosophic ideal of X.

Proposition 3.6. A necessary and sufficient condition for a neutrosophic set A of X to be a neutrosophic ideal
of X is that tA ,iA and 1− fA are fuzzy ideals of X.

Proof. Assume thatA = {< x, tA(x), iA(x), fA(x) >, x ∈ X} is a neutrosophic ideal ofX . For any x, y ∈ X ,
we have tA(x− y) ≥ tA(x), iA(x− y) ≥ iA(x) and fA(x− y) ≤ fA(x). Thus

(1− fA)(x− y) ≥ (1− fA(x)).

Now suppose x∨y exists for x, y ∈ X.We have tA(x∨y) ≥ tA(x)∧, tA(y), iA(x∨y) ≥ iA(x)∧iA(y) and fA(x∨
y) ≤ fA(x) ∨ fA(y). Thus

(1− fA)(x ∨ y) ≥ (1− fA(x)) ∧ (1− fA(y)).

Hence tA, iA and 1− fA are fuzzy ideal of X.
Conversely,assume that tA, iA and 1−fA are fuzzy ideal ofX and x, y ∈ R. Then tA(x−y) ≥ tA(x), iA(x−

y) ≥ iA(x) and 1− fA(x− y) ≥ (1− fA(x)). Thus

fA(x− y) = 1− (1− fA(x− y)) ≤ 1− (1− fA(x)) = fA(x).
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It follows that NA(x − y) ≥ NA(x) ∧ NA(y). Suppose x ∨ y exists for x, y ∈ X, we have tA(x ∨ y) ≥
tA(x) ∧ tA(y), iA(x ∨ y) ≥ iA(x) ∧ iA(y) and (1− fA)(x ∨ y) ≥ 1− fA(x) ∧ 1− fA(y). Thus

fA(x ∨ y) ≤ fA(x) ∨ fA(y).

It follows that
NA(x ∨ y) ≥ NA(x) ∧NA(y).

Hence A is a neutrosophic ideal of X .

Theorem 3.7. A is a neutrosophic ideal of X if and only if for all α ∈ [0, 1], the α-level sets of A, (tA)α,(iA)α
and (fA)α are ideals of X.

Proof. Assume that A = {< x, tA(x), iA(x), fA(x) >, x ∈ X} is a neutrosophic ideal of X . Let x ∈ X ,
a ∈ (tA)α, a ∈ (iA)α and a ∈ (fA)α. Then tA(a) ≥ α, iA(a) ≥ α, and fA(a) ≤ α. By Definition 3.1(SNI1),
we have

tA(a− x) ≥ tA(a) ≥ α, iA(a− x) ≥ iA(a) ≥ α, fA(a− x) ≤ fA(a) ≤ α.

Hence a − x ∈ (tA)α, a − x ∈ (tA)α and a − x ∈ (tA)α. Let a, b ∈ (tA)α a, b ∈ (iA)α and a, b ∈ (fA)α and
assume that there exists a ∨ b. Then tA(a) ≥ α and tA(b) ≥ α, which imply from Definition 3.1(SNI2) that

tA(a ∨ b) ≥ tA(a) ∧ tA(b) ≥ α, iA(a ∨ b) ≥ iA(a) ∧ iA(b) ≥ α, fA(a ∨ b) ≤ fA(a) ∨ fA(b) ≤ α.

and so that a ∨ b ∈ (tA)α,a ∨ b ∈ (iA)α and a ∨ b ∈ (fA)α. Therefore (tA)α,(iA)α and (fA)α are ideals of X.
Conversely, assume that tA(x− y) < tA(x) for some x, y ∈ X. Then

tA(x− y) < α < tA(x)

for some α ∈ (0, 1]. This implies that x ∈ (tA)α but x−y /∈ (tA)α. This is contradiction. Therefore tA(x−y) ≥
tA(x) for all x, y ∈ X. Similary iA(x− y) ≥ iA(x). If fA(x− y) > fA(x) for all x, y ∈ X. Then

tA(x− y) > α > fA(x)

for some α ∈ (0, 1]. This implies that x ∈ (fA)α but x − y /∈ (fA)α. This is contradiction. Therefore
fA(x− y) ≤ fA(x) for all x, y ∈ X. Suppose that x ∨ y exists such that tA(x ∨ y) < tA(x) ∧ tA(y) for some
x, y ∈ X, Then

tA(x ∨ y) < α < tA(x) ∧ tA(y)

for some α ∈ (0, 1]. It follows that x, y ∈ (tA)α and x∨y /∈ (tA)α. This is contradiction. Therefore tA(x∨y) ≥
tA(x) ∧ tA(y) for all x, y ∈ X. Similary iA(x ∨ y) ≥ iA(x) ∧ iA(y). If x ∨ y exists such that fA(x ∨ y) >
fA(x) ∧ tA(y) for some x, y ∈ X, Then

fA(x ∨ y) > α > fA(x) ∨ fA(y)

for some α ∈ (0, 1]. It follows that x, y ∈ (fA)α and x ∨ y /∈ (fA)α. This is contradiction. Therefore
fA(x ∨ y) ≤ fA(x) ∨ fA(y) for all x, y ∈ X. Hence A is a neutrosophic ideal of X .

Theorem 3.8. Let A and B are neutrosophic ideals of X . Then A ∩B is a neutrosophic ideal of X.
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Proof. Suppse that A = {< x, tA(x), iA(x), fA(x) >, x ∈ X} and B = {< x, tB(x), iB(x), fB(x) >, x ∈ X}
are neutrosophic ideals of X and let x, y ∈ X. By Definition 3.1 , we have

tA∩B(x− y) = tA(x− y) ∧ tB(x− y) ≥ tA(x) ∧ tB(x) = tA∩B(x),

iA∩B(x− y) = iA(x− y) ∧ iB(x− y) ≥ iA(x) ∧ iB(x) = iA∩B(x),

fA∩B(x− y) = fA(x− y) ∨ fB(x− y) ≤ fA(x) ∨ fB(x) = fA∩B(x).

Now suppose x ∨ y exists for x, y ∈ X. By Definition 3.1, we have

tA∩B(x ∨ y) = tA(x ∨ y) ∧ tB(x ∨ y)

≥ (tA(x) ∧ tA(y)) ∧ (tB(x) ∧ tB(y))

= (tA(x) ∧ tB(x)) ∧ (tA(y) ∧ tB(y))

= tA∩B(x) ∧ tA∩B(y).

Similary we get iA∩B(x ∨ y) ≥ iA∩B(x) ∧ iA∩B(y). Also we obtain

fA∩B(x ∨ y) = fA(x ∨ y) ∨ fB(x ∨ y)

≤ (fA(x) ∨ fA(y)) ∨ (fB(x) ∨ fB(y))

= (fA(x) ∨ fB(x)) ∨ (fA(y) ∨ fB(y))

= fA∩B(x) ∨ fA∩B(y).

Hence A is a neutrosophic ideal of X .

Theorem 3.9. Let A be a neutrosophic ideal of X. Then the set

K := {x ∈ X | NA(x) = NA(0)}

is an ideal of X.

Proof. Let A be a neutrosophic ideal of X and a ∈ K. Then NA(a) = NA(0). By (SNI1), we have

NA(a− x) ≥ NA(a) = NA(0)

for x ∈ X. It follows from (3.2) that NA(a − x) = NA(0) so that a − x ∈ K. Let a, b ∈ K and assume that
there exists a ∨ b. By means of (SNI2), we know that

NA(a ∨ b) ≥ min{NA(a),NA(b)} = NA(0).

Thus NA(a ∨ b) = NA(0) by (3.2), and so a ∨ b ∈ K. Therefore K is an ideal of X.

Theorem 3.10. Let g : X1 → X2 be a homomorphism. Then the image f(A) of a neutrosophic ideal A of X1

is a neutrosophic ideal of X2.

Proof. For any y1, y2 ∈ f(X1), Consider the set

S = {a1 − a2 | a1 ∈ g−1(y1), a2 ∈ g−1(y2)}.
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If x ∈ S then x = x1 − x2 for x1 ∈ g−1(y1) and x2 ∈ g−1(y2) and so

f(x) = f(x1 − x2) = f(x1)− f(x2) = y1 − y2,

that is, x = x1 − x2 ∈ f−1(y1 − y2). It follows that

g(tA)(y1 − y2) =
∨

x∈f−1(y1−y2)

tA(x) ≥ tA(x1 − x2) ≥ tA(x1)

g(iA)(y1 − y2) =
∨

x∈f−1(y1−y2)

iA(x) ≥ iA(x1 − x2) ≥ iA(x1)

g(fA)(y1 − y2) =
∧

x∈f−1(y1−y2)

fA(x) ≤ fA(x1 − x2) ≤ fA(x1).

Then

g(A)(y1 − y2) = (g(tA)(y1 − y2), g(iA)(y1 − y2), g(fA)(y1 − y2)))
= (

∨
x∈f−1(y1−y2)

tA(x),
∨

x∈f−1(y1−y2)

iA(x),
∧

x∈f−1(y1−y2)

fA(x))

≥ (tA(x1 − x2), iA(x1 − x2), fA(x1 − x2))
≥ (tA(x1), iA(x1), fA(x1)).

Cnsequently,

g(A)(y1 − y2) ≥ (
∨

x1∈f−1(y1)

tA(x1),
∨

x1∈f−1(y1)

iA(x1),
∧

x1∈f−1(y1−y2

fA(x1))

= (g(tA)(y1), g(iA)(y1), g(fA)(y1))

= g(A)(y1).

If y1 ∨ y2 exist for any y1, y2 ∈ f(X1). We first consider the set

T = {a1 ∨ a2 | a1 ∈ g−1(y1), a2 ∈ g−1(y2)}.

If x ∈ T then x = x1 ∨ x2 for x1 ∈ g−1(y1) and x2 ∈ g−1(y2) and so

f(x) = f(x1 ∨ x2) = f(x1) ∨ f(x2) = y1 ∨ y2,

that is, x = x1 ∨ x2 ∈ f−1(y1 ∨ y2). It follows that

g(tA)(y1 ∨ y2) =
∨

x∈f−1(y1∨y2)

tA(x) ≥ tA(x1 ∨ x2),

g(iA)(y1 ∨ y2) =
∨

x∈f−1(y1∨y2)

iA(x) ≥ iA(x1 ∨ x2),

g(fA)(y1 ∨ y2) =
∧

x∈f−1(y1∨y2)

fA(x) ≤ fA(x1 ∨ x2).
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Then

g(A)(y1 ∨ y2) = (g(tA)(y1 ∨ y2), g(iA)(y1 ∨ y2), g(fA)(y1 ∨ y2)))
= (

∨
x∈f−1(y1∨y2)

tA(x),
∨

x∈f−1(y1∨y2)

iA(x),
∧

x∈f−1(y1∨y2)

fA(x))

≥ (tA(x1 ∨ x2), iA(x1 ∨ x2), fA(x1 ∨ x2))
≥ (tA(x1) ∧ tA(x2), iA(x1) ∧ iA(x2), fA(x1) ∨ fA(x2))

= (tA(x1), iA(x1), fA(x1)) ∧ (tA(x2), iA(x2), fA(x2)).

Cnsequently,

g(A)(y1 − y2) ≥ (
∨

x1∈f−1(y1)

tA(x1),
∨

x1∈f−1(y1)

iA(x1),
∧

x1∈f−1(y1)

fA(x1))

∧ (
∨

x2∈f−1(y2)

tA(x2),
∨

x2∈f−1(y2)

iA(x2)
∧

x2∈f−1(y2

fA(x1))

= (g(tA)(y1), g(iA)(y1), g(fA)(y1)) ∧ (g(tA)(y2), g(iA)(y2), g(fA)(y2))

= g(A)(y1) ∧ g(A)(y2).

Hence g(A) is a neutrosophic ideal of f(X1).

Theorem 3.11. Let g : X1 → X2 be a homomorphism. Then the preimage f−1(B) of a neutrosophic ideal B
of X2 is a neutrosophic ideal of X1.

Proof. Let B = {< x, tB(x), iB(x), fB(x) >, x ∈ X2} be a neutrosophic ideal of X2 and x, y ∈ X1. Then

g−1(B)(x− y) = (tB(g(x− y)), iB(g(x− y)), fB(g(x− y))

= (tB(g(x)− g(y)), iB(g(x)− g(y)), fB(g(x)− g(y))

≥ (tB(g(x)), iB(g(x)), fB(g(x))

= g−1(B)(x).

Now suppse x ∨ y exists for x, y ∈ X1. Then

g−1(B)(x ∨ y) = (tB(g(x ∨ y)), iB(g(x ∨ y)), fB(g(x ∨ y))

= (tB(g(x) ∨ g(y)), iB(g(x) ∨ g(y)), fB(g(x) ∨ g(y))

≥ tB(g(x)) ∧ iB(g(y)), iB(g(x) ∧ iB(g(y)), fB(g(x) ∨ fB(g(y)))

= (tB(g(x)), iB(g(x)), fB(g(x)) ∧ (tB(g(y)), iB(g(y)), fB(g(y))

= g−1(B)(x) ∧ g−1(B)(y)

Hence g−1(B), is a neutrosophic ideal of X1.

4 conclusions
F.Smarandache introduced the concept of neutrosophic sets, which can be seen as a new mathematical tool
for dealing with uncertainty. In this paper, we apply the notion of neutrosophic sets in subtraction algebras.
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Also, we introduce the notion of neutrosophic ideal and give some conditions for a neutrosophic set to be
a neutrosophic ideal in substraction algebras. Finally,we showed that neutrosophic image and neutrosophic
inverse image of neutrosophic ideal are both neutrosophic ideal under certain conditions Based on these re-
sults,we could apply neutrosophic sets to other types of ideals in subtraction algebra. Also,we believe that such
a results applied for other algebraic structure.

References
[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.

[2] I.Arockiarani, I.R. Sumathi, and J. Martina Jency, Fuzzy neutrosophic soft topological spaces, International Journal of
Mathematical Arhchive, 6(10) (2013), p225-238

[3] R.A.Borzooei, H. Farahani, and M.Moniri, Neutrosophic deductive filters on BL-algebras, Journal of Intelligent and Fuzzy
Systems, 26(6)(2014), p2993-3004
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Abstract. In recent time graphical analytics of uncertainty and indeterminacy has become major concern for data analytics re-

searchers. In this direction, the mathematical algebra of neutrosophic graph is extended to interval-valued neutrosophic graph. 

However, building the interval-valued neutrosophic graphs, its spectrum and energy computation is addressed as another issues 

by research community of neutrosophic environment. To resolve this issue the current paper proposed some related mathemat-

ical notations to compute the spectrum and energy of interval-valued neutrosophic graph using the MATAB. 

 
Keywords: Interval valued neutrosophic graphs. Adjacency matrix. Spectrum of IVNG. Energy of IVNG. Complete-IVNG.

 

1 Introduction 

The handling uncertainty in the given data set is considered as one of the major issues for the research com-

munities. To deal with this issue the mathematical algebra of neutrosophic set is introduced [1].  The calculus of 

neutrosophic sets (NSs)[1, 2] given a way to represent the uncertainty based on acceptation, rejection and uncer-
tain part, independently. It is nothing but just an extension of fuzzy set [3], intuitionistic fuzzy set [4-6], and in-

terval valued fuzzy sets [7] beyond the unipolar fuzzy space. It characterizes the uncertainty based on a truth-
membership function (T), an indeterminate-membership function (I) and a falsity-membership function(F) inde-

pendently of a defined neutrosophic set via real a standard or non-standard unit interval]−0, 1+[. One of the best 

suitable example is for the neutrosophic logic is win/loss and draw of a match, opinion of people towards an 
event is based on its acceptance, rejection and uncertain values. These properties of neutrosophic set differentiate 

it from any of the available approaches in fuzzy set theory while measuring the indeterminacy. Due to which 

mathematics of single valued neutrosophic sets (abbr. SVNS) [8] as well as interval valued neutrosophic sets 

(abbr.IVNS) [9-10] is introduced for precise analysis of indeterminacy in the given interval. The IVNS repre-
sents the acceptance, rejection and uncertain  membership functions in the unit interval [0, 1] which helped a lot 

for knowledge processing tasks using different classifier [11], similarity method [12-14] as well as multi-

decision making process [15-17] at user defined weighted  method [18-24]. In this process a problem is ad-
dressed while drawing the interval-valued neutrosophic graph, its spectrum and energy analysis. To achieve this 

goal, the current paper tried to focus on introducing these related properties and its analysis using MATLAB. 

2 Literature Review 

There are several applications of graph theory which is a mathematical tool provides a way to visualize the 

given data sets for its precise analysis. It is utilized for solving several mathematical problems. In this process, a 
problem is addressed while representing the uncertainty and vagueness exists in any given attributes (i.e. verti-

ces) and their corresponding relationship i.e edges. To deal with this problem, the properties of fuzzy graph [25-

26] theory is extended to intuitionistic fuzzy graph [28-30], interval valued fuzzy graphs [31] is studied with ap-

plications [32—33]. In this case a problem is addressed while measuring with indeterminacy and its situation. 
Hence, the neutrosophic graphs and its properties is introduced by Smaranadache [34-37] to characterizes them 

using their truth, falsity, and indeterminacy membership-values (T, I, F) with its applications [38-40]. Broumi et 

al. [41] introduced neutrosophic graph theory considering (T, I, F) for vertices and edges in the graph specially 
termed as “Single valued neutrosophic graph theory (abbr. SVNG)” with its other properties [42-44]. Afterwards 

several researchers studied the neutrosophic graphs and its applications [65, 68]. Broumi et al. [50] utilized the 
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SVNGs to find the shortest path in the given network subsequently other researchers used it in different fields 

[51-53, 59-60, 65]. To measure the partial ignorance, Broumi et al. [45] introduced interval valued-neutrosophic 

graphs and its related operations [46-48] with its application in decision making process in various extensions[49, 

54, 57 61, 62, 64,73-84]. 

 

Some other researchers introduced antipodal single valued neutrosophic graphs [63, 65], single valued neu-

trosophic digraph [68] for solving multi-criteria decision making. Naz et al.[69] discussed the concept of energy 

and laplacian energy of SVNGs. This given a major thrust to introduce it into interval-valued neutrosophic graph 

and its matrix. The matrix is a very useful tool in representing the graphs to computers, matrix representation of 

SVNG, some researchers study adjacency matrix and incident matrix of SVNG. Varol et al. [70] introduced sin-

gle valued neutrosophic matrix as a generalization of fuzzy matrix, intuitionistic fuzzy matrix and investigated 

some of its algebraic operations including subtraction, addition, product, transposition. Uma et al. [66] proposed 

a determinant theory for fuzzy neutrosophic soft matrices. Hamidiand Saeid [72 ] proposed the concept of acces-

sible single-valued neutrosophic graphs. 

 

It is observed that, few literature have shown the study on energy of IVNG. Hence this paper, introduces 

some basic concept related to the interval valued neutrosophic graphs are developed with an interesting proper-

ties and its illustration for its various applications in several research field. 

3 Preliminaries 

This section consists some of the elementary concepts related to the neutrosophic sets, single valued neutro-
sophic sets, interval-valued neutrosophic sets, single valued neutrosophic graphs and adjacency matrix for estab-

lishing the new mathematical properties of interval-valued neutrosophic graphs. Readers can refer to following 

references for more detail about basics of these sets and their mathematical representations [1, 8, 41]. 

Definition 3.1:[1] Suppose �	be a nonempty set. A neutrosophic set (abbr.NS) N in�is an object taking the 

form  ���= {<x: ��(�), 
�(�) ,  ��(�)>, k∈ �}       (1) 

Where ��(�):� →]−0,1+[ , 
�(�):� → ]−0,1+[ ,��(�):� →]−0,1+[  are known as truth-membership function, in-

determinate –membership function and false-membership unction, respectively. The neutrosophic sets is subject 

to  the following condition: 0� ≤ ��(�)+
�(�) +��(�) ≤ 3�            (2) 

 

Definition 3.2:[8]Suppose � be a nonempty set. A single valued neutrosophic sets N (abbr. SVNs)  in� is an 

object taking the form: 

 �����={<k:��(�), 
�(�), ��(�)>, k∈ �}  (3) 

 

where ��(�), 
�(�), ��(�) ∈	 [0, 1] are mappings. ��(�)denote the truth-membership function of an element 

x ∈ 	� , 
�(�)denote the indeterminate –membership function of an element k ∈ 	� .��(�)denote the false–

membership function of an element k ∈ 	�. The SVNs subject to condition 

0 ≤ ��(�)+
�(�)+��(�) ≤ 3          (4) 

 

Example 3.3: Let us consider following example to understand the indeterminacy and neutrosophic logic: 

 

In a given mobile phone suppose 100 calls came at end of the day. 

 

1. 60 calls were received truly among them 50 numbers are saved and 10 were unsaved in mobile. In this case 

these 60 calls will be considered as truth membership i.e. 0.6. 

 

2. 30 calls were not-received by mobile holder. Among them 20 calls which are saved in mobile contacts were 

not received due to driving, meeting, or phone left in home, car or bag and 10 were not received due to uncertain 

numbers. In this case all 30 not received  numbers by any cause (i.e. driving, meeting or phone left at home) will 

be considered as Indeterminacy membership i.e. 0.3.   

 

3. 10 calls were those number which was rejected calls intentionally by mobile holder due to behavior of 

those saved numbers, not useful calls, marketing numbers or other cases for that he/she do not want to pick or 

may be blocked numbers. In all cases these calls can be considered as false i.e. 0.1 membership value. 

 

The above situation can be represented as (0.6, 0.3, 0.1) as neutrosophic set. 



Neutrosophic Sets and Systems, Vol. 24, 2019 

 

48 

 

Definition 3.4: [10] Suppose � be a nonempty set. An interval valued neutrosophic sets � (abbr.IVNs) in �is an object taking the form: 

 �����={<k:���(�), 
��(�),���(�)>,k∈ �>}   (5) 

 

Where ���(�) , 
��(�) ,���(�) ⊆ ���[0,1]  are mappings. ���(�)=[�� (�) , ��!(�) ] denote the interval truth-

membership function of an element k∈ �.
��(�)=[
� ("), 
�!(�)] denote the interval indeterminate-membership 

function of an element k∈ �.���(�)=[�� (�), ��!(�)] denote the false-membership function of an element k∈ �. 

 

Definition 3.4: [10]For every two interval valued-neutrosophic sets A and B in �, we define 

(N ⋃ M) (k)= ([�$ (k), �$!(k)], [	
$ (k), 
$!(k)], [	�$ (k), �$!(k)]	) for all k ∈ �   (6) 

Where �$ (k)= �� (k)	∨ �' (k),  �$!(k)=  ��!(k)∨ �'!(k)  
$ (k)= 
� (k)∧ 
' (k),  
$!(k)=  
�!(k)∧ 
'!(k)  �$ (k)= �� (k)∧ �' (k),  �$!(k)= ��!(k)∧ �'!(k) 

 

Definition 3.5: [41]A pair G=(V,E) is known as single valued neutrosophic graph (abbr.SVNG) if the following 
holds: 

1. V=  {�):i=1,..,n} such as �*:V→ [0,1] is the truth-membership degree, 
*:V→[0,1] is the indeterminate –
membership degree and �*:V→[0,1]is the false membership degree of �) ∈ V subject to condition       

0 ≤ �*(�))+
*(�))+�*(�)) ≤ 3      (7) 

2. E={(�) , �+): (�), �+) ∈ , × ,} such as �.:, × , → [0,1] is the truth-memebership degree,  
.:, × , →[0,1] is the indeterminate –membership degree and �.:, × , → [0,1] is the false-memebership degree of 
(�),�+) ∈ E defined  as  

�.(�),�+)≤ �*(�)) ∧ �*(�+)                                              (8) 
.(�) , �+) ≥ 
*(�)) ∨ 
*(�+)                                              (9) 

�.(�), �+) ≥ �*(�)) ∨ �*(�+)                                          (10) 

  Subject to condition          0 ≤ �.(�)�.)+
.(�*�.)+�.(�)�+) ≤ 3 ∀ (�), �+) ∈ E.     (11)    

The Fig. 1 shows  an illustration of  SVNG. 
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Fig. 1. An illustration of single valued neutrosophic graph 

 

Definition 3.6[41]. A single valued neutrosophic graph G=(N, M) of 3∗= (V, E) is termed  strong single 

valued neutrosophic graph if the following holds: �'(�)�+)= ��(�)) ∧ ��(�+)                                               (12) 
'(�)�+) = 
�(�)) ∨ 
�(�))                                                (13) �'(�)�+)= ��(�)) ∨ ��(�+)                                               (14) ∀ (�) , �+) ∈ E. 

Where the operator ∧denote minimum and the operator ∨denote the maximum 

 

Definition 3.8[41]. A single valued neutrosophic graph G=(N, M) of 3∗= (V, E) is termed  complete single 

valued neutrosophic graph if the following holds:  �'(�)�+)= ��(�)) ∧ ��(�+)                                               (15) 
'(�)�+) = 
�(�)) ∨ 
�(�))                                                (16) �'(�)�+)= ��(�)) ∨ ��(�+)                                               (17) ∀�) , �+ ∈V. 

 

Definition 3.9:[70] The Eigen value of a graph G are the Eigen values of its adjacency matrix. 

Definition 3.10:[70 ]The spectrum  of a graph is the set of all Eigen values of its adjacency matrix 

5* ≥ 5.… ≥ 57              (18) 

 

Definition 3.11:[70]The energy of the graph G is defined as the sum of the absolute values of its eigenvalues 

and denoted it by E(G): 

E(G)=∑ |5)|7):*                        (19) 

4.Some Basic Concepts of Interval Valued Neutrosophic Graphs 

Throughout this paper, we abbreviate   3∗=(V, E) as a crisp graph, and G=(N, M) an interval valued neutro-

sophic graph.In this  section we  have defined some basic concepts of interval valued neutrosophic graphs and 

discuses some of their properties. 

Definition 4.1:[45] A pair G=(V,E) is called  an interval valued neutrosophic graph (abbr.IVNG) if the fol-

lowing holds: 

1. V=  {�):i=1,..,n} such as �* :V→ [0,1] is the lower truth-membership degree,�*!:V→ [0,1] is the upper 

truth-membership degree,
* :V→ [0,1] is the lower indeterminate-membership degree,
*!:V→ [0,1] is the 
upper indterminate-membership degree, and �* :V→ [0,1] is the lower false-membership degree,�*!:V→ 
[0,1] is the upper false-membership degree,of ;) ∈ V subject to condition    

                                               0 ≤ �*!(�))+
*!(�))+�*!(�)) ≤ 3      (20) 

2. E={(�) , �+ ): (�) , �+ ) ∈ , × ,} such as �. :, × , → [0,1] is the lower truth-memebership degree, as �.!:, × , → [0,1] is the upper truth-memebership degree,  
. :, × , → [0,1] is the lower indeterminate-

memebership degree, 
.! :, × , → [0,1]  is the upper indeterminate-memebership degree and �. :, ×, → [0,1] is the lower false-memebership degree, �.!:, × , → [0,1] is the upper false-memebership de-
gree of (�),�+) ∈ E defined  as  

�. (�),�+)≤ �* (�)) ∧ �* (�+) ,�.!(�),�+)≤ �*!(�)) ∧ �*!(�+)      (21) 


. (�),�+)≥ 
* (�)) ∨ 
* (�+) ,
.!(�),�+)≥ 
*!(�)) ∨ 
*!(�+)            (22) 

�. (�),�+)≥ �* (�)) ∨ �* (�+) ,�.!(�),�+)≥ �*!(�)) ∨ �*!(�+)      (23) 

  Subject to condition          0 ≤ �.!(�)�.)+
.!(�*�.)+�.!(�)�+) ≤ 3 ∀ (�), �+) ∈ E.     (24) 
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Example 4.2.Consider  a crisp graph	3∗ such that V= {�*, �., �2}, E={�*�., �.�2, �2�1}. Suppose N be an 

interval valued neutrosophic subset of V and suppose M an interval valued neutrosophic subset of E denoted by: 

 

 �* �. �2   �*�. �.�2 �2�* ��  0.3 

 

0.2 

 

0.1 

 

 �'  0.1 

 

0.1 

 

0.1 

 ��! 0.5 0.3 0.3  �'! 0.2 0.3 0.2 
�  0.2 0.2 0.2  
'  0.3 0.4 0.3 
�! 0.3 0.3 0.4  
'!  0.4 0.5 0.5 ��  0.3 0.1 0.3  �'  0.4 0.4 0.4 ��! 0.4 0.4 0.5  �'! 0.5 0.5 0.6 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.Example of an interval valued neutrosophic  graph 

 
Definition 4.3A graph G=(N , M)  is termed simple interval valued neutrosophic graph if it has neither self 

lops nor parallel edges in an interval valued neutrosophic graph. 

 

Definition 4.4The degree d(k) of any vertex k of  an interval valued neutrosophic graph G=(N, M) is defined 

as follow: 

 

d(v)= [ <= (�),<=!(�)],[<� (�),<�!(�)],[<> (�),<>!(�)]    (25) 

 Where  <= (�)= ∑ �' ?@A?B (�)�+) known as the degree of lower truth-membership vertex  <=!(�)= ∑ �'!?@A?B (�)�+) known as the degree of upper truth-membership vertex  <� (�)= ∑ 
' ?@A?B (�)�+) known as the degree of lower indterminate-membership vertex  <�!(�)= ∑ 
'!?@A?B (�)�+) known as the degree of upperindeterminate-membership vertex  <> (�)= ∑ �' ?@A?B (�)�+) known as the degree of lower false-membership vertex  <>!(�)= ∑ �'!?@A?B (�)�+) known as the degree of upperfalse-membership vertex  

 

Example 4.5 Consider an IVNG  G=(N, M) presented in Fig. 4 with  vertices  set V={�): � = 1, . . ,4} and  

edges  set E ={�*�1 ,�1�2, �2�.,�.�*}. 

 

 

 

 

 

 

 

 

�2 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

�* 
�. 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 
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Fig. 4.Illutstrationof  an interval valued neutrosophic graph 

The degree of each vertex �)is given as follows: <(k*)=	([0.3, 0.6], [0.5, 0.9], [0.5, 0.9]), <(k.)=	([0.4, 0.6], [0.5, 1.0], [0.4, 0.8]), <(k2)=	([0.4, 0.6], [0.6, 0.9], [0.4, 0.8]), <(k1)=	([0.3, 0.6], [0.6, 0.8], [0.5, 0.9]). 

 

Definition 4.6.  A graph G=(N, M) is termed regular interval valued neutrosophic graph if d(k)=r=([r*H, r*I], [r.H, r.I], [r2H, r2I]), ∀	k ∈ V. 

(i.e.) if each vertex has same degree r, then G is said to be a regular interval valued neutrosophic graph of de-

gree r. 

 

Definition 4.7. A graph G=(N,M) is termed irregular interval valued neutrosophic graph if the degree of 

some vertices are different than other. 

 

Example 4.8 Let us Suppose, G is a regular interval-valued neutrosophic graph as portrayed in Fig. 5 having 

vertex set V={k*, k., k2, k1} and edge sets E={k*k.,k.k2, k2k1	,k1k*} as follows. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig.5 .Regular IVN-graph. 

�1 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

�2 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<
[0

.2
, 

0
.3

],
[ 

0
.2

, 
0
.5

],
[0

.2
, 

0
.4

]>
 

 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

�* 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

�. 

<
[0

.2
, 

0
.3

],
[ 

0
.2

, 
0
.5

],
[0

.2
, 

0
.4

]>
 

 

�1 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.3, 0.4],[0.2, 0.4]> 

�2 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<
[0

.1
, 

0
.3

],
[ 

0
.3

, 
0
.4

],
[0

.3
, 
0
.5

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

�* 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

�. 

<
[0

.2
, 

0
.3

],
[ 

0
.3

, 
0
.5

],
[0

.2
, 
0
.4

]>
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In the Fig. 5. All adjacent vertices JKJL , JLJM , JMJN , JN�K  have the same degree equal 

<[0.4,0.6],[0.4,1],[0.4,0.8]>. Hence, the graph G is a regular interval valued neutrosophic graph. 

 

 
Definition 4.9 A graph G= (N, M) on O∗is termed strong interval valued neutrosophic graph if the following 

holds: 

 PQR (JS, JT) = PUR (JS)∧ PUR (JT) PQV (JS, JT) = PUV(JS)∧ PUV(JT) WQR (JS, JT) = WUR (JS)∨ WUR (JT) WQV (JS, JT) =WUV(JS)∨ WUV(JT) XQR (JS, JT) = XUR (JS)∨ XUR (�) XQV (JS, JT) = XUV(JS)∨ XUV(JT)	∀	(JS ,JT )∈ E                                               (26) 

 

 

Example 4.10.Consider the strong interval valued neutrosophic graph G=(N, M) in Fig. 6 with vertex set N 

={k*, k., k2, k1}and edge set M={�*�., �.�2, �2�1, �1�*} as follows: 

 

 

 

 �* �. �2   �*�. �.�2 �2�* TZH 0.3 

 

0.2 

 

0.1 

 

 T[H  0.2 

 

0.1 

 

0.1 

 TZI 0.5 0.3 0.3  T[I 0.3 0.3 0.3 IZH  0.2 0.2 0.2  I[H  0.2 0.2 0.2 IZI 0.3 0.3 0.4  I[I  0.3 0.4 0.4 FZH  0.3 0.1 0.3  F[H  0.3 0.3 0.3 FZI 0.4 0.4 0.5  F[I  0.4 0.4 0.5 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

Fig.6.Illustration of strong IVNG 

 

 
Proposition 4.11For everyJS,JT ∈ V, we have 

 PQR (JS, JT) =PQR (JT, JS)and            PQV (JS, JT) =PQV (JT, JS) WQR (JS, JT) =WQR (JT, JS)and              WQV (JS, JT) =WQV (JT, JS) XQR (JS, JT) =XQR (JT, JS)and              XQV (JS, JT) =XQV (JT, JS)                         (27) 

 

�2 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.2, 0.3],[ 0.2, 0.3],[0.3, 0.4]> 

�* 
�. 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.4]> <[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 
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Proof. Suppose G =(N, M) be an interval valued neutrosophic graph, suppose JS is a neigbourhood of  JT in 

G.Then , we have 

 PQR (JS, JT) =min [ PUR (JS), PUR (JT)]   and  PQV (JS, JT) =min [ PUV(JS), PUV(JT)] 
 WQR (JS, JT) =max [ WUR (JS), WUR (JT)]  and WQV (JS, JT) =max[ WUV(JS), WUV(JT)] 
 XQR (JS, JT) =max [ XUR (JS), XUR (JT)]  and  XQV (JS, JT) =max [ XUV(JS), XUV(JT)]   
 

Similarly we have also for 

 PQR (JT, JS) =min [ PUR (JT), PUR (JS)]   and  PQV (JT, JS) =min [ PUV(JT), PUV(JS)] 
 WQR (JT, JS) =max [ WUR (JT), WUR (JS)]  and WQV (JT, JS) =max[ WUV(JT), WUV(JS)] 
 XQR (JT, JS) =max [ XUR (JT), XUR (JS)]  and  XQV (JT, JS) =max [ XUV(JT), XUV(JS)]   
 

Thus  

 PQR (JS, JT) =PQR (JT, JS)andPQV (JS, JT) =PQV (JT, JS) WQR (JS, JT) =WQR (JT, JS)andWQV (JS, JT) =WQV (JT, JS) XQR (JS, JT) =XQR (JT, JS)andXQV (JS, �) =XQV (JT, JS) 
 

Definition 4.12 The graph G= (N, M) is termed an interval valued neutrosophic graph if the following holds PQR (JS, JT) =min [ PUR (JS), PUV(JT)]   and  PQV (JS, JT) =min [ PUV(JS), PUV(JT)] 
 WQR (JS, JT) =max [ WUR (JS), WUR (JT)]  and WQV (JS, JT) =max[ WUV(JS), WUV(JT)] 
 XQR (JS, JT) =max [ XUR (JS), XUR (JT)]  and  XQV (JS, JT) =max [ XUV(JS), XUV(JT)]  ∀JS,JT ∈ V          (28) 

 

Example 4.13. Consider the complete interval valued neutrosophic graph G=(N, M) portrayed in Fig. 7 with 

vertex set A ={k*, k., k2, k1}and edge set E={k*k.,k*k2 ,k.k2, k*k1, k2k1	,k.k1}as follows 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 .Illustration of complete IVN-graph 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.4]> 

 

�1 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

 �2 
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<
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0
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0
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0
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, 

0
.4
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<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> 
<[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

�* 

<[0.4, 0.5],[ 0.1, 0.3],[0.2, 0.4]> 

�. 

<
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, 

0
.3

],
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0
.2

, 
0
.4
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0
.2

, 
0
.3

]>
 

 

<[0.2, 0.3],[ 0.2, 0.4],[0.2, 0.3]> 
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In the following based on the extension of the adjacency matrix of SVNG [69], we defined the concept of ad-

jacency matrix of IVNG as follow: 

 

Definition 4.14:The adjacency matrix M(G) of IVNG G= (N, M) is defined as a square matrix M(G)=^_)+`, 
with _)+=<��'a�) , �+b,
�' a�) , �+b,��' a�) , �+b>, where ��'a�) , �+b= [�' a�) , �+b,�!a�) , �+b] denote the strength of relationship      
�'a�), �+b= [
' a�) , �+b,
'!a�) , �+b] denote the strength of undecided relationship ��'a�), �+b=[�' a�) , �+b,�'!a�) , �+b] denote the strength of non-relationship between �) and �+       (29) 

 

The adjacency matrix of an IVNG can be expressed as sixth matrices, first matrix contain the entries as lower 

truth-membership values, second contain upper  truth-membership values, third contain lower indeterminacy-

membership values, forth contain upper indeterminacy-membership, fifth contains lower non-membership values 

and the sixth contain the upper non-membership values, i.e., 

 c(3)=<[�' a�) , �+b,�'!a�) , �+b] ,	[
' a�) , �+b,
'!a�) , �+b] ,	[�' a�) , �+b,�'!a�) , �+b] >,           (30) 

 

From the Fig. 1, the adjacency matrix of IVNG is defined as: 

 

 QO = d e < [e. K	, e. N], [e. M	, e. L], [e. L	, e. g] > < [e. K	, e. N], [e. M	, e. g], [e. L	, e. i] >< [e. K	, e. N], [e. M	, e. L], [e. L	, e. g] > e < [e. K	, e. M], [e. L	, e. g], [e. L	, e. g] >< [e. K	, e. N], [e. M	, e. g], [e. L	, e. i] > < [e. K	, e. M], [e. L	, e. g], [e. L	, e. g] > e j 
 

 
In the literature, there is no Matlab toolbox deals with neutrosophic matrix such as adjacency matrix and so 

on. Recently Broumi et al [58] developed a Matlab toolbox for computing operations on  interval valued neutro-

sophicmatrices.So, we can inputted the adjacency matrix of IVNG  in the workspace Matlab as portrayed in Fig.  

8. 
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Fig. .8 Screen shot of Workspace MATLAB 

Definition 4.15:The spectrum of adjacency matrix of an IVNG M(G) is defined as  

                              <k� , l�,m�>=<[k� ,k�!],[l� ,l�!],<[m� ,m�!]>                               (31) 

 

Where k� is  the set of eigenvalues of c(�' a�) , �+b),k�! is the set of eigenvalues of c(�n!a�), �+b),l�  is the 

set of eigenvalues of c(
' a�) , �+b),l�! is the set of eigenvalues of  c(
'!a�) , �+b) , m�   is the set of eigenvalues of c(�' a�) , �+b) and m�!  is the set of eigenvalue of c(�n!a�) , �+b)respectively. 

 

 

Definition 4.16: The energy of an IVNG G= (N,M) is defined as  

E(G)=<E(PoQaJS, JTb),p(W�QR aJS, JTb),p(XoQR aJS, JTb)>                              (32) 

Where  

 

E(��'a�) , �+b = [E(�' a�)�+b),E(�'!a�)�+b)]=[∑ |5) |7):*q@r∈s�r
, ∑ t5)!t7 ):*q@u∈s�u

] 

E(
�'a�) , �+b = [E(
' a�)�+b),E(
'!a�)�+b)]=[∑ |v) |7):*w@r∈��r
, ∑ tv)!t7 ):*w@u∈��u

] 

E(��'a�) , �+b= [E(�' a�)�+b),E(�'!a�)�+b)] =[∑ |x) |7):*y@r∈z�r
, ∑ tx)!t7 ):*y@u∈z�u

] 

 

Definition 4.17:Two interval valued neutrosophic graphs3* and 3. are termed equienergetic, if they have the 

same number of vertices and the same energy. 

 

Proposition4.18:If an interval valued neutrosophic G is both regular and totally regular, then the eigen values 

are balanced on the energy. 

 ∑ ±5) 7):* = 0, ∑ ±5)!7):* = 0, ∑ ±v) 7):* = 0, ∑ ±v)!7):* = 0, ∑ ±x) 7):* = 0  and∑ ±x)!7):* = 0.             (33) 

 

 

4.19. MATLAB program for findingspectrum of an interval valued neutrosophic graph 
To generate the MATLAB program for finding the spectrum of interval valued neutrosophic graph. The program 

termed “Spec.m” is written  as follow: 

 
Function SG=Spec(A); 

% Spectrum of an interval valued neutrosophic matrix A   

% "A" have to be an interval valued neutrosophic  matrix - "ivnm" object: 

a.ml=eig(A.ml);               % eigenvalues of lower membership of ivnm% 

a.mu=eig(A.mu);             % eigenvalues of upper membership of ivnm% 

a.il=eig(A.il);                  % eigenvalues of lower rindeterminate-membership of ivnm% 

a.iu=eig(A.iu);                % eigenvalues of upper indterminate- membership of ivnm% 

a.nl=eig(A.nl);               % eigenvalues of lower false-membership of ivnm% 

a.nu=eig(A.nu);            % eigenvalues of upper false-membership of ivnm% 

SG=ivnm(a.ml,a.mu,a.il,a.iu,a.nl,a.nu); 

 
4.20. MATLAB program for finding energy of an interval valued neutrosophic graph 
To generate the MATLAB program for finding the energy of interval valued neutrosophic graph. The program 

termed “ENG.m”iswritten  as follow: 
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Example4.21: The spectrum and the energy of an IVNG, illustrated in Fig. 6,  are given below: 

 

Spec(�' a�)�+b)={ -0.10, -0.10,0.20},  Spec(�'!a�)�+b)={-0.30,-0.17,0.47} 

Spec(
' a�)�+b)={-0.40,-0.27,0.67},   Spec(
'!a�)�+b)={-0.53,-0.40,0.93]} 

Spec(�' a�)�+b)={-0.40,-0.40,0.80},  Spec(�'!a�)�+b)={ -0.60,-0.47,1.07} 

 

Hence, 

Spec(G)={<[-0.10, -0.30], [-0.40, -0.53 ],[-0.40, -0.60 ]>, <[-0.10, -0.17], [-0.27, -0.40 ],[-0.40, -0.47 ]>, <[0.20, 

0.47], [0.67, 0.93 ],[0.80, 1.07 ]>} 

Now , 

E(�' a�)�+b)=0.40,   E(�'!a�)�+b)=0.94 

 

E(
' a�)�+b)=1.34,E(
'!a�)�+b)=1.87 

 

E(�' a�)�+b)=1.60,E(�'!a�)�+b)=2.14 

 

Therefore 

E(G)= <[0.40, 0.94],[1.34, 1.87], [1.60, 2.14]> 

Based on toolbox MATLAB developed in [58], the readers can run the program termed “Spec.m”, for computing 

the spectrum of graph, by writing in command window “Spec (A)” as described below: 

 

 
 
Similarly,  the readers can also run the program termed “ENG.m”, for computing the energy of graph, by writing 

in command window “ENG (A) as described below: 
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In term of the number of vertices and the sum of interval truth-membership, interval indeterminate-membership 

and interval false-membership, we define the upper and lower bounds on energy of an IVNG. 

 

Proposition 4.22. Suppose  G= (N, M) be an IVNG on n vertices and the adjacency matrix   of G.then 

|2∑ a�' (�)�+)b. + �(� − 1)|� |. ��*�)+�7 ≤ �(�' a�)�+b) ≤ |2�∑ a�' (�)�+)b.*�)+�7                      (34) 

|2∑ a�'!(�)�+)b. + �(� − 1)|�!|. ��*�)+�7 ≤ �(�'!a�)�+b) ≤ |2� ∑ a�'!(�)�+)b.*�)+�7   (35) 

|2∑ a
' (�)�+)b. + �(� − 1)|
 |. ��*�)+�7 ≤ �(
' a�)�+b) ≤ |2� ∑ a
' (�)�+)b.*�)+�7          (36) 

|2∑ a
'!(�)�+)b. + �(� − 1)|
!|. ��*�)+�7 ≤ �(
'!a�)�+b) ≤ |2�∑ a
'!(�)�+)b.*�)+�7       (37) 

|2∑ a�' (�)�+)b. + �(� − 1)|� |. ��*�)+�7 ≤ �(�' a�)�+b) ≤ |2� ∑ a�' (�)�+)b.*�)+�7    (38) 

|2∑ a�'!(�)�+)b. + �(� − 1)|�!|. ��*�)+�7 ≤ �(�'!a�)�+b) ≤ |2� ∑ a�'!(�)�+)b.*�)+�7    (39) 

Where  |PR|,|PV|,|WR|,|WV|,|XR|and |XV| are the determinant of Q(PQR aJS, JTb), Q(PQV aJS, JTb), Q(WQR aJS, JTb), 	Q(WQV aJS, JTb), Q(XQR aJS, JTb) andQ(XQV aJS, JTb),respectively. 

Proof: proof is similar as in Theorem 3.2 [69] 

Conclusion 

This paper introduces some basic operations on interval-valued neutrosophic set to increase its utility in vari-

ous fields for multi-decision process. To achieve this goal, a new mathematical algebra of interval-valued neu-

trosophic graphs, its energy as well as spectral computation is discussed with mathematical proof using 

MATLAB. In the near future, we plan to extend our research to interval valued neutrosophic digraphs and devel-

oped the concept of domination in interval valued-neutrosophic graphs. Same time the author will focus on han-

dling its necessity for knowledge representation and processing tasks [85-87]. 
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Abstract. In the last decade, characterizing the energy in MANET based on its acceptation, rejection and uncer-

tain part is addressed as one of the major issues by the researchers. An efficient energy routing protocol for MA-
NET is another issue. To resolve these issues current paper focuses on utilizing the properties of neutrosophic 
technique. The essential idea of the protocol is to choose an energy efficient route with respect to neutrosophic 

technique. In this neutrosophic set, we have three components such as (T, I, F). Each parameter such as energy 
and distance is taken from these neutrosophic sets to determine the efficient energy route in MANET. After taking 
a brief survey about energy efficient routing for MANET using various methods, we are trying to implement the 

neutrosophic set technique to find the efficient energy route for MANET which provides the better energy route in 
uncertain situations. The comparative analysis between vague set MANET and neutrosophic MANET for the val-
ues of energy functions and distance functions is done by using Matlab and the result is discussed graphically  

 

Keywords: MANET; neutrosophic set; energy efficient routing protocol; granular Computing.

1  Introduction 

Wireless networking technologies play a vital role for giving rise to many new applications in internet world. 
Mobile ad-hoc network (MANET) is one of the most leading fields for research and development of wireless 
network. Now a days, wireless ad-hoc network has become one of the most vibrant and active field of communi-

cation and networks due to the popularity of mobile devices. Also, mobile or wireless network has become one 
of the indeed requirement for the users around the world. In this network, there are no groundwork stations or 
mobile switching centres and other structures of these types. The topology of Mobile ad-hoc network (MANET) 
changes dynamically. Each node is within others node’s radio range via wireless networks. In the present era, 

nearly everyone has a mobile phone and most of it are smart phones. These devices are very cheaper and more 
powerful which make Mobile ad-hoc network (MANET) as the speed-growing network [1, 26, 36, 37]. Because 
of frequent braking of communication links, the nodes in mobile ad-hoc networks are free to move to anywhere. 

Also, a node in Mobile ad-hoc network (MANET) performs complete access to send data from one node to the 
other very fast and provides accurate services. Mobile ad-hoc network (MANET) is user friendly network which 
is easy to add or remove from the network. In this, each node contains some energy with limited battery capacity. 
The energy has been lost very speed in ad-hoc networks by transforming the data from one node to another node 

and also over all network’s lifetime. Therefore the energy efficient routing indicates that the selecting route re-
quires high energy and shortest distance. In this regard recently one of the authors has utilized implications of 
weighted concept lattice [31] and its implications using three-way neutrosophic environment [32-33] at different 

threshold [25] beyond the fuzzy logic [40]. It is shown that the computing paradigm of neutrosophic logic pro-
vides an authorization to deal with indeterminacy in the given network when compared to any other approaches 
available in fuzzy logic. Hence the current paper focused on introducing the concept of neutrosophic logic for 
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analyzing the energy efficient routing protocol in Mobile ad-hoc network (MANET).  Neutrosophic set was in-

troduced by Florentin Smarandache [34] in 1995. Neutrosophic set is the generalization of fuzzy set, intuition-
istic set fuzzy set, classical set and paraconsistent set etc. In intuitionistic fuzzy sets[2], the uncertainty is de-
pendent on the degree of belongingness and degree of non-belongingness. In case of neutrosophy theory, the in-

determinacy factor is independent of truth and falsity membership-values. Also neutrosophic sets are more gen-
eral than IFS, because there are no conditions between the degree of truth, degree of indeterminacy and degree of 
falsity. In 2005, Wang et.al [38] introduced single valued neutrosophic sets which can be used in real world ap-
plications. In this case, a problem is addressed while dealing with efficient route in routing protocol based on its 

distance or energy. To shoot this problem, the current paper introduces a method to characterize the energy effi-
cient route in Mobile ad-hoc network (MANET) based on its acceptation, rejection and uncertain part.  In the 
same time the analysis of the proposed method is compared with one of the existing methods to validate the re-

sults. The motivation is to discover the precise and efficient path based on its maximal acceptance, minimum re-
jection, and minimal indeterminacy. The objective is to provide an optimal routing in Mobile ad-hoc network 
(MANET) in minimal energy utilization when compared to vague set [18]. One of the significant outputs of the 
proposed method is that it deals with uncertainty independent from truth and false membership-values.  

The remaining part of the paper is organized as follows: Section 2 provides preliminaries about each of the 
set theories. Section 3 provides proposed method with its comparative analysis in Section 4. Section 5 provides 
conclusions and future research. 

 
2 Overview of Mobile ad-hoc networks[28] 

 
Mobile Ad Hoc networking (MANET) can be classified into first, second and third generations. The first genera-
tion of mobile ad-hoc network came up with “packet radio” networks ( PRNET) in 1970s and it has evolved to 

be a robust, reliable, operational experimental network. The PRNET used a combination of ALOHA and channel 

access approaches CSMA for medium access, and a distance-vector routing to give packet-switched networking 

to mobile field elements in an infrastructure less, remote environment. The second generation evolved in early 

1980’s when SURAN (Survivable Adaptive Radio Networks) significantly improved upon the radios, scalability 

of algorithms, and resilience to electronic attacks. During this period include GloMo (Global Mobile Information 

System) and NTDR (Near Term Digital Radio)were developed. The aim of GloMo was to give office-

environment Ethernet-type multimedia connectivity anytime, anywhere, in handheld devices. Channel access 

approaches were in the CSMA/CA and TDMA molds, and several novel routing and topology control schemes 

were developed. The NTDR used clustering and link- state routing, and self-organized into a two-tier ad hoc 

network. Now used by the US Army, NTDR is the only “real” (non-prototypical) ad hoc network in use today. 
The third generation evolved in 1990’s also termed as commercial network with the advent of Notebooks com-

puters, open source software and equipments based on RF and infrared. IEEE 802.11 subcommittee adopted the 

term “ad hoc networks.” The development of routing within the Mobile ad-hoc networking (MANET) working 

group and the larger community forked into reactive (routes on- demand) and proactive (routes ready-to-use) 

routing protocols 141. The 802.1 1 subcommittee standardized a medium access protocol that was based on col-

lision avoidance and tolerated hidden terminals, making it usable, if not optimal, for building mobile ad hoc net-

work prototypes out of notebooks and 802.11 PCMCIA cards. HIPERLAN and Bluetooth were some other 

standards that addressed and benefited ad hoc networking. With the increase of portable devices with wireless 

communication, ad-hoc networking plays an important role in many applications such as commercial, military 

and sensor networks, data networks etc., Mobile ad-hoc networks allow users to access and exchange infor-

mation regardless of their geographic position or proximity to infrastructure. Since Mobile ad-hoc networking 

(MANET) has no static infrastructure, it offers an advantageous decentralized character to the network. Decen-
tralization makes the networks more flexible and more robust. 

 

3 Preliminaries 

Definition of Fuzzy Set:  

Fuzzy set was introduced by Zadeh in 1965 [40] and it gives new trend in application of mathematics. Every 
value of the fuzzy set consisting of order pair one is true membership and another one is false membership which 
lies between 0 and 1. Several authors [30, 39, 21-23, 27, 29] used fuzzy set theory in ad-hoc network and wire-
less sensor network to solve routing problems. The logic in fuzzy set theory is vastly used in all fields of mathe-
matics like networks, graphs, topological space …etc.  

Definition:[9]Intuitionistic Fuzzy Set: 

Intuitionistic Fuzzy Sets are the extension of usual fuzzy sets. All outcomes which are applicable for fuzzy sets 
can be derived here also. Almost all the research works for fuzzy sets can be used to draw information of IFSs. 
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Further, there have been defined over IFSs not only operations similar to those of ordinary fuzzy sets, but also 
operators that cannot be defined in the case of ordinary fuzzy sets. 

Definition:[17,24] Adroit System: 

Adroit system [17, 24] is a computer program that efforts to act like a human effect in a particular subject area to 
give the solution to the particular unpredictable problem. Sometimes, adroit systems are used instead of human 
minds. Its main parts are knowledge based system and inference engine. In that the software is the knowledge 
based system which can be solved by artificial intelligence technique to find efficient route. The second part is 
inference engine which processes data by using rule based knowledge. 

Definition:[34] Neutrosophic Set: 

 A neutrosophic set is a triplet which contains a truth membership function, a false membership function 

and indeterminacy function. Many authors extended this neutrosophic theory in different fields of mathematics 

such as decision making, optimization, graph theory etc.,[3-16, 42-52]. In particular, with the best knowledge, 

this is the first time to calculate efficient energy protocol for MANET based on the neutrosophic technique. 

 

Let U be the universe. The neutrosophic set A in U is characterized by a truth-membership function TA, a inde-
terminacy-membership function IA and a falsity-membership function FA. TA(x), IA(x) and FA(x) are real stand-

ard elements of [0,1]. It can be written as                                                                

  

  

There is no restriction on the sum of TA(x) , IA(x) and F (x).   So 0-≤ TA(x)+IA(x)+FA(x) ≤ 3+. 

 

Definition:[35]  Let U be a universe of discourse and A the neutrosophic set A   U. Let 

)(),(),( xFxIxT AAA be the functions that describe the degree of membership, indeterminate membership and 

non-membership respectively of a generic element x   U with respect to the neutrosophic set A. A single valued 

neutrosophic overset (SVNOV) A on the universe of discourse U is defined as: 
                          

  

  

where  )(),(),( xFxIxT AAA : U   ,0 , 0<1<  and    is called overlimit. Then there exists at least one 

element in A such that it has at least one neutrosophic component >1and no element has neutrosophic component 

<0  

Definition:[35]Let U be a universe of discourse and the neutrosophic set A  U. Let )(),(),( xFxIxT AAA be 

the functions that describe the degree of membership, indeterminate membership and non-membership respec-

tively of a generic element x   U with respect to the neutrosophic set A. A single valued neutrosophic underset 
(SVNU) A on the universe of discourse U is defined as: 

  

  

  

where )(),(),( xFxIxT AAA : U  1, ,  <0<1 and   is called lowerlimit.Then there exists at least one 

element in A such that it has at least one neutrosophic  component<0 and no element has neutrosophic compo-

nent >1 

 

Definition:[35] Let U be a universe of discourse and the neutrosophic set A  U. Let )(),(),( xFxIxT AAA  be 

the functions that describe the degree of membership, indeterminate membership and non-membership respec-
tively of a generic element x   U with respect to the neutrosophic set A. A single valued neutrosophic offset 

(SVNOF) A on the universe of discourse U is defined as: 

  

  

                          

where )(),(),( xFxIxT AAA : U  1, ,  <0<1<  and   is called underlimit while   is called over-

limit. Then there exist some elements in A such that at least one neutrosophic component >1, and at least another 

neutrosophic component < 0 

Example 1: Let A={( 1x ,<1.2, 0.4,0.1>),( 2x ,<0.2, 0.3,-0.7>)},since  1xT =1.2 >1 ,

 

 2xF = - 0.7 <0 

Definition:[35]The complement of a single valued neutrosophic overset/ underset/offset A is denoted by C(A) 

   )3(1,)(),(),(,,)(),(),(  xFxIxTUxxFxIxTA AAAAAASVNU

   )4(,)(),(),(,,)(),(),(  xFxIxTUxxFxIxTA AAAAAASVNOF

   )2(,0)(),(),(,,)(),(),(  xFxIxTUxxFxIxTA AAAAAASVNOV

   )1(,1,0)(),(),(,,)(),(),(  xFxIxTUxxFxIxTA AAAAAANS
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and is defined by 

                                         C(A) ={(x, UxxTxIxF AAA  ,)(),(),( }                        (5)

 

Definition:[35]The intersection  of two single valued neutrosophic overset/ underset/offset A and B  is a single 

valued neutrosophic overset/ underset/offset denoted C and is denoted by  C= A  B and is defined by 

 

 C= A  B ={(x,<

 

))(),(min( xTxT BA
, ))(),(max( xIxI BA

, ))(),(max( xFxF BA
), x  U}  (6) 

Definition:[35]The union  of two single valued neutrosophic overset/ underset/offset A and B  is a single valued 

neutrosophic overset/ underset/offset denoted C and is denoted by  C= A  B and is defined by  

 

   C= A  B ={(x,<

 

))(),(max( xTxT BA
, ))(),(min( xIxI BA

, ))(),(min( xFxF BA
), x  U} (7) 

 

The following table 1, describe the neutrosophic oversets, neutrosophic undersets, neutrosophic offsets and Sin-
gle valued neutrosophic sets 
 

 

Types of neutrosophic sets  (under limit)   (overlimit) 

neutrosophic oversets 0 1<  

neutrosophic undersets  <0 1 

neutrosophic offsets  <0 1<  

Single valued neutrosophic sets 0 1 

Table 1. Some type of neutrosophic sets 

 

It can be observed that, the algebra of neutrosophic set provides an independent way to deal with indeterminacy 

beyond the truth and false membership-values of a vague set. However characterizing the distance of routing 

protocol in MANET based on its truth, falsity and indeterminacy membership-values is complex problem. To 

deal with this problem, one of the algorithms is proposed in the next section with an illustrative example.  

4 PROPOSED PROTOCOL 

In this section, a method is proposed to characterize the efficient routing path in MANET based on the neu-
trosophic technique using energy and distance. In this proposed protocol, energy function may be low, medium 
and high and also in a similar way distance may be short, medium and long. To represent these levels a neutro-

sophic set based membership function  , Indeterminacy and non-membership  is defined in this paper.  

All these energy membership functions HML EandEE , and distance membership func-

tions LMS DandDD ,  are given in Table 2 and Table3.  

 

 

Linguistic value Notation  Neutrosophic range Basic value 

Low EL (EL
+,EL

0,EL
-) (0,0.9,1.8) 

Medium EM (EM
+,EM

0,EM
-) (1.8,2.7,3.5) 

High EH (EH
+,EH

0,EH
-) (3.5,4.4,5) 

 

Table 2. A neutrosophic set based representation of energy function 

Linguistic value Notation Neutrosophic range Basic value 

Short Ds (DL+,DL0,DL-) ( 0,9,17) 

Medium DM (DM+,DM0,DM-) (17,26,34) 

Large DL (DH+,DH0,DH-) (34,42,50) 

Table 3. A neutrosophic set based representation of distance function 
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The a single valued neutrosophic overset/ underset/offset are characterized by three memberships, the 

truth-membership, indeterminacy-membership and false membership functions  as described in definitions 

above. 

It gives an interpretation of membership grades. Low, medium and high of the energy and distance functions 
are written as follows: 

 Neutrosophic Energy function values:   

)( LE = (0.3, 0.7, 1.2),  )( ME = (1.4, 2.3, 3),  )( HE = (3.2, 4, 4.8)   

)( LE = (0.4, 0.9, 1.4),  )( ME = (1.3, 2.6, 3.2),  )( HE = (3.4, 3.8, 4.6)   

)( LE = (0.2, 0.6, 1.4),  )( ME = (1.2, 2.5, 3.4),  )( HE = (3, 4.2, 4.5)   

 

Neutrosophic Distance function values:            

)( sD = (0.2, 4, 10),  )( MD = (12, 20, 32),  = (30, 38, 44)   

)( sD = (0.5, 5, 12),  )( MD = (10, 23, 30),  )( LD = (29, 41, 49)   

)( sD = (0.3, 6, 8),  )( MD = (14, 21, 28),  )( LD = (32, 40, 47)   

Recently, several authors tried to deduce the neutrosophic values in various fields [40]. The current paper 

tried most suitable and ideal solution deduced by considering true members function   for the better solution. 

These neutrosophic values are used for efficient route selection in MANET which is given below in table 3. By 
comparing different routes of the MANET, rating of the route is calculated by the Eq. 8 as given below: 

 

)8(
)(

)(
,

i

i
ji Dmeanof

Emeanof
NR




  

From the rating of different route given in Table 4, each value of jiNR , is a neutrosophic route having differ-

ent values which determine the nature of the route in MANET.  

 

S.No                                       Neutrosophic possible route  

1 If  Energy is )( LE and (Distance is )( sD ,then the route is  R1. 

2 If  Energy is )( LE and (Distance is )( MD , then the route is R2. 

3 If Energy is )( LE and (Distance is )( LD ,then the route is  R3. 

4 If Energy is )( ME and (Distance is )( sD ,then the route is  R4. 

5 If Energy is )( ME and (Distance is )( MD ,then the route is  R5. 

6 If Energy is )( ME and (Distance is )( LD ,then the route is  R6. 

7 If Energy is )( HE and (Distance is )( sD ,then the route is  R7. 

8 If  Energy is )( HE and (Distance is )( MD ,then the route is  R8. 

9 If  Energy is )( HE and (Distance is )( LD ,then the route is  R9. 

 

Table 4. A neutrosophic technique based efficient route selection 
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Table 5. Enlightenment of rating of different routes in Neutrosophic Technique  

Hence, each neutrosophic route has a specific rating in MANET. Table 4 provides a way to defined different  
neutrosophic routes by considering various energy functions and as well as distance functions. Following that the  
sequences of different routes based on their rating is given in Table 5. The decreasing order according to rating  
on the routes is R3 < R2< R5 < R9 < R1 <R8 < R4 < R7.Table 5 represents that based on neutrosophic ordering  
defined by the proposed method route R7 is one of the best energy efficient route among them for the given  
MANET.  

  

5 Comparative Analysis  

While comparing vague set and neutrosophic set, vague set is equivalent to intuitionistic fuzzy set because  
both of them having only truth and false membership functions. Also neutrosophic set is the generalization of  
fuzzy and intuitionistic fuzzy sets. Hence the results obtained by using neutrosophic set is better than the results  
obtained by using vague set. In this section, the comparative analysis among neutrosophic and vague set based  
routing protocol is discussed. The membership values of energy and distance functions of vague set Manet and  
neutrosophic set Manet are given in Table 6. Comparison between Vague set rating of route (VSR) and Neutro- 
sophic rating of route (NRR) are given in Table 7.   

  

Table 6. Membership values of energy and distance function  

 

Notation 

Base Value of  Energy function  

Notation 

Base Value of  Distance function 

VM NM VM NM 

EL (0,1.8) (0,0.9,1.8) Ds (0, 17) ( 0,9,17) 

EM (1.8, 3.5) (1.8,2.7,3.5) DM (17, 34) (17,26,34) 

EH (3.5, 5) (3.5,4.4,5) DL (34, 50) (34,42,50) 

 

Table 7. Comparison between Vague Set Rating of route(VSR) and Neutrosophic Rating of route (NRR): 

Route 

number 

Vague Set Rating 

of route(VSR) 

Neutrosophic Rating of 

route (NRR) 

Enlightenment of Rating 

VSR NRR 

R1 0.011842 0.154929 Very Bad Good 

R2 0.021176 0.034375 Bad Bad 

R3 0.105882 0.019642 Satisfactory Very Bad 

R4 0.059211 0.471830 Medium  Excellent 

R5 0.105882 0.104687 Less Good Poor 

R6 0.529412 0.059821 Good Very poor 

Route num-
ber 

Neutrosophic Rating of route Enlightenment of Rating 

R1 0.154929 Good 

R2 0.034375 Bad 

R3 0.019642 Very Bad 

R4 0.471830 Excellent 

R5 0.104687 Poor 

R6 0.059821 Very poor 

R7 0.873239 Very excellent 

R8 0.19375 Very good 

R9 0.110714 Medium 
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R7 0.1 0.873239 Very good Very excellent 

R8 0.178824 0.19375 Excellent Very good 

R9 0.894118 0.110714 Very excellent Medium 

  

 

Figure. 1: The comparison of energy efficient MANET using neutrosophic and vague set 

The graph for rating of routes of MANET using neutrosophic set and vague set techniques are plotted in Fig-
ure 1 for the values of energy functions and distance functions by using Table 6 and Table 7 with the help of 
Matlab software. It provides an information that, the efficient energy routing of mobile ad-hoc network using 
neutrosophic set technique(NM) is much better than the efficient energy routing of MANET using vague set 
technique(VM) in uncertain environment. However, the proposed method is focused on static environment in 
case the node and data set changes at each interval of time then the proposed unable to represent the case precise-
ly. To deal with dynamic environment author will focus in near future to introduce the extensive properties of 
neutrosophic set and its applications to wireless ad-hoc network(WANET), flying ad-hoc network(FANET) and 
vehicular ad-hoc network(VANET). 

Conclusion and future work 

This paper utilizes properties of single valued neutrosophic for finding an efficient routing protocol for MANET 
based on distance and energy. In this regard, several algorithms are proposed to characterize it based on truth and 

falsity membership-values of a defined vague set. However the current paper aimed at dealing with uncertainty 
in routing protocol of MANET based on its truth, falsity and indeterminacy membership-values, indeterminacy. 
It is shown that the proposed method provides a precise representation and selection of energy efficient routing 
protocol when compared to vague sets as shown in Table 6 and 7. In future, the authors will focuses on investi-

gating the energy efficient routes for WANET, FANET, VANET for dynamic environment 
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Abstract: This paper addressed the concept of Neutrosophic nano ideal topology which is induced by the two litere-
ture, they are nano topology and ideal topological spaces. We defined its local function, closed set and also defined
and give new dimnesion to codense ideal by incorporating it to ideal topological structures. we investigate some
properties of neutrosophic nano topology with ideal.

Keywords: neutrosophic nano ideal, neutrosophic nano local function, topological ideal, neutrosophic nano topolog-
ical ideal.

1 Introduction and Preliminaries
In 1983, K. Atanassov [1] proposed the concept of IFS(intuitionstic fuzzy set) which is a generalization of
FS(fuzzy set) [17], where each element has true and false membership degree. Smarandache [15] coined the
concept of NS (neutrosophic set) which is new dimension to the sets. Neutrosophic set is classified into three
independently related functions namely, membership, indeterminacy function and non-membership function.
Lellis Thivagar [8], introduced the new notion of neutrosophic nano topology, which consist of upper, lower
approximation and boundary region of a subset of a universal set using an equivalence class on it. There have
been wide range of studies on neutrosophic sets, ideals and nano ideals [9, 10, 11,12,13,14]. Kuratowski [7]
and Vaidyanathaswamy [16] introduced the new concept in topological spaces, called ideal topological spaces
and also local function in ideal topological space was defined by them. Afterwards the properties of ideal
topological spaces studied by Hamlett and Jankovic[5,6].
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In this paper, we introduce the new concept of neutrosophic nano ideal topological structures, which is a
generalized concept of neutrosophic nano and ideal topological structure. Also defined the codense ideal in
neutrosophic nano topological structure.
We recall some relevant basic definitions which are useful for the sequel and in particular, the work of M. L.
Thivagar [8], Parimala et al [9], F. Smarandache [15].

Definition 1.1. Let U be universe of discourse andR be an indiscernibility relation on U. Then U is divided
into disjoint equivalence classes. The pair (U,R) is said to be the approximation space. Let F be a NS in U
with the true µF , the indeterminancy σF and the false function νF . Then,

(i) The lower approximation of F with respect to equivalence class R is the set denoted by N(F ) and
defined as follows
N(F ) =

{〈
a, µR(F )(a), σR(F )(a), νR(F )(a)

〉
|y ∈ [a]R, a ∈ U

}
(ii) The higher approximation of F with respect to equivalence class R is the set is denoted by N(F ) and

defined as follows, N(F ) =
{〈
a, µR(F )(a), σR(F )(a), νR(F )(a)

〉
|y ∈ [a]R, a ∈ U

}
(iii) The boundary region of F with respect to equivalence classR is the set of all objects is denoted byB(F )

and defined byB(F ) = N(F )−N(F ).

where,

µR(F )(a) =
⋃

y1∈[a]R

µF (y1), σR(F )(a) =
⋃

y1∈[a]R

σF (y1),

νR(F )(a) =
⋂

y1∈[a]R

νF (y1). µR(F )(a) =
⋂

y1∈[a]R

µF (y1),

σR(F )(a) =
⋂

y1∈[a]R

σF (y1), νR(F )(a) =
⋂

y1∈[a]R

νF (y1).

Definition 1.2. LetU be a nonempty set and the neutrosophic setsX and Y in the formX = {〈a, µX(a), σX(a), νX(a)〉 , a ∈ U}
and Y = {〈a, µY (a), σY (a), νY (a)〉 , a ∈ U}. Then the following statements hold:

(i) 0N = {〈a, 0, 0, 1〉 , a ∈ U} and 1N = {〈a, 1, 1, 0〉 , a ∈ U}.

(ii) X ⊆ y if and only if µX(a) ≤ µY (a), σX(a) ≤ σY (a), νX(a) ≥ νY (a) for all a ∈ U .

(iii) X = Y if and only if X ⊆ Y and Y ⊆ X .

(iv) XC = {〈a, νX(a), 1− σX(a), µX(a)〉 , a ∈ U}.

(v) X ∩ Y if and only if µX(a) ∧ µX(a), σX(a) ∧ σY (a), νY (a) ∨ νY (a) for all a ∈ U .

(vi) X ∪ Y if and only if µY (a) ∨ µY (a), σX(a) ∨ σY (a), νX(a) ∧ νY (a) for all a ∈ U .

(vii) X − Y if and only if µX(a) ∧ νY (a), σX(a) ∧ 1− σY (a), νX(a) ∨ µY (a) for all a ∈ U .

Definition 1.3. Let X be a non-empty set and I is a neutrosophic ideal (NI for short) on X if
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(i) A1 ∈ I and B1 ⊆ A1⇒ B1 ∈ I [heredity],

(ii) A1 ∈ I and B1 ∈ I ⇒ A1 ∪B1 ∈ I [finite additivity].

2 Neutrosophic nano ideal topological spaces
In this section we introduce a new type of local function in neutrosophic nano topological space. Before that
we shall consider the following concepts.

Neutrosophic nano ideal topological space(in short NNI) is denoted by (U, τN (F ), I), where (U, τN (F ), I)
is a neutrosophic nano topological space(in short NNT) (U, τN (F )) with an ideal I on U

Definition 2.1. Let (U, τN (F ), I) be a NNI with an ideal I on U and (.)∗N be a set of operator from P (U) to
P (U)× P (U) (P (U) is the set of all subsets of U ). For a subset X ⊂ U , the neutrosophic nano local function
X∗N (I, τN (F )) of X is the union of all neutrosophic nano points (NNP, for short) C(α, β, γ) such that
X∗N (I, τN (F )) = ∨{C(α, β, γ) ∈ U : X ∩ G /∈ Ifor all G ∈ N(C(α, β, γ))}. We will simply write X∗N for
X∗N (I, τN (F )).

Example 2.2. Let (U, τN (F )) be a neutrosophic nano topological space with an ideal I on U and for every
X ⊆ U .

(i) If I = {0∼}, then X∗N = N cl(X),

(ii) If I = P (U), then X∗N = 0∼.

Theorem 2.3. Let (U, τN (F )) be a NNT with ideals I , I ′ on U and X,B be subsets of U . Then

(i) X ⊆ B ⇒ X∗N ⊆ B∗N ,

(ii) I ⊆ I ′ ⇒ X∗N (I
′) ⊆ X∗N (I),

(iii) X∗N = N cl(X∗N ) ⊆ N cl(X) (X∗N is a neutrosophic nano closed subset of N cl(X)),

(iv) (X∗N )
∗
N ⊆ X∗N ,

(v) X∗N ∪B∗N = (X ∪B)∗N ,

(vi) X∗N −B∗N = (X −B)∗N −B∗N ⊆ (X −B)∗N ,

(vii) V ∈ τN (F )⇒ V ∩X∗N = V ∩ (V ∩X)∗N ⊆ (V ∩X)∗N and

(viii) J ∈ I ⇒ (X ∪ J)∗N = X∗N = (X − J)∗N .

Proof. (i) Let X ⊂ B and a ∈ X∗N . Assume that a /∈ B∗N . We have GN ∩ B ∈ I for some GN ∈ GN (a).
Since GN ∩ X ⊆ GN ∩ B and GN ∩ B ∈ I , we obtain GN ∩ X ∈ I from the definition of ideal. Thus, we
have a /∈ X∗N . This is a contradiction. Clearly, X∗N ⊆ B∗N .
(ii) Let I ⊆ I ′ and a ∈ X∗N (I

′). Then we have GN ∩ X /∈ I ′ for every GN ∈ GN (a). By hypothesis, we
obtain GN ∩X /∈ I . So a ∈ X∗N (I).
(iii) Let a ∈ X∗N . Then for every GN ∈ GN (a), GN ∩ X /∈ I . This implies that GN ∩ X 6= 0∼. Hence
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a ∈ N cl(X).
(iv) From (iii), (X∗N )

∗
N ⊆ N cl(X∗N ) = X∗N , since X∗N is a neutrosophic nano closed set.

The proofs of the other conditions are also obvious.
Theorem 2.4. If (U, τN (F ), I) is a NNT with an ideal I and X ⊆ X∗N , then X∗N = N cl(X∗N ) = N cl(X).
Proof. For every subset X of U , we have X∗N = N cl(X∗) ⊆ N cl(X), by Theorem 2.3. (iii) X ⊆ X∗N implies
that N cl(X) ⊆ Ncl(X∗N ) and so X∗N = N cl(X∗N ) = N cl(X).

Definition 2.5. Let (U, τN (F )) be a NNT with an ideal I on U . The set operator N cl∗ is called a neutro-
sophic nano∗-closure and is defined as N cl∗(X) = X ∪X∗N for X ⊆ a.

Theorem 2.6. The set operator N cl∗ satisfies the following conditions:

(i) X ⊆ N cl∗(X),

(ii) N cl∗(0∼) = 0∼ and N cl∗(1∼) = 1∼,

(iii) If X ⊂ B, then N cl∗(X) ⊆ N cl∗(B),

(iv) N cl∗(X) ∪N cl∗(B) = N cl∗(X ∪B).

(v) N cl∗(N cl∗(X)) = N cl∗(X).

Proof. The proofs are clear from Theorem 2.3 and the definition of N cl∗.
Now, τN (F )∗(I, τN (F )) = {V ⊂ U : N cl∗(U − V ) = U − V }. τN (F )∗(I, τN (F )) is called neutrosophic

nano∗-topology which is finer than τN (F ) (we simply write τN (F )∗ for τN (F )∗(I, τN (F ))). The elements of
τN (F )

∗(I, τN (F )) are called neutrosophic nano∗-open (briefly,N∗-open) and the complement of anN∗-open
set is called neutrosophic nano∗-closed (briefly, N∗-closed). Here N cl∗(X) and N int∗(X) will denote the
closure and interior of X respectively in (U, τN (F )

∗).
Remark 2.7. (i) We know from Example 2.2 that if I = {0∼} then X∗N = N cl(X). In this case, N cl∗(X) =
N cl(X).
(ii) If (U, τN (F ), I) is a NNI with I = {0∼}, then τN (F )∗ = τN (F ).
Definition 2.8. A basis β(I, τN (F )) for τN (F )∗ can be described as follows:
β(I, τN (F )) = {X −B : X ∈ τN (F ), B ∈ I}.
Theorem 2.9. Let (U, τN (F )) be a NNT and I be an ideal on U . Then β(I, τN (F )) is a basis for τN (F )∗.

Proof. We have to show that for a given space (U, τN (F )) and an ideal I on U , β(I, τN (F )) is a basis for
τN (F )

∗. If β(I, τN (F )) is itself a neutrosophic nano topology, then we have β(I, τN (F )) = τN (F )∗ and all the
open sets of τN (F )∗ are of simple form X −B where X ∈ τN (F ) and B ∈ I .
Theorem 2.10. Let (U, τN (F ), I) be a NNT with an ideal I on U and X ⊆ U . If X ⊆ X∗N , then

(i) N cl(X) = N cl∗(X),

(ii) N int(U −X) = N int∗(U −X).

Proof. (i) Follows immediately from Theorem 2.4.
(ii) If X ⊆ X∗N , then N cl(X) = N cl∗(X) by (i) and so U − N cl(X) = U − N cl∗(X). Therefore,
N int(U −X) = N int∗(U −X).
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Theorem 2.11. Let (U, τN (F ), I) be a NNT with an ideal I on U and X ⊆ X . If X ⊆ X∗N , then
X∗N = N cl(X∗N ) = n-cl(X) = N cl∗(X).

Definition 2.12. A subset A of a neutrosophic nano ideal topological space (U, τN (F ), I) is N∗-dense in
itself (resp. N∗-perfect) if X ⊆ X∗N (resp. X = X∗N ).

Remark 2.13. A subset X of a neutrosophic nano ideal topological space (U, τN (F ), I) is N ∗-closed if
and only if X∗N ⊆ X .

For the relationship related to several sets defined in this paper, we have the following implication:

N∗-dense in itself⇐N∗-perfect⇒N ∗-closed

The converse implication are not satisfied asthe following shows.

Example 2.14. Let U be the universe, X = {P1, P2, P3, P4, P5} ⊂ U , U/R = {{P1, P2}, {P3}, {P4, P5}}
and τN (F ) = {1∼, 0∼,N ,N , B} and the ideal I = 0∼, 1∼. For X = {< P1, (.5, .4, .7) >,< P2, (.6, .4, .5) >
,< P3, (.4, .5, .4) >,< P4, (.7, .3, .4) >,< P5, (.8, .5, .2) >}, N(X) = { P1,P2

.5,.4,.7
, P3

.4,.5,.4
, P4,P5

.7,.3,.4
},

N(X) = { P1,P2

.6,.4,.5
, P3

.4,.5,.4
, P4,P5

.8,.5,.2
}, B(X) = { P1,P2

.6,.4,.5
, P3

.4,.5,.4
, P4,P5

.4,.3,.7
} . If I = 0∼ then X∗N = Ncl(a). Thus

X ⊆ X∗N . Hence X is N ∗-dense but not N ∗-perfect.
If I = 1∼ then X∗N = 0∼. Thus X ⊇ X∗N . Hence X∗N is N ∗-closed but not N ∗-perfect.

Lemma 2.15. Let (U, τN (F ), I) be a NNI andX ⊆ U . IfX isN∗-dense in itself, thenX∗N = N cl(X∗N ) =
N cl(X) = N cl∗(X).
Proof. Let X be N∗-dense in itself. Then we have X ⊆ X∗N and using Theorem 2.11 we getX∗N =
N cl(X∗N ) = N cl(X) = N cl∗(X).

Lemma 2.16. If (U, τN (F ), I) is a NNT with an ideal I andX ⊆ U , thenX∗N (I, τN (F )) = X∗N (I, τN (F )
∗)

and hence τN (F )∗ = τN (F )
∗∗.

3 τN (F )-codence ideal
n this section we incorporated codence ideal [5] in ideal topological space and introduce similar concept in
neutrosophic nano ideal topological spaces.

Definition 3.1. An ideal I in a space (U, τN (F ), I) is called τN (F )-codense ideal if τN (F ) ∩ I = {0∼}.
Following theorems are related to τN (F )-codense ideal.

Theorem 3.2. Let (U, τN (F ), I) be an NNI and I is τN (F )-codense with τN (F ). Then U = U∗N .
Proof. It is obvious that U∗N ⊆ U . For converse, suppose a ∈ U but a 6∈ U∗N . Then there existsGx ∈ τN (F )(a)
such that Gx ∩ U ∈ I . That is Gx ∈ I , a contradiction to the fact that τN (F ) ∩ I = {0∼}. Hence U = U∗N .

Theorem 3.3. Let (U, τN (F ), I) be a NNI. Then the following conditions are equivalent:

(i) U = U∗N .
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(ii) τN (F ) ∩ I = {0∼}.

(iii) If J ∈ I , then N int(J) = 0∼.

(iv) For every X ∈ τN (F ), X ⊆ X∗N .

Proof. By Lemma 2.16, we may replace ‘τN (F )’ by ‘τN (F )∗’ in (ii), ‘N int(J) = 0∼’ by ‘N int∗(J) = 0∼’
in (iii) and ‘X ∈ τN (F )’ by ‘X ∈ τN (F )∗’ in (iv).

4 Conclusions
this paper, we introduced the notion of neutrosophic nano ideal topological structures and investigated some
relations over neutrosophic nano topology and neutrosophic nano ideal topological structures and studied some
of its basic properties. In future, it motivates to apply this concepts in graph structures.
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Abstract.In this paper, we introduced a new concept of single valued neutrosophic graph (SVNG) known as constant single valued 

neutrosophic graph (CSVNG). Basically, SVNG is a generalization of intuitionistic fuzzy graph (IFG). More specifically, we described 

and explored somegraph theoretic ideas related to the introduced concepts of CSVNG. An application of CSVNG in a Wi-Fi network 

system is discussed and a comparison of CSVNG with constant IFG is established showing the worth of the proposed work. Further, 

several terms like constant function and totally constant function are investigated in the frame-work of CSVNG and their characteristics 

are studied. 
Keywords.Single valued neutrosophic graph. Constant single valued neutrosophic graph; constant function; totally con-

stant function; Wi-Fi network. 
 

 

1. Introduction 
Dealing with uncertain situations and insufficient information requires some high potential mathematical tools. 

Graph theory is one of the mathematical tools which effectively deals with large data. If there are some of uncer-

tainty factors, then fuzzy graph is the appropriate tool to be used. In addition to its ability of handling large data, 

graph theory has a special interest as it can be applied in several important areas including management sciences 

[19], social sciences [17], computer and information sciences [41], communication networks [18],  description of 

group structures [39], database theory [26]and economics [25]. 

The concept of fuzzy set (FS) proposed by Zadeh [46] is among the famous toolsdealing with uncertain situations 

and insufficient information. After, Kaufmann [20] introduced the notion of fuzzy graph. A comprehensive study 

on fuzzy graphs is done by Rosenfeld [40]in which he shown some of their basic properties. The work in the field 

of graph theory is exemplary during the past decades as its concepts are applied in many real-life problems such 

as cluster analysis [14,6,45,30], slicing [30], for solving fuzzy intersecting equations [31,29], in some theory of 

data base [26], in networking problems [27], in the structure of a group [43, 32], in chemistry [44], in air trafficking 

[35], in the control of traffic [34] etc. The worth of FG lies in its capability of handling with uncertainties and it 

has done so far better but Atanassov [1] proposed that FSs only deals with one sided uncertainties which is not 

enough as human nature isn’t limited to only yes type or no type problems. Hence the logic of intuitionistic fuzzy 

set (IFS) have been developed sufficient to deal with uncertainties of both yes and no types. Atanassov’s IFS gave 

rise to the theory of IFG proposed by Parvathi and Karunambigai [36]. The structure of IFG is advanced and is 

applied successfully social networks [13], clustering [23], radio coverage network [21] and shortest path problems 

[32] etc. Furthermore, Parvathi et al [36-28] did some work on constant IFGs and operations of IFGs. The concept 

of intuitionistic fuzzy hypergraphs (IFHGs) was proposed by Parvathi et al. [37] which were applied in real life 

problems by Akram and Wieslaw [3]. NagoorGani and Shajitha [15] wrote about degree, order and size for IFGin 

2010. Akram and Davvaz [2] gave the concept of strong IFG. 

Smarandache in 1995 develop the neutrosophic logic which give rise to a novel theory of neutrosophic set (NS) 

[42] which give rise to the development of single/double and triple valued NSs [16,22,24]. Broumi et al initiated 

the concept of single-valued neutrosophic graph (SVNG) [7]. Work on the operations of SVNG can be found in 

[5]. Note on the degree, order and size of SVNG is present in [8].Recently, Broumi et al[47]introduced a single-

valued neutrosophic techniques for analysis of WIFI connection. The hypergraph i.e. single-valued neutrosophic 

hyper graph is introduced in [4]. Neutrosophic sets and graphs have ben widely studied in recent decades. Various 

77
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real life applications are discussed using neutrosophc techniques. For development in neutrosophic sets and graphs 

and their applications, one is refer to [9-12, 48-67,68-71]. 

In this paper, we introduced the concept of CSVNG and investigated some graph theoretic ideas related to this 

introduced concept. An application of CSVNG in a Wi-Fi network system is discussed and a comparison of 

CSVNG with constant IFG is established in order to show the worth of the proposed concept. 

The rest of the paper is organized as follows. In Section 2, we recalled the necessary basic concepts and properties 

of IFG, CIFG and SVNG.In section 3, the concept of CSVNG is described and some related graph theoretic ideas 

are explored. In Section 4, we discussed the characteristic of CSVNGs, while section 5 deals with an application 

of CSVNGs in Wi-Fi network system. Finally,  advantages and concluding remarks are discussed. 

 

2 Preliminaries 

This section is basically about some very basic definitions. The concepts of IFG, CIFG and SVNG are discussed 

and explained with the help of some examples. For undefined terms and notions, we refer to [5, 8, 35, 36]. 

Definition 1 [36]. A Pair Ǥ = (Ѷ, Ẽ) is said to be �	
 if  

(i) Ѷ = �ѷ
, ѷ�, ѷ�, … ѷ�� are the set of vertices such that Ṫ
: Ѷ ⟶ [0, 1] and F
: Ѷ ⟶ [0, 1] represents 

the degree of membership and non-membership of the element ѷ� ∈ Ѷ respectively with a condition 

that 0 ≤ Ṫ
(ѷ�) + F
(ѷ�) ≤ 1 for all ѷ� ∈ Ѷ, (� ∈ �). 
(ii) Ẽ ⊆ Ѷ × Ѷ where Ṫ�: Ѷ × Ѷ ⟶ [0, 1] and F�: Ѷ × Ѷ ⟶ [0, 1] represents the degree of membership 

and non-membership of the element (ѷ� , ѷ#) ∈ Ẽ such that Ṫ�$ѷ� , ѷ#% ≤	min'Ṫ
(ѷ�), Ṫ
(ѷ#)( and F�$ѷ� , ѷ#% ≤	max'F
(ѷ�), F
(ѷ#)( with a condition 0 ≤ Ṫ�$ѷ� , ѷ#% + F�$ѷ� , ѷ#% ≤ 1 for all $ѷ� , ѷ#% ∈ Ẽ	(� ∈ �). 
Example 1.Let Ǥ = (Ѷ, Ẽ) be an IFG where Ѷ = �ѷ
, ѷ�, ѷ�� be the set of vertices and Ẽ = �ѷ
ѷ�, ѷ
ѷ�, ѷ�ѷ��  

be the set of edges. Then 

 ѷ
 

 

 

   

 

 

   

 ѷ� ѷ� 

Figure 1 (IFG) 

Definition 2 [28].A pair Ǥ = (Ѷ, Ẽ) is said to be Constant−�	
 of degree (ƙ�, ƙ#) or $ƙ� , ƙ#% − �	
.If 
ḍṪ(ѷ�) = ƙ�, ḍ, $ѷ-% = ƙ-∀ѷ� , ѷ# ∈ Ѷ. 

 

Example 2. Let Ǥ = (Ѷ, Ẽ) be an IFG where Ѷ = �ѷ
, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷ
ѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ
�  be the set of edges. Then 
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 			ѷ0  ѷ�  

 

 

   

 

 

  ѷ/ ѷ�  

 

Figure 2 (Constant−�	
 of degree (ƙ� , ƙ#)) 
The degree of ѷ
, ѷ�, ѷ�, ѷ/ is (0.5, 1.0). 

Definition 3 [7].A pair Ǥ = (Ѷ, Ẽ)is said to be as 123
 if 

(i) Ѷ = �ѷ
, ѷ�, ѷ�, … ѷ��are the set of vertices such that Ṫ
: Ѷ ⟶ [0, 1], Î
: Ѷ ⟶ [0, 1] andF
: Ѷ ⟶ [0, 1] 
denote the degree of membership, indeterminacy and non-membership of the element ѷ� ∈ Ѷ respec-

tively with a condition that0 ≤ Ҭ
 + Î
 + F
 ≤ 3 for all ѷ� ∈ Ѷ, (� ∈ �). 

(ii) 	Ě ⊆ Ѷ × ѶwhereṪ�: Ѷ × Ѷ ⟶ [0, 1], Î�: Ѷ × Ѷ ⟶ [0, 1] andF�: Ѷ × Ѷ ⟶ [0, 1] denote the degree of 

membership, abstinence and non-membership of the element $ѷ� , ѷ#% ∈ Ẽ such that Ṫ�$ѷ� , ѷ#% ≤min'Ṫ�(ѷ�), Ṫ�$ѷ#%(, Î�$ѷ� , ѷ#% ≥ max'Î�(ѷ�), Î�$ѷ#%( and F�$ѷ� , ѷ#% ≥ max'F�(ѷ�),			F�$ѷ#%( with a 

condition 0 ≤ Ṫ�$ѷ� , ѷ#% + Î�$ѷ� , ѷ#% ∈ +F�$ѷ� , ѷ#% ≤ 3 for all  $ѷ� , ѷ#% ∈ Ẽ, (� ∈ �). 
Example 3.Let Ǥ = (Ѷ, Ẽ) be aSVNG where Ѷ = �ѷ
, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷ
ѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ
�  be the set of edges. Then 

  

 		ѷ
    ѷ� 

 

 

  

 

 

 ѷ/  ѷ� 

 

Figure 3 .SVNG 
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3 Constant single valued neutrosophic graph 

In this section, the concept of CSVNG is introduced and supported with some examples. We discussed some 

related terms like completeness, total degree and constant function and exemplified them. Some results are also 

studied related to completeness and constant functions. 

Definition 4. A pair Ǥ = (Ѷ, Ẽ) is said to be constant−123
 of degree (ƙ� , ƙ#, ƙ>)or $ƙ�, ƙ# , ƙ>% − 123
.If ḍṪ(ѷ�) = ƙ� , ḍÎ$ѷ#% = ƙ#,	andḍ?(ѷ>) = ƙ>∀ѷ� , ѷ# , ѷ> ∈ Ѷ. 
Example 4.Let Ǥ = (Ѷ, Ẽ) be a SVNG where Ѷ = �ѷ
, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷ
ѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ
�  be the set of edges. Then CSVNG is shown in the below figure 4. 

 

   ѷ
      ѷ� 

 

 

  

 

 

 ѷ/ ѷ� 

  

Figure 4 (Constant-SVNG of degree (ƙ� , ƙ# , ƙ>)) 

The degree of ѷ
, ѷ�, ѷ�, ѷ/ is (0.9, 1.3, 1.6). 
Remark 1. A complete 123
 may not be a constant-123
. 
Example 5.Consider a graph Ǥ = (Ѷ,Ẽ) where Ѷ = �ѷ
, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ ='ѷ
ѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ
ѷ�,ѷ�ѷ/, ѷ/ѷ
(  be the set of edges. Then 

 ѷ
 

  

 

  

  

 ѷ/ ѷ� 

 

 

 

    

	
ѷ� 

 

Figure 5 (Ǥ is complete but not Constant-123
) 
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Definition 5. The total degree of a vertex ѷ in a123
 is defined as  

Bɗ(ѷ) = DE ɗṪF(ѷ) + Ṫ
(ѷ),
ѷ∈Ẽ

E ɗÎF(ѷ) + Î
(ṽ),
ѷ∈Ẽ

E ɗ?F(ѷ) + F
(ѷ)
ѷ∈Ẽ

H 

If every vertex has the same total degree, then it is called 123
 of total degree or totally constant 123
. 
Example 6.Consider a graph Ǥ = (Ѷ, Ẽ) where Ѷ = �ѷ
, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷ
ѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ
�  be the set of edges. Then 

   ѷ
     ѷ� 

 

 

  

 

 

   

  ѷ/  ѷ�  

Figure 6 (SVNG) 

Constant SVNG of total degree (1.6, 1.8, 1.7). 
Theorem 1. If  Ǥ be a SVNG. Then (Ṫ
, Î
, F
)is a constant function iff the following are equivalent. 

(i) Ǥis a constant SVNG. 

(ii) Ǥis a totally constant SVNG. 

ProofLet (Ṫ
, Î
, F
) be a constant function and Ṫ
(ѷ) = ċ
 , Î
(ѷ) = ċ�,	andF
(ѷ) = ċ�  for all ѷ� ∈ Ѷ. Where ċ
,ċ� and ċ�  are constants. Suppose that Ǥ  is a $ƙ� , ƙ#, ƙ>% − L123
.  Then ɗṪ(ѷ�) = ƙ
 , ɗÎ(ѷ�) = ƙ�  and ɗ?(ѷ�) = ƙ� for all ѷ� ∈ Ѷ.  Therefore, BɗṪ(ѷ�) = ɗṪ(ѷ�) + Ṫ
(ѷ�) , BɗÎ(ѷ�) = ɗÎ(ѷ�) + Î
(ѷ�)  and Bɗ?(ѷ�) =ɗ?(ѷ�) + F
(ѷ�) for all ѷ� ∈ Ѷ, BɗṪ(ѷ�) = ƙ
 + ċ
, BɗÎ(ѷ�) = ƙ� + ċ� and Bɗ?(ѷ�) = ƙ� + ċ�for all ѷ� ∈ Ѷ.Hence Ǥ is a totally constant SVNG. 

Now, Assume that Ǥ is a (Ṫ
, Î
, F
)-totally constant SVNG. Then BɗṪ(ѷ�) = ŗ
, BɗÎ(ѷ�) = ŗ� and Bɗ?(ѷ�) = ŗ� 

for all ѷ� ∈ Ѷ. ɗṪ(ѷ�) + Ṫ
(ѷ�) = ŗ
, ɗṪ(ѷ�) + ċ
 = ŗ
, ɗṪ(ѷ�) = ŗ
 − ċ
,	similarlyɗÎ(ѷ�) + Î
(ѷ�) = ŗ�, ɗÎ(ѷ�) =ŗ� − ċ� and ɗ?(ѷ�) + F
(ѷ�) = ŗ�, ɗ?(ѷ�) = ŗ� − ċ�.  Therefore, Ǥ  is a constant SVNG. Hence (i) and (ii) are 

equivalent. 

Conversely, assume that (i) and (ii) are equivalent That is Ǥ is a constant SVNG iff Ǥ is a totally constant SVNG. 

Assume (Ṫ
, Î
, F
) is not a constant function. Then Ṫ
(ѷ
) ≠ Ṫ
(ѷ�), Î
(ѷ
) ≠ Î
(ѷ�) and F
(ѷ
) ≠ F
(ѷ�)for  

at least one pairof vertices ѷ
, ѷ� ∈ Ѷ.  Consider Ǥ	 be a $ƙ�, ƙ# , ƙ>% − 123
.  Then, Ṫ
(ѷ
) = Ṫ
(ѷ�) =ƙ
, Î
(ѷ
) = Î
(ѷ�) = ƙ� and F
(ѷ
) = F
(ѷ�) = ƙ� . So, BɗṪ(ѷ
) = ɗṪ(ѷ
) + Ṫ
(ѷ
) = ƙ
 + Ṫ
(ѷ
),  and BɗṪ(ѷ�) = ƙ
 + Ṫ
(ѷ�).  Similarly , BɗÎ(ѷ
) = ƙ� + Î
(ѷ
), BɗÎ(ѷ�) = ƙ� + Î
(ѷ�) and Bɗ?(ѷ
) = ƙ� +F
(ѷ
), Bɗ?(ѷ�) = ƙ� + F
(ѷ�) .Since Ṫ
(ѷ
) ≠ Ṫ
(ѷ�) , Î
(ѷ
) ≠ Î
(ѷ�)  and F
(ѷ
) ≠ F
(ѷ�).  We have BɗṪ(ѷ
) ≠ BɗṪ(ѷ�), BɗÎ(ѷ
) ≠ BɗÎ(ѷ�)and Bɗ?(ѷ
) ≠ Bɗ?(ѷ�).  Therefore, Ǥ is not totally constant SVNG which 

is contradiction to our supposition. 

Now, consider Ǥ  be a totally constant SVNG. Then, BɗṪ(ѷ
) = BɗṪ(ѷ�) ,ɗṪ(ѷ
) + Ṫ(ѷ
) = ɗṪ(ѷ�) + Ṫ(ѷ�) , ɗṪ(ѷ
) − ɗṪ(ѷ�) = Ṫ(ѷ�) − Ṫ(ѷ
)	(�. O. ≠ 0)ɗṪ(ѷ
) ≠ ɗṪ(ѷ�) . Similarly ɗÎ(ѷ
) ≠ ɗÎ(ѷ�) and ɗ?(ѷ
) ≠ɗ?(ѷ�). , Ǥ is not constant which is contradiction to our assumption. Hence (Ṫ
, Î
, F
) is constant function. 

Example 7.Consider a graph Ǥ = (Ѷ, Ẽ) where Ѷ = �ѷ
, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷ
ѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ
�  be the set of edges. Then 
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 Figure 7. SVNG  

(Ṫ
, Î
, 	F
)is a constant function, then Ǥ is constant and totally constant. 

Theorem 2. Let Ǥ is constant and totally constant then (Ṫ
, Î
, 	F
) is a constant function. 

Proof. Assume that Ǥ be a $ƙ�, ƙ# , ƙ>% −constant and (ŗ
, ŗ�, ŗ�) −totally constant SVNG. Therefore, ɗṪ(ѷ
) =ƙ
, ɗÎ(ѷ
) = ƙ�and ɗ	?(ѷ
) = ƙ� for ѷ
 ∈ Ѷ and BɗṪ(ѷ
) = ŗ
, BɗÎ(ѷ
) = ŗ�and Bɗ	?(ѷ
) = ŗ� for all ѷ ∈ Ѷ. Ṫ
(ѷ) + ƙ
 = ŗ
for all ѷ ∈ Ѷ. Ṫ
(ѷ) = ŗ
 − ƙ
, for all ѷ ∈ Ѷ. Hence Ṫ
(ѷ
) is a constant function. Similarly Î
(ѷ) = ŗ� − ƙ� and 	F
(ѷ) = ŗ� − ƙ� for all ѷ ∈ Ѷ. 
Remark 2. Converse of the above theorem 2 is not true. 

Example 8. Consider a graph Ǥ = (Ѷ,Ẽ) where Ѷ = �ѷ
, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷ
ѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ
�  be the set of edges. Then 

  

 ѷ
 ѷ� 

 

 

  

 

 

 ѷ/ ѷ�  

 

 Figure 8. SVNG 

(Ṫ
, Î
, 	F
)is a constant function But neither constant SVNG nor totally constant SVNG.  

4 Characterization of constant SVNG on a cycle 
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This section is based on some important results on even (odd) cycles, bridges in SVNGs and cut vertex of even 

(odd) cycle. The stated results are supported with some examples.  . 

Theorem 3. If  Ǥ is an SVNG where crisp graph Ǥ  is an odd cycle. Then Ǥ is constant SVNG iff  (Ṫ�, Î�, 	F�) is a 

constant function. 

Proof. Suppose (Ṫ�, Î�, 	F�) is constant function Ṫ� = ċ
, Î� = ċ�,	and	F� = ċ� for all (ѷ� , ѷ#) ∈ Ẽ. Then ɗṪ(ѷ�) =2ċ
, ɗÎ(ѷ�) = 2ċ� and ɗ	?(ѷ�) = 2ċ� for all ѷ� ∈ ѶSoǤ is constant SVNG. 

Conversely, assume that Ǥ is (ƙ
, ƙ�, ƙ�) −regular SVNG. If ɐ
, ɐ�, ɐ�…ɐ��R
 be the edges of  Ǥ in that order. If Ṫ�(ɐ
) = ċ
, Ṫ�(ɐ�) = ƙ
 − ċ
, Ṫ�(ɐ�) = ƙ
 − (ƙ
 − ċ
) = ċ
,Ṫ�(ɐ/) = ƙ
 − ċ
 and so on. Likewise, Î�(ɐ
) =ċ� , Î�(ɐ�) = ƙ� − ċ� , Î�(ɐ�) = ƙ� − (ƙ� − ċ�) = ċ� , Î�(ɐ/) = ƙ� − ċ�  and 	F�(ɐ
) = ċ� , 	F�(ɐ�) = ƙ� − ċ� , 	F�(ɐ�) = ƙ� − (ƙ� − ċ�) = ċ�,	F�(ɐ/) = ƙ� − ċ� and so on. Therefore  

							Ṫ�(ɐ�) = S ċ
, �T	�	�U	VWWƙ
 − ċ
, �T	�	�U	OXOY		Z 

Hence Ṫ�(ɐ
) = Ṫ(ɐ��R
) = ċ
.  So, if ɐ
  and ɐ��R
  incident at a vertex ѷ
 , then ɗṪ(ѷ
) = ƙ
, ɗ(ɐ
)  + ɗ(ɐ��R
) = ƙ
 , ċ
 + ċ
 = ƙ
, 2ċ
 = ƙ
, ċ
 = ƙ[� . 

Remark 3. The above theorem (3) is not true for totally constant SVNG. 

Example 8.Consider a graph Ǥ = (Ѷ, Ẽ) where Ѷ = �ѷ
, ѷ�, ѷ�� be the set of vertices and Ẽ =�ѷ
ѷ�, ѷ�ѷ�, ѷ�ѷ
�  be the set of edges. Then 

 

 

ѷ
 

 

 

  

 

 

 

 

 

 ѷ�		 ѷ� 

Figure 9. SVNG 

(Ṫ�, Î�, 	F�)is constant function but not totally constant. 

Theorem 4. If  Ǥ  is an SVNG where crisp graph Ǥ   is an even cycle. Then Ǥ  is constant SVNG iff ei-

ther	(Ṫ�, Î�, 	F�) is a constant function or alternative edges have same membership, indeterminacy and non-mem-

bership values. 

Proof. If (Ṫ�, Î�, 	F�)  is a constant function then Ǥ  is constant SVNG. Conversely, assume that Ǥ  is (ƙ
, ƙ�, ƙ�) −constant SVNG. If ɐ
, ɐ�, ɐ�…ɐ�� be the edges of even cycle  Ǥ in that order. By using the above 

theorem (3),							Ṫ�(ɐ�) = S ċ
, �T	�	�U	VWWƙ
 − ċ
, �T	�	�U	OXOY		Z , 	Î�(ɐ�) = S ċ�, �T	�	�U	VWWƙ� − ċ�, �T	�	�U	OXOY		Z 

And 

	F�(ɐ�) = S ċ�, �T	�	�U	VWWƙ� − ċ�, �T	�	�U	OXOY		Z. If  ċ
 = ƙ
 − ċ
, the (Ṫ�, Î�, 	F�) is constant function. If ċ
 ≠ ƙ
 − ċ
 then al-

ternative edges have same membership, indeterminacy and non-membership values. 

Remark 4.The above theorem (4) is not true for totally constant SVNG. 

Example 9.Consider a graph Ǥ = (Ѷ,Ẽ) where Ѷ = �ѷ
, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷ
ѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ
�  be the set of edges. Then 
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 ѷ/ ѷ� 

  

Figure 10.SVNG 

(Ṫ�, Î�, 	F�)is constant function, then Ǥ is constant SVNG. But not totally constant SVNG. 

Theorem 5. If Ǥ is constant SVNG is an odd cycle does not have SVN bridge. Hence it does not have  SVN cut-

vertex. 

Proof. Suppose Ǥ is constant SVNG is an odd cycle of its crisp graph. Then (Ṫ�, Î�, 	F�) is constant function. 

Therefore removal any edge does not reduce the strength of connectedness between any pair of vertex. Therefore Ǥ has no SVN edge and Hence there is no SVN cut vertex. 

Remark 5. For totally constant the above theorem (5) is not true. 

Example 10. Consider a graph Ǥ = (Ѷ,Ẽ) where Ѷ = �ѷ
, ѷ�, ѷ�� be the set of vertices and Ẽ =�ѷ
ѷ�, ѷ�ѷ�, ѷ�ѷ
�  be the set of edges. Then 
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 ѷ� ѷ�  

 

Figure 11 .SVNG 

$Ṫ�, Î�, 	F�%is constant function, but neither SVN bridge nor SVN cut vertex. 

Theorem 6. If Ǥ is constant SVNG is an even cycle of its crisp graph. Then either Ǥ does not have SVN bridge 

also it does not have SVN cut vertex. 

Proof. Straightforward. 

Remark 6. For totally constant the above theorem (6) is not true. 
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Example 11.Consider a graph Ǥ = (Ѷ,Ẽ) where Ѷ = �ѷ
, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷ
ѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ
�  be the set of edges. Then 
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 ѷ/ ѷ�  

  

 Figure 12.SVNG 

$Ṫ�, Î�, 	F�%is constant function, but neither SVN bridge nor SVN cut vertex. 

5 Application 

In this section, we applied the concept of CSVNG to model a Wi-Fi system. It is discussed how the concept of 

CSVNGs is useful in modelling such network. 

The Wi-Fi technology that is connected to the internet can be employed to deliver access to devices which are 

within the range of a wireless networks. The coverage extension can be as small area as few rooms to large as 

many square kilometres among two or more interconnected access points. The dependency of Wi-Fi range is on 

frequency band, radio power production and modulation techniques. Paralleled to traditional wired network secu-

rity which is wired networking, simplified access is basic problem with wireless network security, it is essential 

that one either gain access to building (connecting/ relating into interior web tangibly), or a break through an 

exterior firewall. To facilitate Wi-Fi, one essentially require to be within the range of Wi-Fi linkage. The solid Wi-

Fi hotspot device is the internal coin Wi-Fi which is designed to aid all internal setting owners. Make available 

100 meters Wi-Fi signal range to outdoor and 30 meters to indoor. With the help of CSVNG this type of Wi-Fi 

linkage is deliberated and demonstrated. 

The CSVNG is useful to a Wi-Fi network. The purpose for doing this is that there are three values in aCSVNG. 

The first one signifies connectivity, the second one defined the technical error of the device such as device is in 

range but changes between the connected and disconnected state and the third value indicates the disconnectiv-

ity.The notion of IFG only permits us to model two states such as connected and disconnected, a Wi-Fi system 

cannot be demonstrated using this confined structure of IFG. Though the CSVNG deliberate more than these two 

similarities. 

An outdoor Wi-Fi co-ordination, comprises four vertices which characterise the Wi-Fi devices in such a way that 

there is a block between each two routers and collectively both routers have been giving signals to the block, given 

away in figure (13). The devices can provide signal to each block with the help of CSVNG persistently. 
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 ѷ/   ѷ� 

Figure 13.SVNG. 

In figure 13, the four apexes denotes four different routers. The edge displays the signal strength of routers between 

each two routers. Each edge and apex take the single valued neutrosophic number form where the first value 

denotes the connectivity, the second one defined the technical error of the device, changes between the connected 

and disconnected state while the device is in range but, and the third value displays the disconnectivity. By using 

definition 4, the degree of every vertex is deliberated. In this situation which characterises that all router has been 

giving the same signal, so the degree of all routers is same. This also indicates that each router providing the same 

signal to the block. As a consequence, the concept of CSVNG displaying its importance, has been exercised to 

practical operations effectively. 

Table 1 shows the degree of each vertex of figure 13. 

 

 

 

 

 

Table 1 .vertex and its degree 

Advantages: 

The advantages of SVNGs over prevailing concepts of IFGs is due to the enhanced structure of SVNGs which 

allows us to deal with of more than two types ambiguous condition as it is done in the present situation of Wi-Fi 

vertex Degree 

ѷ
 (0.9, 1.5, 1.6) 

ѷ� (0.9, 1.5, 1.6) 

ѷ� (0.9, 1.5, 1.6) 

ѷ/ (0.9, 1.5, 1.6) 
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system. While the IFG allow only to deal with two states connected and disconnected which means that IFGs 

cannot be employed to model the Wi-Fi system. 

Conclusion: 

The conception of CSVNG has been developed in this paper. With the help of examples, basic graph theoretic 

ideas such as degree of CSVNG, constant functions, totally CSVNG and characterization of CSVNG on a cycle 

are proved. That notion of CSVNG have been applied to a real-world problem of Wi-Fi system and the conse-

quences are deliberated. A comparison of CSVNG with CIFG have showed the worth of CSVNGs. Further, in 

the proposed frame work, implementations in the field of engineering and computer sciences can be considered 

in near future.
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1 Introduction
Neutrosophic set initially proposed by Smarandache[8, 9] which is a generalization of Atanassov’s[11] in-

tuitionistic fuzzy sets and Zadeh’s[12] fuzzy sets. Also it considers truth-membership function, indeterminacy-
membership function and falsity-membership function. Since fuzzy sets and intuitionistic fuzzy sets fails to
deal with indeterminacy-membership functions, Smarandache introduced the neutrosophic concept in various
fields, including probability, algebra, control theory, topology, etc. Later Alblowi et al.,[20] introduced neu-
trosophic set based concepts in the neutrosophic field. These effective concepts has been applied by many
researchers in the last two decades to propose many concepts in topology. Salama and Alblowi[3] proposed
a new concept in neutrosophic topological spaces and it provides a brief idea about neutrosophic topology,
which is a generalization of Coker’s[6] intuitionistic fuzzy topology and Chang’s[5] fuzzy topology.

Salama et al.,[4, 1, 2] introduced the generalization of neutrosophic sets, neutrosophic crisp sets and the
neutrosophic closed sets in the field of neutrosophic topological spaces. Some neutrosophic continuous func-
tions were introduced by Salama et al.,[2] as an initial continuous functions in neutrosophic topology. Further
several researchers have defined some closed sets in neutrosophic topology, namely neutrosophic α-closed
sets[10], neutrosophic αg-closed sets[7], neutrosophic b-closed sets[15], neutrosophic ω-closed sets[19], gen-
eralized neutrosophic closed sets[18] and neutrosophic αψ-closed sets[13] in neutrosophic topological spaces.
Recently Iswarya and Bageerathi[16] proposed a new concept of neutrosophic frontier operator and neutro-
sophic semi-frontier operator in neutrosophic topological spaces, which provides the relationship between the
operators of neutrosophic interior and neutrosophic closure. Vigneshwaran and Saranya[14] defined a new
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closed set as b∗gα-closed sets in topological spaces, and it has been applied to define some topological func-
tions as continuous functions, irresolute functions and homeomorphic functions with some separable axioms.

In this article, the notion of neutrosophic b∗gα-closed sets in neutrosophic topological spaces are intro-
duced and investigated their properties and the relation with other existing properties. The concept of neutro-
sophic b∗gα-interior, neutrosophic b∗gα-closure, neutrosophic b∗gα-border and neutrosophic b∗gα-frontier are
introduced and discussed their properties. The connection between neutrosophic b∗gα-border and neutrosophic
b∗gα-frontier in neutrosophic topological spaces are established with their related properties.

2 Preliminaries
In this section, we recall some of basic definitions which was already defined by various authors.

Definition 2.1. [3] Let X be a non empty fixed set. A neutrosophic set E is an object having the form E = {<
x,mv(E(x)), iv(E(x)), nmv(E(x)) > ∀ x ∈ X}, where mv(E(x)) represents the degree of membership,
iv(E(x)) represents the degree of indeterminacy and nmv(E(x)) represents the degree of non-membership
functions of each element x ∈ X to the set E.

Remark 2.2. [3] A neutrosophic set E = {< x,mv(E(x)), iv(E(x)), nmv(E(x)) > ∀ x ∈ X} can be
identified to an ordered triple < mv(E), iv(E), nmv(E) > in

]−
0, 1+

[
on X .

Definition 2.3. [3] LetE andF be two neutrosophic sets of the form,E = {< x,mv(E(x)), iv(E(x)), nmv(E(x)) >
∀ x ∈ X} and F = {< x,mv(F (x)), iv(F (x)), nmv(F (x)) > ∀ x ∈ X}. Then,

i) E ⊆ F if and only if mv(E(x)) ≤ mv(F (x)), iv(E(x)) ≤ iv(F (x)) and nmv(E(x)) ≥ nmv(F (x))
∀ x ∈ X ,

ii) E = F if and only if E ⊆ F and F ⊆ E,

iii) E = {< x, nmv(E(x)), 1− iv(E(x)),mv(E(x)) > ∀ x ∈ X},

iv) E ∪ F = {x,max[mv(E(x)),mv(F (x))],min[iv(E(x)), iv(F (x))],min[nmv(E(x)), nmv(F (x))]
∀ x ∈ X},

v) E ∩ F = {x,min[mv(E(x)),mv(F (x))],max[iv(E(x)), iv(F (x))],max[nmv(E(x)), nmv(F (x))]
∀ x ∈ X}.

Definition 2.4. [3] A neutrosophic topology on a non empty set X is a family τ of neutrosophic subsets in X
satisfying the following axioms:

i) 0N , 1N ∈ τ ,

ii) G1 ∩G2 ∈ τ for any G1, G2 ∈ τ ,

iii) ∪Gi ∈ τ ∀ {Gi : i ∈ J} ⊆ τ .

Then the pair (X, τ) or simply X is called a neutrosophic topological space.

Definition 2.5. [10] A neutrosophic set E in a neutrosophic topological space (X, τ) is called
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i) a neutrosophic semiopen set (briefly NSOS) if E ⊆ Ncl(Nint(E)).

ii) a neutrosophic α-open set (briefly NαOS) if E ⊆ Nint(Ncl(Nint(E))).

iii) a neutrosophic preopen set (briefly NPOS) if E ⊆ Nint(Ncl(E)).

iv) a neutrosophic regular open set (briefly NROS) if E = Nint(Ncl(E)).

v) a neutrosophic semipreopen or β-open set (briefly NβOS) if E ⊆ Ncl(Nint(Ncl(E))).

A neutrosophic set E is called neutrosophic semiclosed (resp. neutrosophic α-closed, neutrosophic preclosed,
neutrosophic regular closed and neutrosophic β-closed) (briefly NSCS, NαCS, NPCS, NRCS and NβCS) if the
complement of E is a neutrosophic semiopen (resp. neutrosophic α-open, neutrosophic preopen, neutrosophic
regular open and neutrosophic β-open).

Definition 2.6. [15] Let E be a subset of a neutrosophic topological space (X, τ). Then E is called a neutro-
sophic b(Nb.In brief)-closed set if [Ncl(Nint(E))] ∪ [Nint(Ncl(E))] ⊆ E.

Definition 2.7. [17] Let E be a neutrosophic set in a neutrosophic topological space (X, τ). Then,

i) Nint(E) =
⋃
{F | F is a neutrosophic open set in (X, τ) and F ⊆ E} is called the neutrosophic interior

of E;

ii) Ncl(E) =
⋂
{F | F is a neutrosophic closed set in (X, τ) and F ⊇ E} is called the neutrosophic closure

of E.

3 Neutrosophic b∗gα-closed sets
In this section, the new concept of neutrosophic b∗gα-closed sets in neutrosophic topological spaces was de-
fined and studied.

Definition 3.1. Let E be a subset of a neutrosophic topological space (X, τ). Then E is called

i) a neutrosophic gα-open set(NgαOS) if V ⊆ Nαint(E) whenever V ⊆ E and V is a neutrosophic α-closed
set in (X, τ).

ii) a neutrosophic gα-closed set(NgαCS) if Nαcl(E) ⊆ V whenever E ⊆ V and V is a neutrosophic α-open
set in (X, τ).

iii) a neutrosophic ∗gα-open set(N∗gαOS) if V ⊆ Nint(E) whenever V ⊆ E and V is a neutrosophic gα-
closed set in (X, τ).

iv) a neutrosophic ∗gα-closed set(N∗gαCS) if Ncl(E) ⊆ V whenever E ⊆ V and V is a neutrosophic
gα-open set in (X, τ).

Definition 3.2. Let E be a subset of a neutrosophic topological space (X, τ). Then E is called

i) a neutrosophic b∗gα-open set(Nb∗gαOS) if V ⊆ Nbint(E) whenever V ⊆ E and V is a neutrosophic
∗gα-closed set in (X, τ).
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ii) a neutrosophic b∗gα-closed set(Nb∗gαCS) if Nbcl(E) ⊆ V whenever E ⊆ V and V is a neutrosophic
∗gα-open set in (X, τ).

Example 3.3. Let X = {p, q, r} and the neutrosophic sets L and M are defined as,

L = {< x,
(
p

1/2
, q
2/5
, r
1/2

)
,
(

p
3/10

, q
3/10

, r
1/5

)
,
(

p
7/10

, q
7/10

, r
7/10

)
> ∀ x ∈ X},

M = {< x,
(

p
7/10

, q
7/10

, r
7/10

)
,
(

p
3/10

, q
3/10

, r
1/5

)
,
(
p

1/2
, q
3/5
, r
1/2

)
> ∀ x ∈ X}.

Then the neutrosophic topology τ = {0N , L,M, 1N}, which are neutrosophic open sets in the neutrosophic
topological space (X, τ).

If N = {< x,
(
p

1/2
, q
3/5
, r
1/2

)
,
(
p

4/5
, q
4/5
, r
9/10

)
,
(

p
7/10

, q
7/10

, r
7/10

)
> ∀ x ∈ X} and

E = {< x,
(
p

1/2
, q
3/5
, r
1/2

)
,
(

p
3/10

, q
3/10

, r
3/10

)
,
(

p
7/10

, q
7/10

, r
7/10

)
> ∀ x ∈ X}.

Then the complement of L, M , N and E are,

L = {< x,
(

p
7/10

, q
7/10

, r
7/10

)
,
(

p
7/10

, q
7/10

, r
4/5

)
,
(
p

1/2
, q
2/5
, r
1/2

)
> ∀ x ∈ X},

M = {< x,
(
p

1/2
, q
3/5
, r
1/2

)
,
(

p
7/10

, q
7/10

, r
4/5

)
,
(

p
7/10

, q
7/10

, r
7/10

)
> ∀ x ∈ X},

N = {< x,
(

p
7/10

, q
7/10

, r
7/10

)
,
(
p

1/5
, q
1/5
, r
1/10

)
,
(
p

1/2
, q
3/5
, r
1/2

)
> ∀ x ∈ X} and

E = {< x,
(

p
7/10

, q
7/10

, r
7/10

)
,
(

p
7/10

, q
7/10

, r
7/10

)
,
(
p

1/2
, q
3/5
, r
1/2

)
> ∀ x ∈ X}.

Hence N is a neutrosophic ∗gα-open set, N is a neutrosophic ∗gα-closed set, E is a neutrosophic b∗gα-
closed set, E is a neutrosophic b∗gα-open set of a neutrosophic topological space (X, τ). Since Nbcl(E)
= {< x,

(
p

1/2
, q
3/5
, r
1/2

)
,
(

p
3/10

, q
3/10

, r
1/5

)
,
(

p
7/10

, q
7/10

, r
7/10

)
> ∀ x ∈ X}, which is contained in N . That is

Nbcl(E) ⊆ N .

Definition 3.4. Let E be a subset of a neutrosophic topological space (X, τ). Then Nb∗gα-int(E) =
⋃
{F : F

is neutrosophic b∗gα-open set and F ⊂ E}. The complement of Nb∗gα-int(E) is Nb∗gα-cl(E).

Remark 3.5. Let A be a subset of a neutrosophic topological space (X, τ), then Nb∗gα-int(A) is Nb∗gα-open
in (X, τ).

Theorem 3.6. In the neutrosophic topological space (X, τ), if a subset E is a neutrosophic closed set then it
is a neutrosophic b∗gα-closed set.

Proof. Let E ⊆ V , where V is neutrosophic ∗gα-open in X . Since E is neutrosophic closed, Ncl(E) = E.
But Nbcl(E) ⊆ Ncl(E) = E, which implies Nbcl(E) ⊆ V . Therefore E is neutrosophic b∗gα-closed set.

The converse of the above theorem need not be true. It can be seen by the following example.

Example 3.7. Let X = {p, q, r} and the neutrosophic sets L and M are defined as,
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L = {< x,
(
p

1/2
, q
2/5
, r
1/2

)
,
(

p
3/10

, q
3/10

, r
1/5

)
,
(

p
7/10

, q
7/10

, r
7/10

)
> ∀ x ∈ X},

M = {< x,
(

p
7/10

, q
7/10

, r
7/10

)
,
(

p
3/10

, q
3/10

, r
1/5

)
,
(
p

1/2
, q
3/5
, r
1/2

)
> ∀ x ∈ X}.

Then the neutrosophic topology τ = {0N , L,M, 1N} and the complement of neutrosophic sets L and M
are defined as,

L = {< x,
(

p
7/10

, q
7/10

, r
7/10

)
,
(

p
7/10

, q
7/10

, r
4/5

)
,
(
p

1/2
, q
2/5
, r
1/2

)
> ∀ x ∈ X},

M = {< x,
(
p

1/2
, q
3/5
, r
1/2

)
,
(

p
7/10

, q
7/10

, r
4/5

)
,
(

p
7/10

, q
7/10

, r
7/10

)
> ∀ x ∈ X}.

If E = {< x,
(
p

1/2
, q
3/5
, r
1/2

)
,
(

p
3/10

, q
3/10

, r
3/10

)
,
(

p
7/10

, q
7/10

, r
7/10

)
> ∀ x ∈ X}.

Then E is a neutrosophic b∗gα-closed set but it is not a neutrosophic closed set of a neutrosophic topolog-
ical space (X, τ). Since Ncl(E) = M which is not equal to the neutrosophic set E.

Theorem 3.8. In the neutrosophic topological space (X, τ), if a subset E is a neutrosophic pre-closed set then
it is a neutrosophic b∗gα-closed set.

Proof. Let E ⊆ V , where V is neutrosophic ∗gα-open in X . Since E is neutrosophic pre-closed, Npcl(E)
= E. But Nbcl(E) ⊆ Npcl(E) = E, which implies Nbcl(E) ⊆ V . Therefore E is neutrosophic b∗gα-closed
set.

Generally, the converse of the above theorem is not true. It can be seen by the following example.

Example 3.9. From Example 3.7. the neutrosophic set E is a neutrosophic b∗gα-closed set but it is not a
neutrosophic pre-closed set of a neutrosophic topological space (X, τ). Since Ncl(Nint(E)) = M which is
not contained in the neutrosophic set E.

Theorem 3.10. In the neutrosophic topological space (X, τ), if a subset E is a neutrosophic α-closed set then
it is a neutrosophic b∗gα-closed set.

Proof. Let E ⊆ V , where V is neutrosophic ∗gα-open in X . Since E is neutrosophic α-closed, Nαcl(E) =
E. But Nbcl(E) ⊆ Nαcl(E) = E, which implies Nbcl(E) ⊆ V . Therefore E is neutrosophic b∗gα-closed set.

Generally, the converse of the above theorem is not true. It can be seen by the following example.

Example 3.11. From Example 3.7. the neutrosophic set E is a neutrosophic b∗gα-closed set but it is not a
neutrosophic α-closed set of a neutrosophic topological space (X, τ). Since Ncl(Nint(Ncl(E))) = M which
is not contained in the neutrosophic set E.

Theorem 3.12. In the neutrosophic topological space (X, τ), if a subset E is a neutrosophic gα-closed set
then it is a neutrosophic b∗gα-closed set.

Proof. Let E ⊆ V , where V is neutrosophic ∗gα-open in X . Since every neutrosophic ∗gα-open set is
neutrosophic α-open, V is neutrosophic α-open. Since E is neutrosophic gα-closed in X , Nαcl(E) ⊆ V . But
Nbcl(E) ⊆ Nαcl(E) ⊆ V , which implies Nbcl(E) ⊆ V . Therefore E is neutrosophic b∗gα-closed.
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Generally, the converse of the above theorem is not true. It can be seen by the following example.

Example 3.13. From Example 3.7. the neutrosophic set E is a neutrosophic b∗gα-closed set but it is not a neu-
trosophic gα-closed set of a neutrosophic topological space (X, τ). SinceNα-open setF = {< x,

(
p

5/10
, q
5/10

, r
5/10

)
,(

p
3/10

, q
3/10

, r
3/10

)
,
(

p
7/10

, q
7/10

, r
7/10

)
> ∀ x ∈ X}.

Theorem 3.14. In the neutrosophic topological space (X, τ), if a subset E is a neutrosophic ∗gα-closed set
then it is a neutrosophic b∗gα-closed set.

Proof. Let E ⊆ V , where V is neutrosophic ∗gα-open in X . Since every neutrosophic ∗gα-open set is
neutrosophic gα-open, V is neutrosophic gα-open. Since E is neutrosophic ∗gα-closed in X , Ncl(E) ⊆ V .
But Nbcl(E) ⊆ Ncl(E) ⊆ V , which implies Nbcl(E) ⊆ V . Therefore E is neutrosophic b∗gα-closed.

Generally, the converse of the above theorem is not true. It can be seen by the following example.

Example 3.15. From Example 3.7. the neutrosophic set E is a neutrosophic b∗gα-closed set but it is not
a neutrosophic ∗gα-closed set of a neutrosophic topological space (X, τ). Since Ngα-open set G = {<
x,
(

p
7/10

, q
7/10

, r
7/10

)
,
(

p
3/10

, q
2/5
, r
3/10

)
,
(
p

1/2
, q
3/5
, r
1/2

)
> ∀ x ∈ X}.

Theorem 3.16. The union of any two neutrosophic b∗gα-closed sets in (X, τ) is also a neutrosophic b∗gα-
closed set in (X, τ).

Proof. Let E and F be two neutrosophic b∗gα-closed sets in (X, τ). Let V be a neutrosophic ∗gα-open set
in X such that E ⊆ V and F ⊆ V . Then we have, E ∪ F ⊆ V . Since E and F are neutrosophic b∗gα-closed
sets in (X, τ), which implies Nbcl(E) ⊆ V and Nbcl(F ) ⊆ V . Now, Nbcl(E ∪F ) = Nbcl(E)∪Nbcl(F ) ⊆ V .
Thus, we have Nbcl(E ∪ F ) ⊆ V whenever E ∪ F ⊆ V , V is neutrosophic ∗gα-open set in (X, τ) which
implies E ∪ F is a neutrosophic b∗gα-closed set in (X, τ).

Theorem 3.17. Let E be a neutrosophic b∗gα-closed subset of (X, τ). If E ⊆ F ⊆ Nbcl(E), then F is also a
neutrosophic b∗gα-closed subset of (X, τ).

Proof. Let F ⊆ V , where V is neutrosophic ∗gα-open in (X, τ). Then E ⊆ F implies E ⊆ V . Since
E is neutrosophic b∗gα-closed, Nbcl(E) ⊆ V . Also F ⊆ Nbcl(E) implies Nbcl(F ) ⊆ Nbcl(E). Thus,
Nbcl(F ) ⊆ V and so F is neutrosophic b∗gα-closed.

Theorem 3.18. Let E be a neutrosophic b∗gα-closed set in (X, τ). Then Nbcl(E) − E has no non-empty
neutrosophic ∗gα-closed set.

Proof. Let E be a neutrosophic b∗gα-closed set in (X, τ), and F be a neutrosophic ∗gα-closed subset of
Nbcl(E) − E. That is, F ⊆ Nbcl(E) − E, which implies that, F ⊆ Nbcl(E) ∩ E. That is F ⊆ Nbcl(E) and
F ⊆ E, which implies E ⊆ F , where F is a neutrosophic ∗gα-open set. Since E is neutrosophic b∗gα-closed,
Nbcl(E) ⊆ F . That is F ⊆ Nbcl(E). Thus F ⊆ Nbcl(E) ∩Nbcl(E). Therefore F = φ.

4 Neutrosophic b∗gα-Border
Definition 4.1. For any subset E of X , the neutrosophic b∗gα-border of E is defined by
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Nb∗gα[Bd(E)] = E \Nb∗gα-int(E).

Theorem 4.2. In the neutrosophic topological space (X, τ), for any subset E of X , the following statements
are hold.

i) Nb∗gα[Bd(φ)] = Nb∗gα[Bd(X)] = φ

ii) E = Nb∗gα-int(E) ∪Nb∗gα[Bd(E)]

iii) Nb∗gα-int(E) ∩Nb∗gα[Bd(E)] = φ

iv) Nb∗gα-int(E) = E \Nb∗gα[Bd(E)]

v) Nb∗gα-int(Nb∗gα[Bd(E)]) = φ

vi) E is Nb∗gα-open iff Nb∗gα[Bd(E)] = φ

vii) Nb∗gα[Bd(Nb∗gα-int(E))] = φ

viii) Nb∗gα[Bd(Nb∗gα[Bd(E)])] = Nb∗gα[Bd(E)]

ix) Nb∗gα[Bd(E)] = E ∩Nb∗gα-cl(X \ E)

Proof. Statements i) to iv) are obvious by the definition of neutrosophic b∗gα-border of E. If possible, let x ∈
Nb∗gα-int(Nb∗gα[Bd(E)]). Then x ∈ Nb∗gα[Bd(E)], sinceNb∗gα[Bd(E)] ⊆ E, x ∈ Nb∗gα-int(Nb∗gα[Bd(E)]) ⊆
Nb∗gα-int(E). Therefore x ∈ Nb∗gα-int(E) ∩ Nb∗gα[Bd(E)], which is the contradiction to iii). Hence v) is
proved. E is neutrosophic b∗gα-open iff Nb∗gα-int(E) = E. But Nb∗gα[Bd(E)] = E \ Nb∗gα-Int(E) implies
Nb∗gα[Bd(E)] = φ. This proves vi) & vii). When E = Nb∗gα[Bd(E)], then the definition of neutrosophic b∗gα-
border ofE becomesNb∗gα[Bd(Nb∗gα[Bd(E)])] =Nb∗gα[Bd(E)]\Nb∗gα-int(Nb∗gα[Bd(E)]). By using vii), we
get the proof of viii). Now,Nb∗gα[Bd(E)] =E\Nb∗gα-int(E) =E∩(X\Nb∗gα-int(E)) =E∩Nb∗gα-cl(X\E).

5 Neutrosophic b∗gα-Frontier
Definition 5.1. For any subset E of X , the neutrosophic b∗gα-frontier of E is defined by

Nb∗gα[Fr(E)] = Nb∗gα-cl(E) \Nb∗gα-int(E).

Theorem 5.2. In the Neutrosophic topological space (X, τ), for any subset E of X , the following statements
will be hold.

i) Nb∗gα[Fr(φ)] = Nb∗gα[Fr(X)] = φ

ii) Nb∗gα-int(E) ∩Nb∗gα[Fr(E)] = φ

iii) Nb∗gα[Fr(E)] ⊆ Nb∗gα-cl(E)

iv) Nb∗gα-int(E) ∪Nb∗gα[Fr(E)] = Nb∗gα-cl(E)

v) Nb∗gα-int(E) = E \Nb∗gα[Fr(E)]
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vi) If E is Nb∗gα-closed, then E = Nb∗gα-int(E) ∪Nb∗gα[Fr(E)]

vii) Fr(E) = Fr(Nb∗gα[Fr(E)]

viii) If E is Nb∗gα-open, then E ∩Nb∗gα[Fr(E)] = φ

ix) X = Nb∗gα-cl(E) ∪Nb∗gα-cl(X \ E)

x) If E is Nb∗gα-open, then Nb∗gα[Fr(Nb∗gα-int(E))] ⊆ Nb∗gα[Fr(E)]

xi) If E is Nb∗gα-closed, then Nb∗gα[Fr(Nb∗gα-cl(E))] ⊆ Nb∗gα[Fr(E)]

xii) If E is Nb∗gα-open iff Nb∗gα[Fr(Nb∗gα-int(E))] ∩Nb∗gα-int(E) = φ

Proof. Statements i) to vii) are true by the definition of neutrosophic b∗gα-frontier of E. By remark (3.5), If
E is neutrosophic b∗gα-open, E = Nb∗gα-int(E) and by statement - ii), E ∩ Nb∗gα[Fr(E)] = φ. Hence viii)
is proved. statement ix) is obvious. Since Nb∗gα-int(E) is Nb∗gα-open, then Nb∗gα-int(E) = E, which implies
Nb∗gα[Fr(Nb∗gα-int(E))] ⊆ Nb∗gα[Fr(E)]. Similarly, xi) can be proved. By remark(3.5) and by statement-ii),
xii) is straight forward.

6 Connection between Neutrosophic b∗gα-Frontier and Neutrosophic
b∗gα-Border

Theorem 6.1. In the neutrosophic topological space (X, τ), for any subset E of X , the following statements
will be hold.

i) Nb∗gα[Bd(E)] \Nb∗gα[Fr(E)] = φ

ii) Nb∗gα[Bd(E)] ⊆ Nb∗gα[Fr(E)]

iii) Nb∗gα[Fr(Nb∗gα[Bd(E)])] = Nb∗gα[Bd(E)]

iv) Nb∗gα[Bd(Nb∗gα[Fr(E)])] = Nb∗gα[Fr(E)]

v) If E is neutrosophic b∗gα- open, then Nb∗gα[Fr(E)] ∪Nb∗gα[Bd(E)] = Nb∗gα[Fr(E)]

vi) Nb∗gα[Fr(E)] ∩Nb∗gα[Bd(E)] = Nb∗gα[Bd(E)]

vii) Nb∗gα[Fr(E)] ∪Nb∗gα[Bd(E)] = Nb∗gα[Bd(E)]

viii) Nb∗gα[Fr(E)] ∩Nb∗gα[Bd(E)] = Nb∗gα[Fr(E)]

Proof. Statement i) to iv) are obvious by the definitions of Neutrosophic b∗gα-Frontier and Neutrosophic b∗gα-
border of a set. Since E is Neutrosophic b∗gα- open, then we have a statement from Neutrosophic b∗gα-border
of a set,Nb∗gα[Bd(E)] = φ, which impliesNb∗gα[Fr(E)]∪φ=Nb∗gα[Fr(E)].Hence v) is proved. We know from
statement - ii), Nb∗gα[Bd(E)] ⊆ Nb∗gα[Fr(E)] which implies Nb∗gα[Fr(E)]∩Nb∗gα[Bd(E)] = Nb∗gα[Bd(E)].
It gives the proof of vi). By the above statement, Nb∗gα[Bd(E)] =Nb∗gα[Fr(E)] ∩Nb∗gα[Bd(E)], and by using
De Morgan’s law, Nb∗gα[Fr(E)] ∩Nb∗gα[Bd(E)] = Nb∗gα[Fr(E)] ∪ Nb∗gα[Bd(E)], it gives the proof of vii).
Similarly we can prove the statement viii).
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7 Conclusion
This article defined neutrosophic b∗gα-closed sets in neutrosophic topological spaces and discussed some of
their properties. Also neutrosophic b∗gα-interior, neutrosophic b∗gα-closure, neutrosophic b∗gα-border and
neutrosophic b∗gα-frontier of a set were introduced and discussed their properties. The connection between
neutrosophic b∗gα-border of a set and neutrosophic b∗gα-frontier of a set in neutrosophic topological spaces
were established. This set can be used to derive few more new functions of neutrosophic b∗gα-continuous and
neutrosophic b∗gα-homeomorphisms in neutrosophic topological spaces. In addition to this, it can be extended
in the field of contra neutrosophic functions.
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Abstract: Technique for order performance by similarity to ideal solution (TOPSIS) is a Multi-Criteria Decision-
Making method (MCDM), that consists on handling real complex problems of decision-making. However, real
MCDM problems are often involves imperfect information such as uncertainty and inconsistency. The imperfect
information is often manipulated through Neutrosophics theory, using certain degree of truth (T), falsity degree (F)
and indeterminacy degree(I). and thus single-valued neutrosophic set (SVNs) had prodded a strong capacity to model
such complex information. To overcome that kind of problems, In this paper, first, the authors simplify the popular
TOPSIS method to a lite TOPSIS (S-TOPSIS), that gives the same result as standard version. Second, mapping S-
TOPSIS to Neutrosophics Environment, investigating SVNS, called nS-TOPSIS, to deal with imperfect information
in the real decision-making problems. Numerical examples show the contributions of proposed S-TOPSIS method to
get the same results with standard TOPSIS with simple way of calculus, and how Neutrosophic environment manage
the uncertain information using SVN.

Keywords: Technique for order performance by similarity to ideal solution (TOPSIS), MCDM, Single-Valued Neu-
trosophic set(SVNs), Neutrosophic Simplified TOPSIS(nS-TOPSIS).

1 Introduction
Technique for Order Preference by Similarity to Ideal Solution(TOPSIS) is a popular Multicriteria Decision
Making (MCDM). TOPSIS was first introduced by Hwang and Yoon ([1]) to deal with structuring Multicriteria
issues with crisp numerical values in real situation. However, real MCDM problems are often formulated
under as set of indeterminate or inconsistent information. Thus, TOPSIS consists on many complicate steps of
calculation. To deal with thoses problems, First, we introduce a lite version of TOPSIS method (S-TOPSIS)
with guaranty of obtention of the same results simplifying many complicated steps of calculation. Thus, we
introduce single valued neutrosophic set (SVNs) modifications of Simplified TOPSIS (nS-TOPSIS).

To manage information outcome from real problem, that are usually endowed with imperfection such as
uncertainty, fuzziness and inconsistency, Smarandache ([2,3]) initiated a new notion, which is a generalization
of the Intuitionistic Fuzzy Set (IFS), called Neutrosophics Set (NS), which based on three values ( truth
(T ), indeterminacy (I), and falsity (F ) membership degrees). The main propriety of NS is that the sum
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of three values is 3 instead of 1 in the case of IFS. Although, the NS as introduced by Smarandache was a
philosophical concept, unable to be used in real study cases. Many researchers are working on to produce
mathematical property, theories, Arithmetic Operations, etc. On the one hand, Wang and al. ([5]) embodied
Neutrosophic concept in a metric, called single-valued neutrosophic set (SVNs) as three values in one (truth−
membership degree, indeterminacy −membership degree, and falsity −membership degree). In
addition, Broumi and al. ([4,6,7]) defined, in Neutrosophic space, similarity mesure and distances metric
between SVNS values. the defined SVNS show stronge power to modelize imperfect information, such as
uncertainty, imprecise, incomplete, and inconsistent information.

On the other hand, Other researchers are working on deploying Neutrosophic in MCDM field. Biswas ([8])
proposed extended TOPSIS Method to deal with real MCDM problems based on weighted Neutrosophic and
aggregated SVNS operators

Ye [9,10] introduced two concepts, single valued neutrosophic cross-entropy of single valued neutrosophic
and weighted correlation coefficient of SVNSs into multicriteria decision-making problems. Deli et al. [11]
studied deploying Bipolar Neutrosophic Sets in Multi-Criteria Decision Making field

The remainder of the paper presents the preliminaries to build our Method, TOPSIS method and single
valued neutrosophic set (SVNs). next Simplified-TOPSIS as first contribution was introduced. Then, hybrid
methods Neutrosophic-TOPSIS and Neutrosophic-Simplified-TOPSIS are proposed to deal with real example.
Results and discussions are presented at the end of this paper.

2 TOPSIS method

Consider a multi-attribute decision making problem that could be formulated as follow, A = {A1, A2, · · · , An}
a set of m preferences, and C = {C1, C2, · · · , Cn} a set of n criteria. The relationships between preferences
Ai and criteria Cj quantified by rating aij provided by decision maker. Weight vector W is a set of weights ωi

associated to criteria Cj . The all details described above could be reshaped on decision matrix bellow, denoted
by D.

D = (aij)m×n =

 a11 · · · a1m
... . . . ...

an1 · · · anm

 (Decision Matrix) (2.1)

Technique for order performance by similarity to ideal solution (TOPSIS) method summarized as follow:
Step 1: Calculate normalized form of decision matrix rij dividing each element aij on the sum of whole
column.

rij = aij/

(
m∑
i=1

a2ij

)0.5

; j = 1, 2, · · · , n; i = 1, 2 · · · ,m (2.2)

Step 2: Calculate also weighted form vij of matrix rij obtained from previous step, multiplying each element
rij by its associated weight wj .

vij = wjrij; j = 1, 2, · · · , n; i = 1, 2 · · · ,m (2.3)

Step 3: Based on the weighted decision matrix, we calculate positive ideal solution (POS) and negative ideal
solution(NIS).
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A+ = (v+1 , v
+
2 , · · · , v+n ) =

{
(maxi {vij|j ∈ B}) ,
(mini {vij|j ∈ C})

}
(2.4)

A− = (v−1 , v
−
2 , · · · , v−n ) =

{
(mini {vij|j ∈ B}) ,
(maxi {vij|j ∈ C})

}
(2.5)

B quantify the benefit set, and C is the cost attribute set. Step 4: By subtracting each weighted element vij
From POS and NIS, we got tow vectors of separation measures cited below.

S+
i =

{
n∑

j=1

(vij − v+j )
2

}0.5

; i = 1, 2 · · · ,m (2.6)

S−
i =

{
n∑

j=1

(vij − v−j )
2

}0.5

; i = 1, 2 · · · ,m (2.7)

Step 5: Using the both measures calculated in the previous step, we calculate the rating metric.

Ti =
S−
i

(S+
i + S−

i )
; i = 1, 2 · · · ,m (2.8)

Once we calculate Ti that will be used to rank set of alternatives Ai.

2.1 Numerical example

Let consider the numerical example summarized by table Table-1. below, that contains alternatives with respect
of criteria weights.

aij C1 C2 C3

ωi 12/16 3/16 1/16
A1 7 9 9
A2 8 7 8
A3 9 6 8
A4 6 7 8

Table 1: Decision Matrix.

Table Table-2. is result of application of this formula
∑n

i=1 aij on each column.
To determine Normalized matrix rij Table-3. each value is divide by (

∑n
i=1 a

2
ij)

1/2 :
Weighted Decision matrix vij Table-4 is the multiplication of each column by wj .
The table Table-5. below figure out the solution of the above MCDM problem listing furthermore, final

rankings for decision matrix, separation metric from POS and NIS.
Preferences, in descending preference order, are ranked as A3 > A1 > A4 > A2 as showed in Table-5.
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a2
ij C1 C2 C3

ωi 12/16 3/16 1/16
A1 49 81 81
A2 64 49 64
A3 81 36 64
A4 36 49 64∑n
i=1 aij 230 215 273

Table 2: Multiple decision matrix.

rij C1 C2 C3

ωi 12/16 3/16 1/16
A1 0.4616 0.6138 0.5447
A2 0.5275 0.4774 0.4842
A3 0.5934 0.4092 0.4842
A4 0.3956 0.4774 0.4842∑n
i=1 aij 230 215 273

Table 3: Normalized decision matrix.

3 Simplified-TOPSIS method (our proposed method)

The Simplified-TOPSIS algorithmic consists on steps bellow :
Step 1: Structure the criteria of the decision-making problem under a hierarchy.

Let considere C = {C1, C2, · · · , Cn} is a set of Criteria, with n ≥ 2, A = {A1, A2, · · · , An} is the set
of Preferences (Alternatives), with m ≥ 1, aij the score of preference i with respect to criterion j, and let ωi

weight of criteria Ci.

D = (aij)m×n =

 a11 · · · a1m
... . . . ...

an1 · · · anm

 (Decision Matrix) (3.1)

Step 2: Calculation of the Weighted Decision Matrix vij .
Let vij Weighted Decision Matrix (WDM) that is obtained by multiplication of each column by its weight.

vij = wjaij; j = 1, 2, · · · , n; i = 1, 2 · · · ,m (3.2)

The difference between proposed method and standard TOPSIS section 2), the normalized step is ignored and
WDM vij is calculated directly without normalization by multiplying aij with wj .
Step 3: Determination of LIS and SIS.

The maximum (largest) ideal solution (LIS), as its name indicate, is the the set of maximums raws and
smallest ideal solution (SIS) is the set of minimums raws.

A+ = (v+1 , v
+
2 , · · · , v+m) = (maxi {vij|j = 1, 2, · · · , n}) (3.3)
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vij C1 C2 C3

ωi 12/16 3/16 1/16
A1 0.3462 0.1151 0.0340
A2 0.3956 0.0895 0.0303
A3 0.4451 0.0767 0.0303
A4 0.2967 0.0895 0.0303
vmax 0.4451 0.1151 0.0340
vmin 0.2967 0.0767 0.0303

Table 4: Weighted decision matrix.

Alternative S+
i S−

i Ti

A1 0.0989 0.0627 0.3880
A2 0.0558 0.0997 0.6412
A3 0.0385 0.1484 0.7938
A4 0.1506 0.0128 0.0783

Table 5: Distance measure and ranking coefficient.

A+ = (v−1 , v
−
2 , · · · , v−m) =

(
min

i
{vij|j = 1, 2, · · · , n}

)
(3.4)

Step 4: Calculation of positive and negative solutions.

The positive and negative solution are the entropies of orders two of calculated using the formulas below
respectively:

S+
i =

{
n∑

j=1

(vij − v+j )
2

}0.5

; i = 1, 2 · · · ,m (3.5)

S−
i =

{
n∑

j=1

(vij − v−j )
2

}0.5

; i = 1, 2 · · · ,m (3.6)

Arrange preferences (set of alternatives A) based on value of sums of either alternative solutions
(
S+
i

)
or(

S−
i

)
. The choice of minimum or maximum depend on nature of problem, if the problem to be minimized or

maximized

Step 5 (optional): Another step is missed in our Simplified TOPSIS is calculation of ranking measure Ti

(relative closeness to the ideal solution), because of many reasons : first preferences can classified according
to many aggregated measures calculated before, second, it’s a way of normalization that can be changed by
any form of normalization dividing by max, or normalized to [0, 1] range, etc.

Ti =
S−
i

(S+
i + S−

i )
; i = 1, 2 · · · ,m (3.7)
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3.1 Numerical example
In order to check the consistency of our proposed method, the Simplified-TOPSIS method is applied on the
same example (Decision Matrix presented in Table-1.) as classical TOPSIS.

aij C1 C2 C3

ωi 12/16 3/16 1/16
A1 7 9 9
A2 8 7 8
A3 9 6 8
A4 6 7 8

Table 6: Decision matrix.

Weighed Decision Matrix is gotten (Table-2.).

ωjaij C1 C2 C3

ωi 12/16 3/16 1/16
A1 84/16 27/16 9/16
A2 96/16 21/16 8/16
A3 108/16 18/16 8/16
A4 72/16 21/16 8/16

Table 7: Weighted decision matrix.

Next, we calculate the positive and negative solutions as follow :
S1+ = |84/16-108/16| + |27/16-27/16| + |9/16-9/16| = 1.5000
S2+ = |96/16-108/16| + |21/16-27/16| + |8/16-9/16| = 1.1875
S3+ = |108/16-108/16| + |18/16-27/16| + |8/16-9/16| = 0.6250
S4+ = |72/16-108/16| + |21/16-27/16| + |8/16-9/16| =2.6875
S1- = |84/16-72/16| + |27/16-18/16| + |9/16-8/16| =1.3750
S2- = |96/16-72/16| + |21/16-18/16| + |8/16-8/16| =1.6875
S3- = |108/16-72/16| + |18/16-18/16| + |8/16-8/16| =2.2500
S4- = |72/16-72/16| + |21/16-18/16| + |8/16-8/16| = 0.1875

By the end we got both sets of negative and positive solutions (S3−, S2−, S1−, S4−) and (S3+, S2+, S1+, S4+),
before arranging preferences, we need to determine which solutions to use, that decision tacked based on the
nature of problem, if we seek to minimize or maximize. The minimization of the solution, such as cost to pay,
consists on the solution closer to the negative solution, while he maximization of the solution, such as price to
sale, consists on the solution closer to the positive solution.

The optional ranking measure Ti confirm the same result.

T1 = (S1−)/[(S1−) + (S1+)] = 0.478261 (3.8)

T2 = (S2−)/[(S2−) + (S2+)] = 0.586957 (3.9)

T3 = (S3−)/[(S3−) + (S3+)] = 0.782609 (3.10)

T4 = (S4−)/[(S4−) + (S4+)] = 0.065217 (3.11)
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The table (Table-8.) figure out all calculus did before

Alternative S+
i S−

i T i

A1 1.5000 1.3750 0.478261
A2 1.1875 1.6875 0.586957
A3 0.6250 2.2500 0.782609
A4 2.6875 0.1875 0.065217

Table 8: Distance measure and ranking coefficient.

By applying Simplified-TOPSIS, we get for T3 (0.782609), T2(0.586957), T1(0.478261) and T4(0.065217),
and we got with classical TOPSIS T3(0.7938), T2(0.6412), T1(0.3880) and T4(0.0783). Hence the order ob-
tained with our approach simplified-TOPSIS is the same of classical TOPSIS: T3, T2, T1 and T4, with little
change in values between both approaches.

The both methods our simplified-TOPSIS and Standard TOPSIS produce the same results witt the same
ranking (T3, T2, T1andthenT4) , with a little differences of ranking measures. For example, with Simplified-
TOPSIS T3 is 0.782609, and with TOPSIS T3 is 0.7938, the same for all others(Simplified-TOPSIS : T2(0.586957),
T1(0.478261) and T4(0.065217) and with TOPSIS : T2(0.6412), T1(0.3880) and T4(0.0783).

4 Standard TOPSIS in Neutrosophic [12]
Standard TOPSIS in Neutrosophic procedure can be summarized as follow :
Step 1: In order to apply neutrosophic TOPSIS algorithm, crisp number Decision Matrix need to be mapped
to single valued neutrosophic environment, then, we got neutrosophic decision matrix

D = (dij) 1 ≤ i ≤ n
1 ≤ j ≤ m

= (Tij, Iij, Fij)
1 ≤ i ≤ n
1 ≤ j ≤ m

(Neutrosophic Decision Matrix) (4.1)

Where Tij , Iij and Fij are truth, indeterminacy and falsity membership scores respectively. i refer to
preference Ai and j to creterion Cj .

And w = (ω1, ω2, · · · , ωn) with ωi a single valued neutrosophic weight of criteria (so ωi = (ai, bi, ci)).
Example 1:

To compare our method Neutrosophic Simplified TOPSIS (nS-TOPSIS : section 5) and standard Neutro-
sophicTOPSIS proposed by Biswas ([11]). we use Biswas’s numercal example.

Let (DM1, DM2, DM3, DM4) fours decisions makers aims to select an alternative Ai (A1, A2, A3, A4)with
respect six criteria(C1, C2, C3, C4, C5, C6). The mapped weights of criteria and decision matrix in Neutro-
sophic environment are presented in tables Table-9. and Table-10. respectively.

C1 C2 C3

ωi (0.755, 0.222, 0.217) (0.887, 0.113, 0.107) (0.765, 0.226, 0.182)
C4 C5 C6

ωi (0.692, 0.277, 0.251) (0.788, 0.200, 0.180) (0.700, 0.272, 0.244)

Table 9: Criteria weights.
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C1 C2 C3

A1 (0.864, 0.136, 0.081) (0.853, 0.147, 0.: 092) (0.800, 0.200, 0.150)
A2 (0.667, 0.333, 0.277) (0.727, 0.273, 0.219) (0.667, 0.333, 0.277)
A3 (0.880, 0.120, 0.067) (0.887, 0.113, 0.064) (0.834, 0.166, 0.112)
A4 (0.667, 0.333, 0.277) (0.735, 0.265, 0.195) (0.768, 0.232, 0.180)

C4 C5 C6

A1 (0.704, 0.296, 0.241) (0.823, 0.177, 0.123) (0.864, 0.136, 0.081)
A2 (0.744, 0.256, 0.204) (0.652, 0.348, 0.293) (0.608, 0.392, 0.336)
A3 (0.779, 0.256, 0.204) (0.811, 0.189, 0.109) (0.850, 0.150, 0.092)
A4 (0.727, 0.273, 0.221) (0.791, 0.209, 0.148) (0.808, 0.192, 0.127)

Table 10: Neutrosophic Decision Matrix.

Step 2: Weighted decision matrix in neutrosophic is gotten by applying aggregation operator of multiplication
i. e. application of generalization of multiplication operator in Neutrosophic space.

Dw = D ⊗W = (dwij) 1 ≤ i ≤ n
1 ≤ j ≤ m

= (Tw
ij , I

w
ij , F

w
ij )

1 ≤ i ≤ n
1 ≤ j ≤ m

(4.2)

Step 3: Calculate of POS-SVNs (positive ideal solution in SVNs) and NIS-SVNs (negative ideal solution in
SVNS) measures.

Tw+
j =

{(
maxi

{
Twi
ij |j ∈ B

})
,
(
mini

{
Twi
ij |j ∈ C

})}
(4.3)

Q+
N = (dw+

1 , dw+
2 , · · · , dw+

n ) (4.4)

Tw+
j =

{(
maxi

{
T

wj

ij |j ∈ B
})

,
(
mini

{
T

wj

ij |j ∈ C
})}

(4.5)

Iw+
j =

{(
mini

{
I
wj

ij |j ∈ B
})

,
(
maxi

{
I
wj

ij |j ∈ C
})}

(4.6)

Fw+
j =

{(
mini

{
F

wj

ij |j ∈ B
})

,
(
maxi

{
F

wj

ij |j ∈ C
})}

(4.7)

Q−
N = (dw−

1 , dw−
2 , · · · , dw−

n ) (4.8)

Tw−
j =

{(
mini

{
T

wj

ij |j ∈ B
})

,
(
maxi

{
T

wj

ij |j ∈ C
})}

(4.9)

Iw−
j =

{(
maxi

{
I
wj

ij |j ∈ B
})

,
(
mini

{
I
wj

ij |j ∈ C
})}

(4.10)

Fw−
j =

{(
maxi

{
F

wj

ij |j ∈ B
})

,
(
mini

{
F

wj

ij |j ∈ C
})}

(4.11)

Where B represents the benefit and C quantify the cost.
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Step 4: Calculate length of each alternative from the POS-SVNs and NIS-SVNs calculated in previous step.

Di+
Eu

(
dwj
ij , d

w+
ij

)
=

√√√√√√ 1

3n

n∑
j=1


(
Twj
ij (x)− Tw+

ij (x)
)2

+(
Iwj
ij (x)− Iw+

ij (x)
)2

+(
Fwj
ij (x)− Fw+

ij (x)
)2

 (4.12)

Di−
Eu

(
dwj
ij , d

w−
ij

)
=

√√√√√√ 1

3n

n∑
j=1


(
Twj
ij (x)− Tw−

ij (x)
)2

+(
Iwj
ij (x)− Iw−

ij (x)
)2

+(
Fwj
ij (x)− Fw−

ij (x)
)2

 (4.13)

With i = 1, 2 · · · ,m
Step 5: Calculate the aggregated coefficient of closeness in Neutrosophic.

C∗
i =

NS−
i

(NS+
i +NS−

i )
; i = 1, 2 · · · ,m (4.14)

All values of aggregated coefficient of closeness are shown in the table Table-11. below.

Alternative C∗
i

A1 0.8190
A2 0.1158
A3 0.8605
A4 0.4801

Table 11: Closeness Coefficient.

Using the associate values of aggregated coefficient of closeness C∗
i to preference Ai, in descending order,

to rank alternatives. Hence, preferences could be ordered as follow A3 > A1 > A4 > A2. Then, the alternative
A3 is the best solution.

5 Neutrosophic-Simplified-TOPSIS (our proposed method)
Step 1: Construct Neutrosophic decision matrix.

As made for Standard Neutrosophic TOPSIS, let consider neutrosophic decision matrix and SVNs weighted
criteria.

D = (dij) 1 ≤ i ≤ n
1 ≤ j ≤ m

= (Tij, Iij, Fij)
1 ≤ i ≤ n
1 ≤ j ≤ m

(5.1)

C1 C2 · · · Cn

A1

A2
...

Am


d11 d12 · · · d1n

d21 d22 · · ·
...

...
... . . . ...

dm1 · · · · · · dmn


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Where Tij denote truth, Iij indeterminacy and Nij falsity membership score of preference i knowing j in
neutrosophic environment.

w = (ω1, ω2, · · · , ωn) with ωi a single valued neutrosophic weight of criteria (so ωi = (ai, bi, ci)).
Step 2: Calculate SVNs weighted decision matrix.

Dw = D ⊗W = (dwij) 1 ≤ i ≤ n
1 ≤ j ≤ m

= ωj ⊗ dwij = (Tw
ij , I

w
ij , F

w
ij )

1 ≤ i ≤ n
1 ≤ j ≤ m

(5.2)

ωj ⊗ dij =
(
ajT ij, bj + Iij − bjIij, cj + Fij − cjFij

)
(5.3)

Step 3: Calculate LNIS and SNIS metrics.
LNIS and SNIS are maximum (larger) and minimum (smaller) neutrosophic ideal solution respectively.

A+
N = (dw+

1 , dw+
2 , · · · , dw+

n ) (5.4)

dω+j =
(
T ω+
j , Iω+j , F ω+

j

)
(5.5)

Tw+
j =

{(
maxi

{
T

wj

ij |j = 1, · · · , n
})}

(5.6)

Iw+
j =

{(
mini

{
I
wj

ij |j = 1, · · · , n
})}

(5.7)

Fw+
j =

{(
mini

{
F

wj

ij |j = 1, · · · , n
})}

(5.8)

A−
N = (dw−

1 , dw−
2 , · · · , dw−

n ) (5.9)

dω−j =
(
T ω−
j , Iω−j , F ω−

j

)
(5.10)

Tw−
j =

{(
mini

{
T

wj

ij |j = 1, · · · , n
})}

(5.11)

Iw−
j =

{(
maxi

{
I
wj

ij |j = 1, · · · , n
})}

(5.12)

Fw−
j =

{(
maxi

{
F

wj

ij |j = 1, · · · , n
})}

(5.13)

Step 4: Determination of the distance measure of every alternative from the RNPIS and the RNNIS for SVNSs.
To perform that calculus, we need to introduce a new distance measure, in this paper we mapped Manhattan

distance ([13]) to Neutrosophic environment (definition 1). The new proposed distance called Neutrosophic
Manhattan distance that perform the difference between two single-valued neutrosophic(SVNs) measures.
Definition 1. Let X1 = (x1, y1, z1) and X2 = (x2, y2, z2) be a SVN numbers. Then the separation measure
between X1 and X2 based on Manhattan distance is defined as follows:

DManh (X1,X2) = |x1 − x2|+ |y1 − y2|+ |z1 − x2| (5.14)
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The application of Neutrosophic Manhattan distance to calculate the separation from the maximum and
minimum Neutrosophic ideal solution respectively are :

Dj+
Manh

(
dwj
ij , d

w+
ij

)
=


∣∣Twj

ij (x)− Tw+
ij (x)

∣∣+∣∣Iwj
ij (x)− Iw+

ij (x)
∣∣+∣∣Fwj

ij (x)− Fw+
ij (x)

∣∣
 (5.15)

with j = 1, 2 · · · , n

NS+
i =

n∑
j=1

Dj+
Manh

(
dwj
ij , d

w+
ij

)
(5.16)

with i = 1, 2 · · · ,m
Similarly, the separation from the minimum neutrosophic ideal solution is:

Dj−
Manh

(
dwj
ij , d

w−
ij

)
=


∣∣Twj

ij (x)− Tw−
ij (x)

∣∣+∣∣Iwj
ij (x)− Iw−

ij (x)
∣∣+∣∣Fwj

ij (x)− Fw−
ij (x)

∣∣
 (5.17)

with j = 1, 2 · · · , n

NS−
i =

n∑
j=1

Dj−
Manh

(
dwj
ij , d

w−
ij

)
(5.18)

with i = 1, 2 · · · ,m
Preferences are ordered regarding to the values of NS−

i or according to 1/NS+
i . In other words, the

alternatives with the highest appraisal score is the best solution.
Step 5: Rank the alternatives according to Ranking coefficient NTi.

Ranking coefficient is formulated as :

NTi =
NS−

i

(NS+
i +NS−

i )
; i = 1, 2 · · · ,m (5.19)

A set of alternatives can now be ranked according to the descending order of the value of NTi

5.1 Numerical example

Step 1. Formulate the MCDM problem in neutrosophic by building Neutrosophic decision matrix decision
matrix and SVNs weights of criteria.

Let Ai (A1, A2, A3, A4)a set of alternative and Ci (C1, C2, C, C4, C5, C6) a set of criteria. Let considers the
following neutrosophic weights of criteria (Table-12.) and neutrosophic decision matrix (Table-13.) respec-
tively (used in above example 1).
Step 2: Calculation of SVNs Weighted Decision Matrix

Dw = (dwij) 1 ≤ i ≤ n
1 ≤ j ≤ m

= (Tw
ij , I

w
ij , F

w
ij )

1 ≤ i ≤ n
1 ≤ j ≤ m

(5.20)

A.Elhassouny, F. Smarandache, Neutrosophic modifications of Simplified TOPSIS for Imperfect Information
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C1 C2 C3

ωi (0.755, 0.222, 0.217) (0.887, 0.113, 0.107) (0.765, 0.226, 0.182)
C4 C5 C6

ωi (0.692, 0.277, 0.251) (0.788, 0.200, 0.180) (0.700, 0.272, 0.244)

Table 12: Criteria neutrosophic weights.

dij C1 C2 C3

A1 (0.864, 0.136, 0.081) (0.853, 0.147, 0.092) (0.800, 0.200, 0.150)
A2 (0.667, 0.333, 0.277) (0.727, 0.273, 0.219) (0.667, 0.333, 0.277)
A3 (0.880, 0.120, 0.067) (0.887, 0.113, 0.064) (0.834, 0.166, 0.112)
A4 (0.667, 0.333, 0.277) (0.735, 0.265, 0.195) (0.768, 0.232, 0.180)

C4 C5 C6

A1 (0.704, 0.296, 0.241) (0.823, 0.177, 0.123) (0.864, 0.136, 0.081)
A2 (0.744, 0.256, 0.204) (0.652, 0.348, 0.293) (0.608, 0.392, 0.336)
A3 (0.779, 0.256, 0.204) (0.811, 0.189, 0.109) (0.850, 0.150, 0.092)
A4 (0.727, 0.273, 0.221) (0.791, 0.209, 0.148) (0.808, 0.192, 0.127)

Table 13: Neutrosophic Decision Matrix.

dwij =
(
ajT ij, bj + Iij − bjIij, cj + Fij − cjFij

)
(5.21)

SVNs Weighted Decision Matrix is obtained by multiplication of weights of criteria with its associated
column of neutrosophic decision matrix:

T ω
11 = 0.864× 0.755 = 0.6523

Iω11 = 0.136 + 0.222− 0.136× 0.222 = 0.328

F ω
11 = 0.081 + 0.217− 0.081× 0.217 = 0.280

dw
ij C1 C2 C3

A1 (0.6523, 0.328, 0.28) (0.7566, 0.2434, 0.1892) (0.612, 0.381, 0.305)
A2 (0.5036, 0.481, 0.434) (0.6448, 0.3552, 0.3026) (0.510, 0.484, 0.409)
A3 (0.6644, 0.315, 0.269) (0.787, 0.2132, 0.1642) (0.638, 0.354, 0.274)
A4 (0.5036, 0.481, 0.434) (0.6519, 0.3481, 0.2811) (0.588, 0.406, 0.329)

C4 C5 C6

A1 (0.487, 0.491, 0.432) (0.649, 0.342, 0.281) (0.605, 0.371, 0.305)
A2 (0.515, 0.462, 0.404) (0.514, 0.478, 0.420) (0.426, 0.557, 0.498)
A3 (0.539, 0.462, 0.404) (0.639, 0.351, 0.269) (0.595, 0.381, 0.314)
A4 (0.503, 0.474, 0.417) (0.623, 0.367, 0.301) (0.566, 0.412, 0.34)

Table 14: Weighted Neutrosophic decision matrix.

Step 3: Determination of LNIS and SNIS.

A.Elhassouny, F. Smarandache, Neutrosophic modifications of Simplified TOPSIS for Imperfect Information
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C1 C2 C3

dω+
j (0.664, 0.315, 0.269) (0.887, 0.213, 0.264) (0.638, 0.354, 0.274)

C4 C5 C6

dω+
j (0.539, 0.462, 0.404) (0.649, 0.341, 0.294) (0.605, 0.371, 0.305)

Table 15: Maximum (large) Neutrosophic Ideal Solution(LNIS).

C1 C2 C3

dω−
j (0.504, 0.481, 0.434) (0.645, 0.355, 0.303) (0.510, 0.484, 0.409)

C4 C5 C6

dω−
j (0.487, 0.491, 0.432) (0.514, 0.478, 0.420) (0.426, 0.557, 0.498)

Table 16: Minimum (smaller) Neutrosophic Ideal Solution (SNIS).

NS+
i NS−

i NT i

A1 0,324 2,07 0,86459295
A2 2,31 0,084 0,03521102
A3 0,047 2,347 0,98021972
A4 1,293 1,101 0,45987356

Table 17: Neutrosophic Separation Measures and Neutrosophic Measure Ranking.

Step 4: Calculation of NS+
i and NS−

i To calculate NS+
i and NS−

i , we calculate sum of each line, and then
subtracting from the LNIS and from SNIS respectively.

According to the obtained result (Table-17.), alternatives can be ranked as follow A3 > A1 > A4 >
A2. Then the best preference is A3. Using the same example, our proposed method neutrosophic-simplified-
TOPSIS(nTOPSIS), we get similar result as neutrosophic-TOPSIS.

6 Conclusion
This paper aims to present tow new TOPSIS based approaches for MCDM. First one is Simplified TOPSIS
(sTOPSIS) that simplify the TOPSIS calculation procedure. Second one, neutrosophic simplified-TOPSIS
(nTOPSIS) extend the proposed method to neutrosophic environment, that use, instead of crisp number, the
single valued neutrosophic(SVN). To formulate the both proposed method, many measures are defined such
as Neutrosophic Manhattan Distance measure, that is used to calculate, distances from Maximum (larger)
Neutrosophic Ideal Solution (LNIS) minimum neutrosophic ideal solutions, as two new defined measures.

A.Elhassouny, F. Smarandache, Neutrosophic modifications of Simplified TOPSIS for Imperfect Information
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1. Introduction 

The generalized Dombi operator family was introduced by Dombi and 

Task [1, 2]. Graph theory plays a vital role in different fields namely computer science, engineering, physics and 

biology to deal with complex networks [3, 4]

transportation where network is nothing but the lo

permits surveys to be afforded. Also it responses to two equations simultaneously for the purpose and the 

procedure [5]. Permanent growth of the population is one of the main face of modern cities

for building new roads and highways to avoid traffic problems and for

A fuzzy set can be described mathematically by assigning a value, a grade of membership to each 

possible individual in the universe of discourse. This grade of membership associates a degree to which that 

individual either is similar or appropriate with the concept performed by the fuzzy set. A fuzzy subset of a set X 

is a mapping from membership to non

unexpected. Fuzzy relations are popular and important in the fields of computer networks, decision making, 

neural network, expert systems etc. 

considered in graph theory [8].  
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An advantage of dealing indeterminacy is possible only with Neutrosophic Sets. Graph theory plays a vital role in 

the field of networking. If uncertainty exist in the set of vertices and edge then that can be dealt by fuzzy graphs in any 

ing Neutrosophic Graph uncertainty of the problems can be completely dealt with the concept of 

indeterminacy. In this paper, Dombi Interval Valued Neutrosophic Graph has been proposed and Cartesian product and 

composition of the proposed graphs have been derived. The validity of the derived results have been proved with the 

paper expose the use of Dombi triangular norms in the area of Neutrosophic graph theory. 

Advantages and limitations has been discussed for Crisp, Fuzzy, Type-2 Fuzzy, Neutrosophic Set, Interval Neutrosophic Set, 

Neutrosophic Graph and Interval Neutrosophic Graph. 

Dombi Triangular Norms, Fuzzy Graphs, Interval valued Neutrosophic Graph, Dombi Interval Valued 

, Composition, Traffic Control Management. 

The generalized Dombi operator family was introduced by Dombi and applied to speec

Graph theory plays a vital role in different fields namely computer science, engineering, physics and 

tworks [3, 4]. It is also used to solve various optimization problems in 

transportation where network is nothing but the logical sequence of the method and visualization possibility, 

permits surveys to be afforded. Also it responses to two equations simultaneously for the purpose and the 

Permanent growth of the population is one of the main face of modern cities

for building new roads and highways to avoid traffic problems and for stress free life of the people [6, 13]

A fuzzy set can be described mathematically by assigning a value, a grade of membership to each 

niverse of discourse. This grade of membership associates a degree to which that 

individual either is similar or appropriate with the concept performed by the fuzzy set. A fuzzy subset of a set X 

is a mapping from membership to non-membership and is defined by : [0,1]Xη → continuous rather than 

unexpected. Fuzzy relations are popular and important in the fields of computer networks, decision making, 

neural network, expert systems etc. [7, 16].Direct relationship and also indirect relationship 
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paper expose the use of Dombi triangular norms in the area of Neutrosophic graph theory. 

zzy, Neutrosophic Set, Interval Neutrosophic Set, 

Dombi Triangular Norms, Fuzzy Graphs, Interval valued Neutrosophic Graph, Dombi Interval Valued 

applied to speech Recognition 

Graph theory plays a vital role in different fields namely computer science, engineering, physics and 

It is also used to solve various optimization problems in 

gical sequence of the method and visualization possibility, 

permits surveys to be afforded. Also it responses to two equations simultaneously for the purpose and the 

Permanent growth of the population is one of the main face of modern cities and it is the reason 

stress free life of the people [6, 13]. 

A fuzzy set can be described mathematically by assigning a value, a grade of membership to each 

niverse of discourse. This grade of membership associates a degree to which that 

individual either is similar or appropriate with the concept performed by the fuzzy set. A fuzzy subset of a set X 

: [0,1] continuous rather than 

unexpected. Fuzzy relations are popular and important in the fields of computer networks, decision making, 

Direct relationship and also indirect relationship also will be 
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Model of relation is nothing but a graph and it is a comfortable way of describing information involving 

connection between objects [9]. In graph, vertices are represented by vertices and relations by edges. While there 

is an impreciseness in the statement of the objects or it its communication or in both, fuzzy graph model can be 

designed for getting an optimized output. Maximizing the Utility of the application is always done by the 

researchers during the constructing of a model with a key characteristics reliability, complexity and 

impreciseness.  Among these impreciseness plays an important role in maximizing the utility of the model. This 

situation can be described by fuzzy sets, introduced by Lotfi. A. Zadeh. Fuzzy graphs will be very useful, since 

for the real world problems, one gets the partial information [10, 11].
 

Performance evaluation can be defined as modeling and application and should be done before using 

them using graph theory[12]. When the system is huge and complex, it is challenging to extract the information 

about the system using classical graph theory and at this junction fuzzy graph can be used to examine the system 

[14]. A situation in which goods is shifted from one location to another can be dealt by graphs. For example, one 

can consider water supply, where water users and pipe join etc. are vertices and pipelines are edges [15]. The 

concept of graph theory was introduced by Euler in 1736 and it is a branch of combinatorics [16]. Fuzzy graph 

was introduced by Rosenfeld who has defined the fuzzy correlation of various graph theoretic notions such as 

cycles, paths, trees and connectedness and set some of their properties [18].  

Zadeh formulated the term degree of membership and describe the notion of fuzzy set in order to deal 

with an impreciseness. Atanassov introduced intuitionistic fuzzy set by including the degree of non-membership 

in the concept of fuzzy set as an independent component. Samarandache introduced Neutrosophic set(NS) by 

finding the term degree of indeterminacy from the logical point of view as an independent component to handle 

with imprecise, indeterminate and unpredictable information which are exist in the real world problems The 

NSs are defined by truth, indeterminacy and false membership functions which are taking the values in the real 

standard interval. Wang et al. proposed the concept of single-valued Neutrosophic sets (SVNS) and Interval 

valued Neutrosophic Sets (IVNSs) as well, where the three membership functions are independent and takes 

value in the unit interval [0,1] [19, 20, 30, 32].  

If uncertainty exists in the set of vertices or edges or both then the model becomes a fuzzy graph. Fuzzy 

graphs can be established by considering the vertex and edge sets as fuzzy, in the same way one can model 

interval valued fuzzy graphs, intuitionistic fuzzy graphs, interval valued fuzzy graphs, Neutrosophic graphs, 

single valued Neutrosophic graphs and interval valued Neutrosophic graphs [23]. Network of the brain is a 

Neutrosophic graph especially strong Neutrosophic graph[25]. Intelligent transport systems is a universal aspect 

gets the attention of worldwide interest from professionals in transportation, political decision makers and 

computerized industry. It is developed by understanding the progress of the road traffic in the interval of time 

and communication between the participants and structural elements available in the situation [26, 31]. 

Graph theory defines the relationship between various individuals and has got many number of 

applications in different fields namely database theory, modern sciences and technology, neural networks, data 

mining cluster analysis, expert systems image capturing and control theory [27].  The strength of the relationship 

in social networks can be analyzed by fuzzy graph theory and has got important potential [28]. While the 

network is large, analysis and evaluation of traffic will be very challenging one for the network managers and it 

can be done using dynamic Bandwidth [29]. Indeterminacy of the object or edge or both cannot be handled by 

fuzzy, intuitionistic fuzzy, bipolar fuzzy or interval valued fuzzy graphs and hence Neutrosophic graphs have 

been introduced [33]. 

Menger proposed triangular norms in the structure of probabilistic metric spaces and discussed by 

Schweizer Sklar. Also intersection and union of fuzzy sets have been proved by Alsina et al. Triangular norms 

play an important role application of fuzzy logic namely fuzzy graph and decision making process [34]. Some of 

the real world applications can be modelled in a better way with triangular norms especially t-norm than using 

minimum operations. Using this concept awareness of tracking in person for networks is possible [36]  

Since intervals plays an essential role in graph theory and useful in the study of properties of fuzzy 

graphs which applied to surveying the land based on the concept of the distance between the vertices, using the 

concepts of Interval Valued Neutrosophic Graphs and Dombi fuzzy graphs, Dombi Single Valued and Dombi 

Interval Valued Neutrosophic Graphs have been proposed. Also Cartesian product and composition of Dombi 

Interval Valued Neutrosophic Graph have been derived. Numerical example also has been given for the validity 

of the results.  The main goal of this paper is to emphasis that the minimum and maximum operators are not the 

only applicant for the logical reasoning of the classical graphs to Neutrosophic graphs. 
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2. Review of Literature 
 

The authors of [1] introduced the generalized Dombi operator family and the multiplicative utility 

function. [2] applied the Generalized Dombi Operator Family to the Speech Recognition Task. [3] explained 

about Neutrosophic model and Control. [4] examined biological networks using graph theory. [5] established a 

computerized technique to solve network problems using graph theory. [6] analyzed a traffic control problem 

using cut-set of a graph and applied in arbitrary intersection to reduce the waiting time of the people.[7] 

proposed operation on a complement of a fuzzy graph. [8] proposed functional consistency of an input Gene 

Network. [9] proposed a program for coloring the vertex of a fuzzy graph. [10]  applied vertex coloring function 

of a fuzzy graph to the traffic light problem. 

[11] reviewed about Fuzzy Graph Theory.[12] evaluated an impreciseness produced in performance 

measures during the procedure of performance evaluation using graph theory. [13]  introduced graph for the 

problem and circular arcs and applied in traffic management. [15] applied the concept of graph in traffic control 

management in city and airport.[16] described certain types of Neutrosophic graphs.[17] proposed a new 

dimension to graph theory. [18] proposed strong domination number using membership values of strong arcs in 

fuzzy graphs. [19] gave introduction to bipolar single valued Neutrosophic Graph theory. (Broumi et al. 2016) 

proposed an isolated Interval valued Neutrosophic graph.  

[20] applied interval valued Neutrosophic in decision making problem to invest the money in the best 

company. [21] proved the necessary and sufficient condition for a Neutrosophic graph to be an isolated single 

valued Neutrosophic graph. [22] examined the properties of different types of degrees size and order of SVNGs 

and proposed the definition of regular SVNG. [25] proposed strong NGs and Sub graph Topological Subspaces. 

[26]  presented a complete study of all existing Intelligent Transport systems namely research models and open 

systems.[27] applied graph theory concepts to SVNGs and examine a new type of graph model and concluded 

the result to crisp graphs, fuzzy graphs and intuitionistic fuzzy graphs and characterized their properties. 

[28] examined asymmetrical partnership using fuzzy graph and detect hidden connections in Facebook. 

[29] proposed an optimized algorithm using the approach of rating of web pages and it assigns a minimum 

approved bandwidth to every connected user.[30] represented a graph model based on IVN sets.[31] proposed 

dimensional modeling of traffic in urban road using graph theory. [32] proposed uniform SVNGs. [33] proposed 

some of the results on the graph theory for complex NSs. [34] proposed Dombi fuzzy graphs and proved the 

standard operations on Dombi fuzzy graphs. [35] proposed fuzzy graph of semigroup.[36] proposed t-norm 

fuzzy graphs and discussed the importance of t-norm in network system. 

3. Basic Concepts 

Some basic concepts needed for proposing and deriving the results are listed below.  

3.1 Graph (Ashraf et al. 2018) 

A mathematical system ( ),G V E=  is called a graph, where ( )V V G= , a vertex set and ( )E E G= is anedge set. In this 

paper, undirected graph has been considered and hence every edge is considered as an unordered pair of different 

vertices. 

 
3.2 Fuzzy Graph (Marapureddy 2018) 

Let V be a non-empty finite set, λ be a fuzzy subsets on V and δbe a fuzzy subsets on ×V V . The pair ( ),λ δ=G

is a fuzzy graph over the set V if ( ) ( ) ( ){ }, min ,x y x yδ λ λ≤ for all ( ),x y ∈ ×V V where λ is a fuzzy vertex and δis a 

fuzzy edge. Where: 

1. A mapping [ ]: 0,1λ →V  is called a fuzzy subset of V , where V  is the non-empty set. 

2. A mapping [ ]: 0,1δ × →V V  is a fuzzy relation on λ of V if ( ) ( ) ( ){ }, min ,x y x yδ λ λ≤  

3. If ( ) ( ) ( ){ }, min ,x y x yδ λ λ= then G is a strong fuzzy graph. 
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3.3 Dombi Fuzzy Graph (Ashraf et al. 2018) 

A pair ( ),λ δ=G  is a Dombi fuzzy graph if ( ) ( ) ( )
( ) ( ) ( ) ( )

x y
xy

x x x y

λ λ
δ

λ λ λ λ
≤

+ −
, for all ,x y ∈ V , where the 

Dombi fuzzy vertex set, [ ]: 0,1λ →V is a fuzzy subset in V and the Dombi fuzzy edge set, [ ]: 0,1δ × →V V is a 

symmetric fuzzy relation on λ .   

 

3.4 Single Valued Neutrosophic Graph (SVNG) (Broumi et al. 2016) 

A pair ( ),P Q=NG is SVNG with elemental set V . Where: 

1. Degree of truth membership, indeterminacy membership and falsity membership of the element

ix ∈ V are defined by [ ]: 0,1TP →V , [ ]: 0,1IP →V and [ ]: 0,1FP →V respectively and 

( ) ( ) ( )0 3, , 1,2,3,...,T x I x F x x i nP i P i P i i≤ + + ≤ ∀ ∈ =V  

2. Degree of truth membership, indeterminacy membership and falsity membership of the edge 

( ),x yi j ∈ E are denoted by [ ]: 0,1TQ ⊆ × →E V V , [ ]: 0,1IQ ⊆ × →E V V and [ ]: 0,1FQ ⊆ × →E V V respectively and 

are defined by  

• { }( ) ( ) ( ), min ,Q i j P i P jT x y T x T y ≤
 

 

• { }( ) ( ) ( ), max ,Q i j P i P jI x y I x I y ≥
 

 

• { }( ) ( ) ( ), maxQ i j P i P jF x y F x F y ≥
 

 

where { }( ) { }( ) { }( ) { } ( )0 , , , 3, , , 1, 2,...,Q i j Q i j Q i j i jT x y I x y F x y x y i j n≤ + + ≤ ∀ ∈ =E . 

Also P is a single valued Neutrosophic vertex of V and Q is a single valued Neutrosophic edge set of E . Q is a 

symmetric single valued Neutrosophic relation on P. 

 

3.5Interval Valued Neutrosophic Graph (IVNG) (Broumi et al. 2016) 

A pair ( ),P Q=NG is IVNG, where , , , , ,L U L U L UP T T I I F F
P P P P P P

     =
          

, an IVN is set on V and 

, , , , ,L U L U L UQ T T I I F F
Q Q Q Q Q Q

     =
          

is an IVN edge set on E satisfying the following conditions: 

1. Degree of truth membership, indeterminacy membership and falsity membership of the element 

ix ∈Vare defined by [ ]: 0,1
L
PT →V , [ ]: 0,1

U
PT →V , [ ]: 0,1

L
PI →V , [ ]: 0,1

L
PI →V , [ ]: 0,1

U
PI →V  and 

[ ] [ ]: 0,1 , : 0,1
L U
P PF F→ →V V respectively and ( ) ( ) ( )0 3, , 1,2,3,...,P i P i P i iT x I x F x x i n≤ + + ≤ ∀ ∈ =V  

2. Degree of truth membership, indeterminacy membership and falsity membership of the edge 

( ),i jx y ∈E are denoted by [ ]: 0,1
L

QT × →V V , [ ]: 0,1
U
QT × →V V [ ]: 0,1

L
QI × →V V , [ ]: 0,1

U
QI × →V V and 

[ ]: 0,1
L

QF × →V V , [ ]: 0,1
U
QF × →V V respectively and are defined by  

• { }( ) ( ) ( ), min ,L L L
Q i j P i P jT x y T x T y ≤   

 

• { }( ) ( ) ( ), min ,U U U
Q i j P i P jT x y T x T y ≤   

 

• { }( ) ( ) ( ), max ,L L L
Q i j P i P jI x y T x T y ≥   

 

• { }( ) ( ) ( ), max ,U U U
Q i j P i P jI x y I x I y ≥   

 

• { }( ) ( ) ( ), max ,L L L
Q i j P i P jF x y F x F y ≥   

 

• { }( ) ( ) ( ), max ,U U U
Q i j P i P jF x y F x F y ≥   

 

where { }( ) { }( ) { }( ) { } ( )0 , , , 3, , , 1, 2, ...,Q i j Q i j Q i j i jT x y I x y F x y x y i j n≤ + + ≤ ∀ ∈ =E . 

 

 

3.6 Triangular Norms (Ashraf et al. 2018) 
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A mapping [ ] [ ]2
: 0,1 0,1T → is a binary operation and is called a triangular norm or T-Norm if [ ], , 0,1x y z∀ ∈ it 

satisfies the following: 

 

(1). ( )1,T x x=    (Boundary condition) 

(2). ( ) ( ), ,T x y T y x=   (Commutativity) 

(3). ( )( ) ( )( ), , , ,T x T y z T T x y z=  (Associativity) 

(4). ( ) ( ), , ,T x y T x z≤ if y z≤  (Monotonicity) 

 

• Triangular conorm or T-Conorm is also a binary operation [ ] [ ]2
: 0,1 0,1TC →   and is defined by 

( ) ( ), 1 1 ,1TC x y T x y= − − −  

 

3.7 Dombi Triangular Norms (Dombi 2009, Dombi and Kocsor 2009, Ashraf et al. 2018) 

Dombi product or T-Norm and T-Conorm are denoted by ⊗ and ⊕ respectively and defined by  

( )
1

1
, , 0

1 1
1

D
TN x y x y

x y

y y

ξξ ξ
ξ= ⊗ = >

    − − + +   
     

 

( )
1

1
, , 0

1 1
1

D
TCN x y x y

x y

y y

ξξ ξ
ξ−− −

= ⊕ = >
    − − + +   
     

 

This triangular norm contains the product, Hamacher operators, and Einstein operators and as the limiting case, 

minimum and maximum operators can be obtained. Multivariable case can be dealt easily by the new form of 

Hamacher family. Dombi operators have flexible parameters and hence the success rate will be greater one.  

 
3.8 Hamacher Triangular Norms (Ashraf et al. 2018) 
 

Hamacher product or T-Norm and T-Conorm are denoted by ⊗ and ⊕ respectively and defined by  

( ) ( )( ), , 0
1H

xy
T x y x y

x y xy
ξ

ξ ξ
= ⊗ = >

+ − + −
 

( ) ( )
( )

2
, , 0

1 1H

x y xy
TC x y x y

xy

ξ
ξ

ξ
+ + −

= ⊗ = >
+ −

 

 
3.9 Special Cases of Dombi and Hamacher Triangular Norms (Ashraf et al. 2018) 

If we replace 0ξ = in Hamacher family of triangular norms and 1ξ = in Dombi family of triangular 

norms then 

( ) ( ),
xy

T x y x y
x y xy

= ⊗ =
+ −

 and ( ) ( )
2

,
1

x y xy
TC x y x y

xy

+ −= ⊕ =
−

.  

 
3.10 Standard Products of graphs (Ashraf et al. 2018) 

Consider two ( )1 1 1,G V E= and ( )2 2 2,G V E= then the following products are defined by 

1. Direct product : ( ) ( )( ){ }1 2 1 2 1 2 1 1 1 2 2 1, , &E G G x x y y x y E x y E= ∈ ∈�  

2. Cartesian  Product: ( ) ( )( ){ }1 2 1 2 1 2 1 1 2 2 2 1 1 1 2 2, , & , &E G G x x y y x y x y E or x y E x y× = = ∈ ∈ =  

3. Strong Product: ( ) ( )( ){ }1 2 1 2 1 2 1 1 2 2 2 1 1 1 2 2 2, , & , &E G G x x y y x y x y E or x y E x y E× = = ∈ ∈ ∈  

4. Dombi fuzzy Cartesian product: 

( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )1 1 2 2

1 2 1 2 1 2 1 2
1 1 2 2 1 1 2 2

, , ,
x x

x x x x
x x x x

λ λ
λ λ

λ λ λ λ
× = ∀ ∈ ×

+ −
V V  
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( ) ( )( )( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 2 2
1 2 2 2 1 2 2 2

1 2 2 2 1 1 2 2 2

, , , ,
x x y

x x x y x x y
x x y x x y

λ δ
δ δ

λ δ λ δ
× = ∀ ∈ ∈

+ −
V E  

( ) ( )( )( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 1 1
1 2 1 1 2 1 1 1

2 1 1 1 2 1 1 1

, , , ,
z x y

x z y z z x y
z x y z x y

λ δ
δ δ

λ δ λ δ
× = ∀ ∈ ∈

+ −
V E  

 
3.11 Neutrosophic Controllers (Aggarwal et al. 2010) 

In the field of logic, fuzzy logic is a powerful one due its capacity of extracting the information from 

imprecise data. Human interpretations and computer simulation are the active and interested area among the 

researchers where the computers are managing only precise assessments. But the Neutrosophic logic has the 

capacity of recovering all sorts of logics. It is an appropriate choice to imitate the action of human brain which is 

assembled with handling with uncertainties and impreciseness.  

Neutrosophic Controllers are giving an optimized results than the fuzzy supplement since they are more 

hypothesized and indeterminacy tolerant. These controllers would modify considerably according to the nature 

of the problem.  

Modeling a proper mathematical structure of a control problem that would simulate the behavior of the 

system is very difficult. Due to impreciseness and indeterminacy in the data, unpredictable environmental 

disturbances, corrupt sensor getting a complete and determinate date is not   possible in the real world problems. 

These situations can be handled by considering Neutrosophic linguistic terms and can be dealt effectively by 

considering interval valued Neutrosophic environment as it handles more impreciseness using lower and upper 

membership functions.   

 
4. Proposed Dombi Interval Valued Neutrosophic Graph 

Using the above special triangular norms Dombi Interval Valued Neutrosophic Graph (DIVNG) has 

been proposed and derived the Cartesian and composite products of DIVNG had been derived along with the 

numerical example. 

 
4.1 Dombi Single Valued Neutrosophic Graph (DSVNG) 

A single Valued Neutrosophic Graph is a DSVNG on V is defined to be a pair ( ),P Q=NG , where: 

1. The functions [ ]: 0,1PT →V , [ ]: 0,1PI →V and [ ]: 0,1PF →V are the degree of truth membership. 

Indeterminacy membership and falsity membership of the element ix ∈ V respectively and

( ) ( ) ( )0 3, , 1,2,3,...,P i P i P i iT x I x F x x i n≤ + + ≤ ∀ ∈ =V . 

2. The functions [ ]: 0,1QT ⊆ × →E  V V , [ ]: 0,1QI ⊆ × →E  V V  and [ ]: 0,1QF ⊆ × →E  V V  are defined by  

{ }( ) ( ) ( )
( ) ( ) ( ) ( ),

P i P j
Q i j

P i P j P i P j

T x T y
T x y

T x T y T x T y
≤

+ −
 

{ }( ) ( ) ( ) ( ) ( )
( ) ( )

2
,

1

P i P j P i P j

Q i j

P i P j

I x I y I x I y
I x y

I x I y

+ −
≥

−
 

{ }( ) ( ) ( ) ( ) ( )
( ) ( )

2
,

1

P i P j P i P j
Q i j

P i P j

F x F y F x F y
F x y

F x F y

+ −
≥

−
 

Numerical Example: 

Figure 1 is an example of DSVNG ( ),P Q=NG of the graph ( ),G V E= such that the vertex set is

( ) ( ) ( ) ( ){ }, 0.5, 0.1, 0.4 , , 0.6, 0.3, 0.2 , , 0.2, 0.3, 0.4 , , 0.4, 0.2, 0.5P i j k l=  

and the edge set is given by  

( ) ( ){ } ( ) ( ), 0.4, 0.3, 0.5 , , 0.2, 0.4, 0.5 , , 0.2, 0.4, 0.6 , , 0.3, 0.4, 0.6Q ij jk kl il=  
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Fig.1.Dombi Single Valued Neutrosophic Graph 

Numerical Computation: 

To find ( ) :QT ij  

( ) ( )( )
( ) ( ) ( )( )

0.5 0.6
0.4

0.5 0.6 0.5 0.6
QT ij ≤ ≤

+ −
, hence ( ) 0.4QT ij =  

To find ( ) :QI ij  

( ) ( ) ( ) ( )( )
( ) ( )

0.1 0.3 2 0.1 0.3
0.3

1 0.1 0.3
QI ij

+ −
≥ ≥

−
, hence ( ) 0.3QI ij =  

To find ( ) :QF ij  

( ) ( ) ( ) ( )( )
( )( )

0.4 0.2 2 0.4 0.2
0.5

1 0.4 0.2
QF ij

+ −
≥ ≥

−
, hence ( ) 0.5QI ij =  

Similarly other values can be found. 

• While the membership values of truth, indeterminacy and falsity are not in the interval form then the 

DSVNG can be used to get the solution or output of the system for the linguistic terms. Hence DSVNG 

is a special case of interval based Neutrosophic graph which is proposed below. 

 

4.2 Dombi Interval Valued Neutrosophic Graph (DIVNG) 

A pair ( ),P Q=NG is DIVNG, where , , , , ,L U L U L U
P P P P P PP T T I I F F     =

     
, is an IVN set on V and 

, , , , ,L U L U L U
Q Q Q Q Q QQ T T I I F F     =

     
is an IVN edge set on E satisfying the following conditions: 

 

1. Degree of truth membership, indeterminacy membership and falsity membership of the element 

ix ∈V  are defined by [ ]: 0,1L
PT →V , [ ]: 0,1U

PT →V , [ ]: 0,1L
PI →V , [ ]: 0,1L

PI →V , [ ]: 0,1U
PI →V  and

[ ]: 0,1 ,
L

PF →V [ ]: 0,1
U
PF →V respectively and ( ) ( ) ( )0 3, , 1,2,3,...,P i P i P i iT x I x F x x i n≤ + + ≤ ∀ ∈ =V  

2. Degree of truth membership, indeterminacy membership and falsity membership of the edge 

( ),i jx y ∈ E are denoted by the functions, [ ]: 0,1L
QT × →V V , [ ]: 0,1U

QT × →V V [ ]: 0,1L
QI × →V V , 

[ ]: 0,1U
QI × →V V and [ ]: 0,1L

QF × →V V , [ ]: 0,1U
QF × →V V respectively and are defined by  

• { }( ) ( ) ( )
( ) ( ) ( ) ( ),

L L
P i P jL

Q i j L L L L
P i P j P i P j

T x T y
T x y

T x T y T x T y
≤

+ −
 

• { }( ) ( ) ( )
( ) ( ) ( ) ( ),

U U
P i P jU

Q i j U U U U
P i P j P i P j

T x T y
T x y

T x T y T x T y
≤

+ −
 

• { }( ) ( ) ( ) ( ) ( )
( ) ( )

2
,

1

L L L L
P i P j P i P jL

Q i j L L
P i P j

I x I y I x I y
I x y

I x I y

+ −
≥

−
 

• { }( ) ( ) ( ) ( ) ( )
( ) ( )

2
,

1

U U U U
P i P j P i P jU

Q i j U U
P i P j

I x I y I x I y
I x y

I x I y

+ −
≥

−
 

• { }( ) ( ) ( ) ( ) ( )
( ) ( )

2
,

1

L L L L
P i P j P i P jL

Q i j L L
P i P j

F x F y F x F y
F x y

F x F y

+ −
≥

−
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• { }( ) ( ) ( ) ( ) ( )
( ) ( )

2
,

1

U U U U
P i P j P i P jU

Q i j U U
P i P j

F x F y F x F y
F x y

F x F y

+ −
≥

−
 

Where { }( ) { }( ) { }( ) { } ( )0 , , , 3, , 1, 2,...,Q i j Q i j Q i j i jT x y I x y F x y x y i j n≤ + + ≤ ∀ ∈ =E . 

 
Numerical Example: Fig. 1. is an example of Dombi Interval Valued Neutrosophic Graph 

 

[ ] [ ] [ ] [ ] [ ] [ ]{
[ ] [ ] [ ] }

, 0.5,0.7 , 0.2,0.3 , 0.1,0.3 , , 0.6,0.7 , 0.2,0.4 , 0.1,0.3

, 0.4,0.6 , 0.1, 0.3 , 0.2,0.4

P i j

k

=
 

[ ] [ ] [ ] [ ] [ ] [ ]{
[ ] [ ] [ ] }

, 0.4, 0.5 , 0.4,0.5 , 0.3, 0.5 , , 0.3,0.5 , 0.3,0.5 , 0.3, 0.5

, 0.3,0.5 , 0.3, 0.5 , 0.3,0.5

Q ij jk

ik

=
 

 
Numerical Computation: 

 

To find ( ) :L
QT ij  

( ) ( )( )
( ) ( ) ( )( )

0.5 0.4
0.4

0.5 0.4 0.5 0.4

L
QT ij ≤ ≤

+ −
, hence ( ) 0.4L

QT ij =  

To find ( ) :L
QI ij  

( ) ( ) ( ) ( )( )
( )( )

0.2 0.2 2 0.2 0.2
0.3

1 0.2 0.2

L
QI ij

+ −
≥ ≥

−
, hence ( ) 0.4L

QI ij =  

To find ( ) :L
QF ij  

( ) ( ) ( ) ( )( )
( )( )

0.1 0.1 2 0.1 0.1
0.2

1 0.1 0.1

L
QF ij

+ −
≥ ≥

−
, hence ( ) 0.3L

QI ij =  

Similarly other values can be found. 

 
Fig.2. Dombi Interval Valued Neutrosophic Graph 

 

• From the definition and numerical examples of DSVNG and DIVNG, it is found that Dombi Fuzzy 

Graph is a special case of DSVNG and DIVNG. 

 

 

 

4.3Definition: Cartesian product of Dombi Interval Valued Neutrosophic Graphs 

Consider iλ , a Neutrosophic fuzzy subset of iV and iδ , a fuzzy subset of , 1,2i i =E . Let ( )1 1 1,λ δNG and 

( )2 2 2,λ δNG be two Dombi Neutrosophic Fuzzy Graphs of the crisp graphs ( )1 1 1,G V E
∗

and ( )2 2 2,G V E
∗

respectively 

and are defined by  
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2
1 2 1 2

1 1 2 2 1 1 2 2

,

L L
L L

L L L L

x x
x x

x x x x

λ λ
λ λ

λ λ λ λ
× =

+ −
, for all ( )1 2 1 2,x x ∈ ×V V and 

( ) ( )( )( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 2 2
1 2 2 2

1 2 2 2 1 2 2 2

, , ,

L L
L L

L L L L

x x y
x x x y

x x y x x y

λ λ
δ δ

λ λ λ λ
× =

+ −
for all 1x∈V , 2 2 2x y ∈E  

( ) ( )( )( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 1 1
1 2 1 1

2 1 1 1 2 1 1 1

, , ,

L L
L L

L L L L

z x y
x z y z

z x y z x y

λ δ
δ δ

λ δ λ δ
× =

+ −
for all 2z∈V , 1 1 1x y ∈E  

Similarly for Indeterminacy and Falsity memberships with upper and lower membership values.  

 
4.3.1Proposition  

Let 1NG and 2NG  be the Dombi IVN edge graphs of 1G and 2G respectively. Then Cartesian product of 

two Dombi IVN edge graphs is the Dombi Interval Valued Neutrosophic edge graph. 

 

Proof: 

Let ( ) ( ){ } ( ) ( ){ }2 2 1 2 2 2 1 1 2 1 1 1, , / , , , / ,x x x y x x y x z y z z x y= ∈ ∈ ∪ ∈ ∈E E E1 1V V  

Consider 1x∈V , 2 2 2x y ∈E  

By the definition of Cartesian product of IVNG (Broumi et al. 2016) 

( ) ( )( )( )
1 2

2 2, ,
L L

Q Q
T T x x x y×  

( ) ( )( )
1 2

2 2min ,
L L
P Q

T x T x y= ( )( )
2

2 21,
L

Q
TN T x y=

( ) ( )
( ) ( ) ( ) ( )

2 2

2 2 2 2

2 2

2 2 2 2

L L
P P

L L L L
P P P P

T x T y

T x T y T x T y
≤

+ −
 

( ) ( ) ( )( )( )
1 2 2

2 2min , min ,
L L L

P P P
T x T x T y≤ ( ) ( )( ) ( ) ( )( )( )

1 2 1 2
2 2min min , , min ,

L L L L
P P P A

T x T x T x T y=  

( )( ) ( )( )( )
1 2 1 2

2 2min , , ,
L L L L

P P P P
T T x x T T x y= × ×  

( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )
1 2 1 2

1 2 1 2 1 2 1 2

2 2

2 2 2 2

, ,

, , , ,

L L L L
P P P P

L L L L L L L L
P P P P P P P P

T T x x T T x y

T T x x T T x y T T x x T T x y

× ×
≤

× + × − × ×
 

 

( ) ( )( )( )
1 2

2 2, ,
U U
Q Q

T T x x x y×  

( ) ( )( )
1 2

2 2min ,
U U
P Q

T x T x y= ( )( )
2

2 21,
U
Q

TN T x y=
( ) ( )

( ) ( ) ( ) ( )
2 2

2 2 2 2

2 2

2 2 2 2

U U
P P

U U U U
P P P P

T x T y

T x T y T x T y
≤

+ −
 

( ) ( ) ( )( )( )
1 2 2

2 2min , min ,
U U U
P P P

T x T x T y≤ ( ) ( )( ) ( ) ( )( )( )
1 2 1 2

2 2min min , , min ,
U U U U
P P P A

T x T x T x T y=  

( )( ) ( )( )( )
1 2 1 2

2 2min , , ,
U U U U
P P P P

T T x x T T x y= × ×  

( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 2 1 2

1 2 1 2 1 2 1 2

2 2

2 2 2 2

, ,

, , , ,

U U U U
P P P P

U U U U U U U U
P P P P P P P P

T T x x T T x y

T T x x T T x y T T x x T T x y

× ×
=

× + × − × ×
 

 

( ) ( )( )( )
1 2

2 2, ,
L L
Q Q

I I x x x y× ( ) ( )( )
1 2

2 2max ,
L L
P Q

I x I x y=  

( ) ( )( )
1 2

2 2,
L L
P Q

TCN I x I x y≥ ( ) ( )( ) ( ) ( )( )( )
1 2 1 2

2 2max max , ,max ,L L L L
P P P P

I x I x I x T y= ( ) ( )( ) ( ) ( )( )( )
1 2 1 2

2 2max , , ,L L L L
P P P P

I I x x I I x y= × ×  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 2 1 2

1 2 1 2

2 2 2 2

2 2

, , 2 , ,

1 , . ,

L L L L L L L L
P P P P P P P P

L L L L
P P P P

I I x x I I x y I I x x I I x y

I I x x I I x y

× + × − × ×
=

− × ×
 

 

( ) ( )( )( )
1 2

2 2, ,
U U
Q Q

I I x x x y× ( ) ( )( )
1 2

2 2max ,
U U
P Q

I x I x y=  

( ) ( )( )
1 2

2 2,
U U
P Q

TCN I x I x y≥ ( ) ( )( ) ( ) ( )( )( )
1 2 1 2

2 2max max , , max ,
U U U U
P P P P

I x I x I x T y= ( ) ( )( ) ( ) ( )( )( )
1 2 1 2

2 2max , , ,
U U U U
P P P P

I I x x I I x y= × ×  
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( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 2 1 2

1 2 1 2

2 2 2 2

2 2

, , 2 , ,

1 , . ,

U U U U U U U U
P P P P P P P P

U U U U
P P P P

I I x x I I x y I I x x I I x y

I I x x I I x y

× + × − × ×
=

− × ×
 

 

( ) ( )( )( )
1 2

2 2, ,
L L

Q Q
F F x x x y× ( ) ( )( )

1 2
2 2max ,

L L
P Q

F x F x y=  

( ) ( )( )
1 2

2 2,
L L
P Q

TCN F x F x y≥ ( ) ( )( ) ( ) ( )( )( )
1 2 1 2

2 2max max , , max ,
L L L L

P P P P
F x F x F x F y= ( ) ( )( ) ( ) ( )( )( )

1 2 1 2
2 2max , , ,

L L L L
P P P P

F F x x F F x y= × ×  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 2 1 2

1 2 1 2

2 2 2 2

2 2

, , 2 , ,

1 , . ,

L L L L L L L L
P P P P P P P P

L L L L
P P P P

F F x x F F x y F F x x F F x y

F F x x F F x y

× + × − × ×
≥

− × ×
 

 

( ) ( )( )( )
1 2

2 2, ,
U U
Q Q

F F x x x y× ( ) ( )( )
1 2

2 2max ,
U U
P Q

F x F x y=  

( ) ( )( )
1 2

2 2,
U U
P Q

TCN F x F x y≥ ( ) ( )( ) ( ) ( )( )( )
1 2 1 2

2 2max max , , max ,
U U U U
P P P P

F x F x F x F y= ( ) ( )( ) ( ) ( )( )( )
1 2 1 2

2 2max , , ,
U U U U
P P P P

F F x x F F x y= × ×  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 2 1 2

1 2 1 2

2 2 2 2

2 2

, , 2 , ,

1 , . ,

U U U U U U U U
P P P P P P P P

U U U U
P P P P

F F x x F F x y F F x x F F x y

F F x x F F x y

× + × − × ×
≥

− × ×
 

 

Consider 2z∈V , 1 1 1x y ∈ E  

( ) ( )( )( )
1 2

1 1, ,
L L

Q Q
T T x z y z×  

( ) ( )( )
1 2

1 1min ,
L L

Q P
T x y T z= ( )( ) ( )

1 1
1 1 1 1,1

L L
Q Q

TN T x y T x y= =
( ) ( )

( ) ( ) ( ) ( )
1 1

1 1 1 1

1 1

1 1 1 1.

L L
P P

L L L L
P P P P

T x T y

T x T y T x T y
≤

+ −
 

( ) ( )( ) ( )( )
1 1 2

1 1min min , ,
L L L

P P P
T x T y T z≤ ( ) ( )( ) ( ) ( )( )( )

1 2 1 2
1 1min min , , min ,

L L L L
P P P P

T x T z T y T z=  

( )( ) ( )( )( )
1 2 1 2

1 1min , , ,
L L L L

P P P P
T T x z T T y z= × ×  

( )( )( )( )

( )( ) ( )( ) ( )( )( )( )
1 2 1 2

1 2 1 2 1 2 1 2

1 1

1 1 1 1

, ,

, , , ,

L L L L
P P P P

L L L L L L L L
P P P P P P P P

T T x z T T y z

T T x z T T y z T T x z T T y z

× ×
≤

× + × − × ×
 

 

( ) ( ) ( )( )
1 2

1 1, ,
U U
Q Q

T T x z y z×  

( ) ( )( )
1 2

1 1min ,
U U
Q P

T x y T z= ( )( ) ( )
1 1

1 1 1 1,1
U U
Q Q

TN T x y T x y= =
( ) ( )

( ) ( ) ( ) ( )
1 1

1 1 1 1

1 1

1 1 1 1.

U U
P P

U U U U
P P P P

T x T y

T x T y T x T y
≤

+ −
 

( ) ( )( ) ( )( )
1 1 2

1 1min min , ,
U U U
P P P

T x T y T z≤ ( ) ( )( ) ( ) ( )( )( )
1 2 1 2

1 1min min , , min ,
U U U U
P P P P

T x T z T y T z=  

( )( ) ( )( )( )
1 2 1 2

1 1min , , ,
U U U U
P P P P

T T x z T T y z= × ×  

( )( )( )( )

( )( ) ( )( ) ( )( )( )( )
1 2 1 2

1 2 1 2 1 2 1 2

1 1

1 1 1 1

, ,

, , , ,

U U U U
P P P P

U U U U U U U U
P P P P P P P P

T T x z T T y z

T T x z T T y z T T x z T T y z

× ×
≤

× + × − × ×
 

 

( ) ( ) ( )( )
1 2

1 1, ,
L L
Q Q

I I x z y z×  

( ) ( )( )
1 2

1 1max ,
L L

Q P
T x y T z= ( ) ( )( ) ( )( )

1 1 2
1 1max max , ,

L L L
P P P

I x I y I z≥ ( ) ( )( ) ( ) ( )( )( )
1 2 1 2

1 1max max , , max ,
L L L L
P P P P

I x I z T y T z=  

( )( ) ( )( )( )
1 2 1 2

1 1max , , ,
L L L L
P P P P

I I x z I I y z= × ×  

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )
1 2 1 2 1 2 1 2

1 2 1 2

1 1 1 1

1 1

, , 2 , ,

1 , ,

L L L L L L L L
P P P P P P P P

L L L L
P P P P

I I x z I I y z I I x z I I y z

I I x z I I y z

× + × − × ×
≥

− × ×
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( ) ( ) ( )( )
1 2

1 1, ,
U U
Q Q

I I x z y z×  

( ) ( )( )
1 2

1 1max ,
U U
Q P

T x y T z= ( ) ( )( ) ( )( )
1 1 2

1 1max max , ,
U U U
P P P

I x I y I z≥  

( ) ( )( ) ( ) ( )( )( )
1 2 1 2

1 1max max , , max ,
U U U U
P P P P

I x I z T y T z= ( )( ) ( ) ( )( )
1 2 1 2

1 1max , , ,
U U U U
P P P P

I I x z I I y z= × ×  

( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( )( )( )
1 2 1 2 1 2 1 2

1 2 1 2

1 1 1 1

1 1

, , 2 , ,

1 , ,

U U U U U U U U
P P P P P P P P

U U U U
P P P P

I I x z I I y z I I x z I I y z

I I x z I I y z

× + × − × ×
≥

− × ×
 

 

( ) ( )( )( )
1 2

1 1, ,
L L

Q Q
F F x z y z×  

( ) ( )( )
1 2

1 1max ,
L L

Q P
F x y F z= ( ) ( )( ) ( )( )

1 1 2
1 1max max , ,

L L L
P P P

F x F y F z≥  

( ) ( )( ) ( ) ( )( )( )
1 2 1 2

1 1max max , , max ,
L L L L

P P P P
F x F z F y F z= ( )( ) ( )( )( )

1 2 1 2
1 1max , , ,

L L L L
P P P P

F F x z F F y z= × ×  

( ) ( ) ( )( ) ( )( )( )( )

( )( )( )( )
1 2 1 2 1 2 1 2

1 2 1 2

1 1 1 1

1 1

, , 2 , ,

1 , ,

L L L L L L L L
P P P P P P P P

L L L L
P P P P

F F x z F F y z F F x z F F y z

F F x z F F y z

× + × − × ×
≥

− × ×
 

 

( ) ( ) ( )( )
1 2

1 1, ,
U U
Q Q

F F x z y z× ( ) ( )( )
1 2

1 1max ,
U U
Q P

F x y F z= ( ) ( )( ) ( )( )
1 1 2

1 1max max , ,
U U U
P P P

F x F y F z≥  

( ) ( )( ) ( ) ( )( )( )
1 2 1 2

1 1max max , , max ,
U U U U
P P P P

F x F z F y F z= ( )( ) ( )( )( )
1 2 1 2

1 1max , , ,
U U U U
P P P P

F F x z F F y z= × ×  

( )( ) ( )( ) ( )( )( )( )

( )( )( )( )
1 2 1 2 1 2 1 2

1 2 1 2

1 1 1 1

1 1

, , 2 , ,

1 , ,

U U U U U U U U
P P P P P P P P

U U U U
P P P P

F F x z F F y z F F x z F F y z

F F x z F F y z

× + × − × ×
≥

− × ×
 

Note: Cartesian product of two IVNEGs need not be IVNEG.  

 

 

Numerical Example: 

 

Consider two crisp graphs ( ),1 1 1G A B= and ( ),2 2 2G A B= , where { }1 ,V a b= , { }2 ,V c d= , { }1 ,E a b= and 

{ }2 ,E c d= . Consider two Interval Valued Neutrosophic Graphs ( )1 1 1,P Q=NG and ( )2 2 2,P Q=NG  

[ ] [ ] [ ] [ ] [ ] [ ]{ }1 , 0.5, 0.7 , 0.2, 0.3 , 0.1, 0.3 , , 0.6, 0.7 , 0.2, 0.4 , 0.1, 0.3P i j=  

[ ] [ ] [ ]{ }1 , 0.3, 0.6 , 0.2, 0.4 , 0.2, 0.4Q ij= (Broumi et al.2016) 

 

 

Fig. 3. 1 IVNG 1NG  

 

[ ] [ ] [ ] [ ] [ ] [ ]{ }2 , 0.4, 0.6 , 0.2, 0.3 , 0.1, 0.3 , , 0.4, 0.7 , 0.2, 0.4 , 0.1, 0.3P k l=  

[ ] [ ] [ ]{ }2 , 0.3, 0.5 , 0.4, 0.5 , 0.3, 0.5Q kl=  

 

Fig. 4. IVNG 2NG  

Cartesian product of 1NG and 2NG ( )1 2×N NG G  
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Fig. 5. Cartesian product of DIVNGs ( )1 2×N NG G  

 

 

Interval Neutrosophic Vertices and Edges 

 

[ ] [ ] [ ]0.4, 0.6 , 0.2,0.3 , 0.1, 0.3ik = , [ ] [ ] [ ]0.4,0.6 , 0.2,0.4 , 0.1,0.3jk =  

[ ] [ ] [ ]0.4,0.7 , 0.2,0.4 , 0.1,0.3il = , [ ] [ ] [ ]0.4, 0.7 , 0.2, 0.4 , 0.1,0.3jl =  

( ) [ ] [ ] [ ], 0.3,0.6 , 0.2,0.4 , 0.2,0.4ik jk = , ( ) [ ] [ ] [ ], 0.3,0.5 , 0.4,0.5 , 0.3,0.5jl jk =  

( ) [ ] [ ] [ ], 0.3, 0.6 , 0.2,0.4 , 0.2,0.4il jl = , ( ) [ ] [ ] [ ], 0.3,0.5 , 0.4,0.5 , 0.3,0.5il ik =  

To find ik: 

( )( ) ( ) ( )( ) ( )
1 2 1 2

, min , min 0.5,0.4 0.4L L L L
P P P PT T i k T i T k× = = =  

( )( ) ( ) ( )( ) ( )
1 2 1 2

, max , max 0.2,0.2 0.2L L L L
P P P PI I i k I i I k× = = =  

( ) ( ) ( ) ( )( ) ( )
1 2 1 2

, min , max 0.1,0.1 0.1L L L L
P P P PF F i k F i F k× = = =  

Similarly for other values. 

 

Interval Neutrosophic Edges: 

 

To find (ik, jk): 

( ) ( )( )( ) ( ) ( )( ) ( )
1 2 1 2

, , min , min 0.3,0.4 0.3L L L L
Q Q Q PT T i k j k T ij T k× = = =  

( ) ( )( )( ) ( ) ( )( ) ( )
1 2 1 2

, , max , max 0.2,0.2 0.2L L L L
Q Q Q PI I i k j k I ij I k× = = =  

( ) ( )( )( ) ( ) ( )( ) ( )
1 2 1 2

, , max , max 0.2,0.1 0.2L L L L
Q Q Q PF F i k j k F ij F k× = = =  

 

 

 

 

 

To check the condition of Cartesian product of Dombi Interval Neutrosophic Edge Graph 

( ) ( )( )( ) ( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )
1 2 1 2

1 2

1 2 1 2 1 2 1 2

, ,

, ,

, , , ,

L L L L
P P P PL L

Q Q L L L L L L L L
P P P P P P P P

T T i k T T j k

T T i k j k

T T i k T T j k T T i k T T j k

× ×
× ≤

× + × − × ×

( )( )
( ) ( ) ( )( )

0.4 0.4
0.3 0.3

0.4 0.4 0.4 0.4
≤ =

+ −
, hence satisfied. 
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( ) ( )( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )

( ) ( )( )( ) ( )( )
1 2 1 2 1 2 1 2

1 2

1 2 1 2

, , 2 , ,

, ,

1 , ,

L L L L L L L L
P P P P P P P PL L

Q Q L L L L
P P P P

I I i k I I j k I I i k I I j k

I I i k j k

I I i k I I j k

× + × − × ×
× ≥

− × ×

( ) ( ) ( )( )
( )( )

0.2 0.2 2 0.2 0.2
0.2 0.33

1 0.2 0.2

+ −
≥ =

−
, hence not satisfied 

( ) ( )( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )

( ) ( )( )( ) ( )( )
1 2 1 2 1 2 1 2

1 2

1 2 1 2

, , 2 , ,

, ,

1 , ,

L L L L L L L L
P P P P P P P PL L

Q Q L L L L
P P P P

F F i k F F j k F F i k F F j k

F F i k j k

F F i k F F j k

× + × − × ×
× ≥

− × ×

( ) ( ) ( )( )
( )( )

0.1 0.1 2 0.1 0.1
0.2 0.2

1 0.1 0.1

+ −
≥ =

−
, hence satisfied. 

Similarly for other edges. 

Hence Cartesian product of two Dombi Interval Valued Neutrosophic Edge graphs need not be a DIVNEG. 

 

4.4Definition: Composite product of Dombi Interval Valued Neutrosophic Graphs 

Consider iλ , a Neutrosophic fuzzy subset of iV and iδ , a fuzzy subset of , 1, 2i i =E . Let ( )1 1 1,λ δNG and 

( )2 2 2,λ δNG be two Dombi Interval Valued Neutrosophic Graphs of the crisp graphs ( )1 1 1,G V E
∗

and ( )2 2 2,G V E
∗

respectively and are defined by  

( )( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2
1 2 1 2

1 1 2 2 1 1 2 2

,

L L
L L

L L L L

x x
x x

x x x x

λ λ
λ λ

λ λ λ λ
=

+ −
o , for all ( )1 2 1 2,x x ∈ ×V V and 

( ) ( )( )( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 2 2
1 2 2 2

1 2 2 2 1 2 2 2

, , ,

L L
L L

L L L L

x x y
x x x y

x x y x x y

λ λ
δ δ

λ λ λ λ
=

+ −
o for all 1x∈V , 2 2 2x y ∈E  

( ) ( )( )( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 1 1
1 2 1 1

2 1 1 1 2 1 1 1

, , ,

L L
L L

L L L L

z x y
x z y z

z x y z x y

λ δ
δ δ

λ δ λ δ
=

+ −
o for all 2z∈V , 1 1 1x y ∈E  

( ) ( )( )( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2

2 2 2 2 1 1 1

2 2 2 2 2 2 1 1 1 2 2 1 1 1 2 2 2 2 1 1 1

, ,

,
2

L L

L L L

L L L L L L L L L

x x y y

x y x y

x y y x y x x y x y x y

δ δ

λ λ δ
λ λ λ δ λ δ λ λ δ

=
+ + −

o

 

for all 1 1 1x y ∈E and 2 2x y≠  

Similarly for Indeterminacy and Falsity memberships with upper and lower membership values.  

 

4.4.1 Proposition 

The composite product of two Dombi Interval Valued Neutrosophic Edge graphs (DIVNEGs) of 1G and 2G is the 

DIVNEG. 

 

Proof: 
 
From the proof of 4.1.1 

( ) ( ) ( )( )
1 2

2 2, ,
L L

Q Q
T T x x x y×

( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )
1 2 1 2

1 2 1 2 1 2 1 2

2 2

2 2 2 2

, ,

, , , ,

L L L L
P P P P

L L L L L L L L
P P P P P P P P

T T x x T T x y

T T x x T T x y T T x x T T x y

× ×
≤

× + × − × ×
 

( ) ( )( )( )
1 2

2 2, ,
U U
Q Q

T T x x x y×
( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 2 1 2

1 2 1 2 1 2 1 2

2 2

2 2 2 2

, ,

, , , ,

U U U U
P P P P

U U U U U U U U
P P P P P P P P

T T x x T T x y

T T x x T T x y T T x x T T x y

× ×
≤

× + × − × ×
 

( ) ( ) ( )( )
1 2

2 2, ,
L L
Q Q

I I x x x y×  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 2 1 2

1 2 1 2

2 2 2 2

2 2

, , 2 , ,

1 , . ,

L L L L L L L L
P P P P P P P P

L L L L
P P P P

I I x x I I x y I I x x I I x y

I I x x I I x y

× + × − × ×
≥

− × ×
 

( ) ( ) ( )( )
1 2

2 2, ,
U U
Q Q

I I x x x y×  
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( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 2 1 2

1 2 1 2

2 2 2 2

2 2

, , 2 , ,

1 , . ,

U U U U U U U U
P P P P P P P P

U U U U
P P P P

I I x x I I x y I I x x I I x y

I I x x I I x y

× + × − × ×
≥

− × ×
 

( ) ( )( )( )
1 2

2 2, ,
L L

Q Q
F F x x x y×  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 2 1 2

1 2 1 2

2 2 2 2

2 2

, , 2 , ,

1 , . ,

L L L L L L L L
P P P P P P P P

L L L L
P P P P

F F x x F F x y F F x x F F x y

F F x x F F x y

× + × − × ×
≥

− × ×
 

( ) ( )( )( )
1 2

2 2, ,
U U
Q Q

F F x x x y×  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 2 1 2

1 2 1 2

2 2 2 2

2 2

, , 2 , ,

1 , . ,

U U U U U U U U
P P P P P P P P

U U U U
P P P P

F F x x F F x y F F x x F F x y

F F x x F F x y

× + × − × ×
≥

− × ×
 

Similarly for 2z∈V , 1 1 1x y ∈E . 

Now consider 1 1 1x y ∈E , 2 2x y≠  

( ) ( ) ( )( )
1 2

1 2 1 2, ,
L L

Q Q
T T x x y yo (Broumi et al. 2016) 

( ) ( ) ( )( )
2 2 1

2 2 1 1min , ,
L L L
P P Q

T x T y T x y≤  

( ) ( ) ( ) ( )( )( )
2 2 1 1

2 2 1 1min , , min ,
L L L L

P P P P
T x T y T x T y≤ ( ) ( )( ) ( ) ( )( )( )

1 2 1 1
1 2 1 2min min , , min ,

L L L L
P P P P

T x T x T y T y=

( )( ) ( )( )( )
1 2 1 2

1 2 1 2min , , ,
L L L L

P P P P
T T x x T T y y= o o  

( ) ( )( ) ( ) ( )( )( )
1 2 1 2

1 2 1 2, , ,
L L L L

P P P P
TN T T x x T T y y= o o  

( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )
1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

, ,

, , , ,

L L L L
P P P P

L L L L L L L L
P P P P P P P P

T T x x T T y y

T T x x T T y y T T x x T T y y

≤
+ −

o o

o o o o

 

( ) ( )( )( )
1 2

1 2 1 2, ,
U U
Q Q

T T x x y yo  

( ) ( ) ( )( )
2 2 1

2 2 1 1min , ,
U U U
P P Q

T x T y T x y=  

( ) ( ) ( ) ( )( )( )
2 2 1 1

2 2 1 1min , , min ,
U U U U
P P P P

T x T y T x T y≤ ( ) ( )( ) ( ) ( )( )( )
1 2 1 1

1 2 1 2min min , , min ,
U U U U
P P P P

T x T x T y T y=

( )( ) ( )( )( )
1 2 1 2

1 2 1 2min , , ,
U U U U
P P P P

T T x x T T y y= o o  

( ) ( )( ) ( ) ( )( )( )
1 2 1 2

1 2 1 2, , ,
U U U U
P P P P

TN T T x x T T y y= o o  

( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )
1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

, ,

, , , ,

U U U U
P P P P

U U U U U U U U
P P P P P P P P

T T x x T T y y

T T x x T T y y T T x x T T y y

≤
+ −

o o

o o o o

 

( ) ( ) ( )( )
1 2

1 2 1 2, ,
L L
Q Q

I I x x y yo  

( ) ( ) ( )( )
2 2 1

2 2 1 1max , ,
L L L
P P Q

I x I y I x y=  

( ) ( ) ( ) ( )( )( )
2 2 1 1

2 2 1 1max , , max ,
L L L L
P P P P

I x I y I x I y≥ ( ) ( )( ) ( ) ( )( )( )
1 2 1 1

1 2 1 2max max , , max ,
L L L L
P P P P

I x I x I y I y=

( )( ) ( )( )( )
1 2 1 2

1 2 1 2max , , ,
L L L L
P P P P

I I x x I I y y= o o  

( ) ( )( ) ( ) ( )( )( )
1 2 1 2

1 2 1 2, , ,
L L L L
P P P P

TCN I I x x I I y y= o o  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

, , 2 , . ,

1 , . ,

L L L L L L L L
P P P P P P P P

L L L L
P P P P

I I x x I I y y I I x x I I y y

I I x x I I y y

+ −
≥

−

o o o o

o o

 

( ) ( ) ( )( )
1 2

1 2 1 2, ,
U U
Q Q

I I x x y yo  
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 1

2 2 2 1 2 1 2 2 1

2 2 1 1

2 2 2 1 1 2 1 1 2 2 1 1

,
2

U U U
P P Q

U U U U U U U U U
P P P Q P Q P P Q

I x I y I x y

I x I y I y I x y I x I x y I x I y I x y
=

+ + −
 

( ) ( ) ( )( )
2 2 1

2 2 1 1max , ,
U U U
P P Q

I x I y I x y=  

( ) ( )( ) ( ) ( )( )( )
1 2 1 2

1 2 1 2, , ,
U U U U
P P P P

TCN I I x x I I y y= o o  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

, , 2 , . ,

1 , . ,

U U U U U U U U
P P P P P P P P

U U U U
P P P P

I I x x I I y y I I x x I I y y

I I x x I I y y

+ −
≥

−

o o o o

o o

 

( ) ( ) ( )( )
1 2

1 2 1 2, ,
L L

Q Q
F F x x y yo  

( ) ( ) ( )( )
2 2 1

2 2 1 1max , ,
L L L
P P Q

F x F y F x y=  

( ) ( ) ( ) ( )( )( )
2 2 1 1

2 2 1 1max , , max ,
L L L L

P P P P
F x F y F x F y≥ ( ) ( )( ) ( ) ( )( )( )

1 2 1 1
1 2 1 2max max , , max ,

L L L L
P P P P

F x F x F y F y=

( )( ) ( )( )( )
1 2 1 2

1 2 1 2max , , ,
L L L L

P P P P
F F x x F F y y= o o  

( ) ( )( ) ( ) ( )( )( )
1 2 1 2

1 2 1 2, , ,
L L L L

P P P P
TCN F F x x F F y y= o o  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

, , 2 , . ,

1 , . ,

L L L L L L L L
P P P P P P P P

L L L L
P P P P

F F x x F F y y F F x x F F y y

F F x x F F y y

+ −
≥

−

o o o o

o o

 

( ) ( ) ( )( )
1 2

1 2 1 2, ,
U U
Q Q

F F x x y yo  

( ) ( ) ( )( )
2 2 1

2 2 1 1max , ,
U U U
P P Q

F x F y F x y=  

( ) ( )( ) ( ) ( )( )( )
1 2 1 2

1 2 1 2, , ,
U U U U
P P P P

TCN F F x x F F y y= o o  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

, , 2 , . ,

1 , . ,

U U U U U U U U
P P P P P P P P

U U U U
P P P P

F F x x F F y y F F x x F F y y

F F x x F F y y

+ −
≥

−

o o o o

o o

 

Hence the proposition. 

 
Numerical Example: 

 

Consider the same example as in numerical example for Cartesian product. 

 

Composition of two IVNGs (Broumi et al. 2016) 

 

[ ] [ ] [ ] [ ] [ ] [ ]{ }1 , 0.5, 0.7 , 0.2, 0.5 , 0.1, 0.3 , , 0.6, 0.7 , 0.2, 0.4 , 0.1, 0.3P i j=  

[ ] [ ] [ ]{ }1 , 0.3, 0.6 , 0.2, 0.4 , 0.2, 0.4Q ij=  

[ ] [ ] [ ] [ ] [ ] [ ]{ }2 , 0.4, 0.6 , 0.3, 0.4 , 0.1, 0.3 , , 0.4, 0.7 , 0.2, 0.4 , 0.1, 0.3P k l=  

[ ] [ ] [ ]{ }2 , 0.3, 0.5 , 0.4, 0.5 , 0.3, 0.5Q kl=  
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Fig. 6. Composition of 1NG and 2NG ( )1 2oN NG G  

( ) [ ] [ ] [ ], 0.3,0.6 , 0.3,0.4 , 0.2,0.4ik jk = , ( ) [ ] [ ] [ ], 0.3,0.5 , 0.4,0.5 , 0.3,0.5jl jk =  

( ) [ ] [ ] [ ], 0.3, 0.6 , 0.2,0.4 , 0.2,0.4il jl = , ( ) [ ] [ ] [ ], 0.3,0.5 , 0.4,0.5 , 0.3,0.5il ik =  

( ) [ ] [ ] [ ], 0.3,0.6 , 0.3,0.4 , 0.2,0.4ik jl = , ( ) [ ] [ ] [ ], 0.3,0.6 , 0.3,0.4 , 0.2,0.4jk il =  

Other four edges has been given in Numerical Example 1. 

 

To check for Dombi Composition of two IVNEGs is an IVNEG. 

Consider 1ij ∈E ,  

( ) ( ) ( )( ) ( ) ( ) ( ) [ ]
1 2 2 2 1

, , min , , min 0.4,0.4,0.3 0.3
L L L L L

Q Q P P Q
T T i k j l T k T l T ij = = =

  
o  

( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )
1 1 1 1

1 1 1 1 1 1 1 1

, ,

, , , ,

L L L L
P P P P

L L L L L L L L
P P P P P P P P

T T i k T T j l

T T i k T T j l T T i k T T j l

≤
+ −

o o

o o o o

 

( )( )
( ) ( ) ( )( )

0.4 0.4
0.3

0.4 0.4 0.4 0.4
= =

+ −
, hence satisfied 

( ) ( )( )( ) ( ) ( ) ( ) [ ]
1 2 2 2 1

, , max , , max 0.3,0.2,0.2 0.3
L L L L L
Q Q P P Q

I I i k j l I k I l I ij = = =
  

o  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 1 1 1 1 1 1 1

1 1 1 1

, , 2 , ,

1 , ,

L L L L L L L L
P P P P P P P P

L L L L
P P P P

I I i k I I j l I I i k I I j l

I I i k I I j l

+ −
≥

−

o o o o

o o

 

( ) ( ) ( )( )
( )( )

0.2 0.2 2 0.2 0.2
0.3

1 0.2 0.2

+ −
= =

−
, hence satisfied 

( ) ( ) ( )( ) ( ) ( ) ( ) [ ]
1 2 2 2 1

, , max , , max 0.1,0.1,0.2 0.2
L L L L L

Q Q P P Q
F F i k j l F k F l F ij = = =

  
o  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )

( ) ( )( )( ) ( )( )
1 1 1 1 1 1 1 1

1 1 1 1

, , 2 , ,

1 , ,

L L L L L L L L
P P P P P P P P

L L L L
P P P P

F F i k F F j l F F i k F F j l

F F i k F F j l

+ −
≥

−

o o o o

o o

 

( ) ( ) ( ) ( )
( ) ( )

0.1 0.1 2 0.1 0.1
0.2

1 0.1 0.1

+ −
= =

−
, hence satisfied 

Similarly for other edges. 

Hence composition two Dombi Interval Valued Neutrosophic Edge graphs is a DIVNEG. 

 

 

 

 

 

5. Comparison of Traffic Control Management using different types of set and Graph theory 
  

The below table expresses the advantage and limitations of crisp sets, Fuzzy sets (Type-1 Fuzzy Sets), 

Type-2 Fuzzy sets, Neutrosophic Sets (Single Valued Neutrosophic Graphs), Interval Valued Neutrosophic Sets, 
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Dombi Fuzzy Graphs, Dombi Neutrosophic Graphs and Dombi Interval Valued Neutrosophic Graphs in traffic 

control management. This table also describe the role of triangular norms in control theory.  In traffic control 

system, detection of latency of the vehicles in a roadway, estimation of the density will be done by sensors and it 

will send an interrupt signal to the control unit. After that using the controllers with logical operations, the 

roadway will be decided for giving the service first. At this junction, the logical operations of Dombi Interval 

Valued Neutrosophic Graphs can be used. 

 
Traffic Control 

Management 

Advantages Limitations 

Using Crisp Sets • Fixed time period for all the traffic density 

• Achieved to characterize the real situation 

 

 

• Cannot act while there is a fluctuation in 

traffic density 

• Unable to react immediately to 

unpredictable changes like driver’s 

behavior.  

• Unable to handle with rapid momentous 

changes which disturb the continuity of the 

traffic.  

Using Fuzzy Sets • Different time duration can be considered 

according to the traffic density  

• Follow rule based approach which accepts 

uncertainties 

• Able to model the reasoning of an 

experienced human being 

• Adaptive and intelligent 

• Able to apply and handle real life rules 

identical to human thinking 

• Admits fuzzy terms and conditions 

• Performs the best security  

• It makes simpler to convert knowledge 

beyond the domain 

 

• Adaptiveness is missing to compute the 

connectedness of the interval based input  

• Cannot be used to show uncertainty as it 

apply crisp and accurate functions 

• Cannot handle the uncertainties such as 

stability, flexibility and on-line planning 

completely since consequents can be 

uncertain  

 

Using Type-2 Fuzzy 

Sets 
• Rule based approach which accepts 

uncertainties completely 

• Adaptiveness (Fixed Type-1 fuzzy sets are 

used to calculate the bounds of the type 

reduced interval change as input changes) 

• Novelty (the upper and lower membership 

functions may be used concurrently in 

calculating every bound of the type 

reduced interval) 

 

• Computational complexity is high as the 

membership functions themselves fuzzy. 

 

Neutrosophic Sets • Deals not only uncertainty but also 

indeterminacy due to unpredictable 

environmental disturbances  

• Unable to rounding up and down errors of 

calculations 

Interval Valued 

Neutrosophic Sets 
• Deals with more uncertainties and 

indeterminacy 

• Flexible and adaptability  

• Able to address issues with a set of 

numbers in the real unit interval, not just a 

particular number. 

• Able to rounding up and down errors of 

calculations 

• Unable to deal criterion incomplete weight 

information. 

Neutrosophic Graphs • When the terminal points and the paths are 

uncertain, optimized output is possible 

• Unable to handle more uncertainties. 

Interval Valued 

Neutrosophic Graphs 
• Able to handle more uncertainties exist in 

the terminal points (vertices) and paths 

(edges)  

• Unable to deal criterion incomplete weight 

information. 

Dombi Fuzzy Graphs • The Dombi Fuzzy Graph can portray the 

impreciseness strongly for all types of 

networks like traffic control. 

• Indeterminacy cannot be dealt by Dombi 

Fuzzy Graph. 

Dombi Neutrosophic 

Graphs 
• Indeterminacy can be dealt by Dombi 

Neutrosophic Graph. 

• Unable to handle uncertainty for interval 

values provided by the expert’s 
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Dombi Interval Valued 

Neutrosophic Graphs 
• Able to handle uncertainty properly for 

interval values provided by the expert’s  

• Unable to deal criterion incomplete weight 

information. 

 

6. Conclusion 

 Dealing indeterminacy is an essential work to get an optimized output in any problem and control 

system as well. It is possible only with Neutrosophic logic and that too effectively by interval valued 

Neutrosophic setting as it has lower and upper membership function for three independent membership functions 

namely truth, indeterminacy and falsity. In this paper, Dombi Single valued Neutrosophic Graph and Dombi 

Interval valued Neutrosophic Graph have been proposed. Also it has been proved that Cartesian product and 

composition of two DIVNGs are DIVNG with numerical example. Also an importance of the Neutrosophic 

Controllers has been given theoretically and its use in traffic control management. It has been pointed out that 

instead of using minimum and maximum operations, triangular norms namely T Norm and T-Conorm can be 

used in control system such as traffic control management. Advantage and limitations has been discussed for 

crisp sets, fuzzy sets, and type-2 fuzzy sets, Neutrosophic Sets, Interval Valued Neutrosophic Sets, Neutrosophic 

Graphs, Interval Valued Neutrosophic Graphs, Dombi Fuzzy Graphs, Dombi Neutrosophic Graphs and Dombi 

Interval Valued Neutrosophic Graphs.  
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Abstract. Neutrosophic (NS) set hypothesis gives another way to deal with the vulnerabilities of the shortest path problems 

(SPP). Several researchers have worked on fuzzy shortest path problem (FSPP) in a fuzzy graph with vulnerability data and 

completely different applications in real world eventualities. However, the uncertainty related to the inconsistent information 

and indeterminate information isn't properly expressed by fuzzy set. The neutrosophic set deals these forms of uncertainty. 

This paper presents a model for shortest path problem with various arrangements of integer-valued trapezoidal neutrosophic 

(INVTpNS) and integer-valued triangular neutrosophic (INVTrNS). We characterized this issue as Neutrosophic Shortest way 

problem (NSSPP). The established linear programming (LP) model solves the classical SPP that consists of crisp parameters. 

To the simplest of our data, there's no multi objective applied mathematics approach in literature for finding the Neutrosophic 

shortest path problem (NSSPP). During this paper, we tend to introduce a multi objective applied mathematics approach to un-

ravel the NSPP. The subsequent integer valued neutrosophic shortest path (IVNSSP) issue is changed over into a multi objec-

tive linear programming (MOLP) issue. At that point, a lexicographic methodology is utilized to acquire the productive ar-

rangement of the subsequent MOLP issue. The optimization process affirms that the optimum integer valued neutrosophic 

shortest path weight conserves the arrangement of an integer valued neutrosophic number. Finally, some numerical investiga-
tions are given to demonstrate the adequacy and strength of the new model. 

 
Keywords: Triangular neutrosophic fuzzy numbers; shortest path problem; network distribution; optimization technique; 

 

1. Introduction and review of the literature: 

The SPP, which uses on determining the shortest path (SP) between a specified source vertex (SV) and 
destination vertex (DV), is a well-known and fundamental combinatorial optimization problem. The SPP appears 
in many real life applications, e.g., routing [1], supply chain management problems[2], computer networks [3] 
etc. as a sub problem. Some effective algorithmic approaches were introduced by Dijkstra[4] and Floyd[5] in 
between 1950 and 1970. We refer these algorithms as classical algorithms. In classical algorithms for SPP, the 
costs of the arcs in a SPP are considered as real numbers, i.e., crisp number.  
 
The arc costs of a SPP are used to represent the travelling cost, distance, time or other variable in the real world 
scenarios. In practical application of SPP, the edge weights in the path of a graph have some parameters which 
are very hard to find exactly, i.e., capacities, distance, costs, demands, traffic frequencies, etc. For example, the 
geographical distance between two cities may be recognized exactly, however, the travelling cost or travelling 
time may change due to weather, accident and traffic flow. So, the edge weights are nondeterministic in such 
situations and it is impossible to use the classical algorithm to find exact solution of the SPP in such uncertain 
environment. Many researchers thought that uncertainties due to nondeterministic environment adjust to 
randomness and they proposed the concept of probability SPP[6-7] and stochastic SPP[8-9]. Fuzziness is applied 
to randomness for dealing uncertainties of SPP. The SPP with fuzzy arc lengths (FAL), defined as FSPP, 
represents the type 1 fuzzy (T1-F) number as FAL. Dubois and Prade[10] first introduced FSPP based on 
classical Floyd and Ford-Moore-Bellman method. Till date, numerous researchers have worked on FSPP[11-22] 
T1-F variables are generally used in FSPP. However, if the arc lengths of a graph change under some specific 
condition such as travelling time or arc lengths are collected from more than one source which changes regularly. 
So, it becomes very hard to represent those lengths by using T1-F number. For example, we are generally unable 
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to give the mathematical description of traffic frequency of a road in different time. These types of information 
are collected from a set of person using some questionnaires which consists of uncertain words. The classical 
fuzzy set is unable to handle these types of uncertainties as their membership values are completely crisp. These 
types of uncertainty can be modeled by type-2 fuzziness. In type 2 fuzzy(T2-F) sets have membership values that 
are also fuzzy. Few researchers have work on SPP with T2-F set as arc lengths. The membership degree in fuzzy 
set or T2-F set is unable to model the ambiguous situation of the SPP. To solve this problem, Atanassov[23] 
have introduced the idea of intuitionistic fuzzy (INF) set which is described by membership and non-
membership degree and it can also deal the imprecision information. Recently,[24] has used INF set as arc length 
of SPP. However, T1-F set, INF set and T2-F set have no capability to understand all possibilities of 
indeterminate or inconsistent information of SPP. 
 
We use multi objective linear programming (MOLP) optimization approach on this paper. The traditional MOLP 
is related to crisp parameters. However, in real world situation, the variables for multi criteria decision making 
(MCDM) troubles are obscure in nature which has been discussed above. Such vulnerabilities results to 
expanded troubles in the related streamlining endeavors. Basically evading these vulnerabilities is unfortunate as 
it might influence the choice making[25-26]. Henceforth, vulnerability ought to be taken care of by inaccurate 
LP techniques. Amid the most recent couple of decades, immense number of vague LP techniques has been set 
up to deal with different vulnerabilities. Those methods classified into three classes, i.e., single objective fuzzy 
linear programming, bi-objective fuzzy linear programming, and multi-objective fuzzy linear programming. 
Najafi&Edaltpanah [27], Hosseinzadeh &Edaltpanah[28], and so forth. There have been many researches in past 
regarding multi-objective linear programming technique under neutrosophic environment. Das and Roy [29] 
suggested an innovative application of neutrosophic optimization technique in riser design problem. Hezam et al. 
[30] came up with Taylor series approximation to solve these kinds of problems. Sarkar et al.[31] attained 
powerfully neutrosophic goal programming process using structural design optimization. Ahmed et al.[32] 
proposed an interesting technique for solving nonlinear problems using hesitant fuzzy computational algorithm. 
Fahmi et al.[33] proposed Triangular Cubic Hesitant Fuzzy Einstein Hybrid Weighted Averaging Operator, 
Islam & Ray[34] introduced Multi-objective portfolio selection model. To the excellent of our facts, there's no 
multi-goal LP version in literature for SPP with NS number.  

 
In this paper, we represent the edge weight as neutrosophic number. In 1998, Smarandache[35-36] has 
introduced the idea of NS set which can deal with vague, indeterminate and inconsistent information of the 
problem that may exist in the real word scenarios. It is an extension of crisp set, T1-F set and INFu set. A NS set 
is described by three membership degrees of truth, indeterminate and a false. This three independent membership 
degrees are within the non-standard unit interval ] 0, 1+[. However, the membership degree of fuzzy set lies 
between the interval [0,1]. Recently, the NS set is used for modeling many engineering applications because it 
can deal with incomplete information as well as the inconsistent and indeterminate information. Some of the 
recent works on NS related problem are available in references [37-46 ]. Moreover, there are many researchers 
who have introduced some significant operators for decision- making in engineering technicalities under 
neutrosophic environment. Ye [47] invented a new operator for  trapezoidal neutrosophic set, Deli [48] proposed 
innovative operators on single valued trapezoidal neutrosophic numbers, Gulistan et al.[49] introduced 
Neutrosophic Cubic Mean Operators and Entropy , Khan et al.[50] attained Interval Neutrosophic Dombi Power 
Bonferroni Mean Operators, Fahmi et al.[33] proposed Triangular Cubic Hesitant Fuzzy Einstein Hybrid 
Weighted Averaging Operator, Khan et al.[51] suggested Neutrosophic Cubic Einstein Geometric Aggregation 
Operators and many others[52-58] These operators are used in handling different real life technicalities. We have 
tabulated all those important influences of different researchers who have introduced these real life applications 
in Table 1. 
 
Table 1. Important influences of different researchers for real life applications of operators for decision-making 
under Neutrosophic environment. 
Author and references Year Significance influences 
Kour & Basu [59] 2015 Real-life transportation problem using extended fuzzy programming 

techniq-ue. 
Shahzadi et al. [60]  2017 Single-Valued Neutrosophic Sets in Medical Diagnosis. 

Mohamed et al. [61] 2017 Neutrosophic integer programming problem. 

Kour & Basu [62] 2017 Sorting of transportation companies. 

Abdel-Basset et al. [63] 2018 Linear programming problem applied in diary industries. 

Mondal et al. [64]  2018 Single valued neutrosophic hyperbolic sine similarity mea-sure based on 
madm strategy. 

Altinirmak et al. [65]  2018 Evaluation of mutual funds’ performance via a case study carried out in 
Turkey. 



 136          Neutrosophic Sets and Systems, Vol. 24, 2019 

R. Kumar, S A Edalatpanah, S. Jha, S. Broumi, R. Singh, and A. Dey,              MOP Approach to solve IVNS-SPP 

Alava et al. [66] 2018 Analytic hierarchy process for project selection.  
Dey  et al. [67] 2018  Minimum spanning trees for undirected graphs. 

Teruel et al. [68] 2018 Selection of cloud computing services based on consensus. 

Broumi et al. [69]  2018 Spanning Tree Problem with Edge Weights. 

Mohamed et al. [70] 2017 Critical path problem. 
   
Table 2, charts some significant influences towards NSPP. Based on the previous discussions on SPP and 
currently available data as mentioned in below table, there are no existing methods which are available for  
MOLP under neutrosophic environment .Therefore, there is a need to establish a neutrosophic version multi 
objective linear programming for neutrosophic shortest path problems. 
 
Table 2. Significance influences of different authors towards neutrosophic shortest path problem 
Author and references Year Significance influences 
Broumi et.al.[71] 2016b Dijkstra principle for interval based data based problems. 

Broumi et.al.[72] 2016c Single valued trapezoidal NS numbers for dijkstra principle 

Broumi et.al.[73] 2016d Single valued NS Graphs in SPP 
Broumi et.al.[74] 2017a Neutrosophic setting along with trapezoidal fuzzy for proce-ssing SPP. 

Broumi et.al.[75] 2017b Bipolar neutrosophic environment. 

Broumi et.al[76] 2017c Interval-valued NS setting environment for process-ing SPP. 
Broumi et.al[77] 2018 Invented decision-making problem for maximization of deviation method 

with partial weight under the neutrosophic environment 
Kumar et al.[78]  2018 A new algorithm based on score function for finding the neutrosophic 

shortest path problems. 
Broumi et.al.[79] 2019 Interval valued trapezoidal and triangular neutrosophic envir-onment using 

improved score and center of gravity function for finding SPP. 

 
To the nice of our facts, there are no multi-objective linear programming (MOLP) models in literature for SPP 
under NS environment. Additionally, the currently available methods for solving SPP have a significant number 
of limitations and drawbacks which have been explained in different sections of this paper. This complete scena-
rio has motivated us to come up with a new method for solving SPP with neutrosophic range which are formu-
lated and solved with the use of multi-goal linear programming model for the first time. 
 
NS set theory is documented technique to manage uncertainty in optimization problem. SPP with NS variety etc. 
area unit represented by few researchers. The most contributions of this paper as follows.  

 This approach helps to resolve a new set of problem with NS number. 
 We define the SP problem below integer valued neutrosophic surroundings and recommend an efficient 

answer technique to locate the ultimate integer valued neutrosophic path weight and the corresponding 
integer valued neutrosophic course.  

 First time within the literature of neutrosophic set, we tend to introduce a lexicographical approach in 
conjunction with multi objective linear programming method. 

 
Whatever remains of the paper is systemized as pursues: In Segment 2, some fundamental ideas of whole 
number esteemed neutrosophic numbers are exhibited. In Segment 3, the scientific detailing of the SP issue 
under whole number esteemed neutrosophic condition is given.and also, another technique is proposed for taking 
care of a similar issue. In Segment 4, a numerical precedent is given to represent the proposed arrangement 
system. In segment 5, result and disscussion. At last, we conclude the paper in Segment 6. 

2. Preliminaries 

Definition 2.1: [80] : Let X be a space point or objects, with a genetic element in X denoted by x. A single-valu-

ed NS, V in X is characterised by three independent parts, namely truth-MF ,VT indeterminacy-MF VI and falsity 

-MF ,VF such that : [0,1], : [0,1],   : [0,1].V V VT X I X and F X    

Now, V is denoted as   , ( ), ( ), ( )  | ,V V VV x T x I x F x x X     satisfying 0 ( ) ( ) ( ) 3.V V VT x I x F x     

Definition 2.2: [81]: Let    , , , , , ,
ˆ , , , , , ,N

ij l ij m ij k ij l ij m ij kr r r r r r r     , , ,, ,ij l ij m ij kr r r  is a special NS on the real number 

set R, whose truth-MF ( ),r x  indeterminacy-MF ( ),r x  and falsity-MF ( )r x are given as follows: 
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Where ˆ0 ( ) ( ) ( ) 3, N
r r rx x x x r          

The parametric form is defined as follows 
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Example 2.1: Now consider the a integer value neutrosophic number i.e. <(0.3,0.4,0.6);(0.1,0.4,0.5);(0.3, 0.5, 
0.7)> then we get the membership function as shown in figure 1 where red graph denotes truth membership , 
green denotes falsity and blue denotes indeterminacy function. 

Definition 2.3:[61-63]: Arithmetic operation).Let    , , , , , ,
ˆ , , , , , ,N

ij l ij m ij k ij l ij m ij kr r r r r r r     , , ,, ,ij l ij m ij kr r r and 

     , , , , , , , , ,
ˆ , , , , , , , ,N

ij l ij m ij k ij l ij m ij k ij l ij m ij ks s s s s s s s s s    be two arbitrary SVTNNs, and 0;  then: 
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Figure 1: membership of function of example 2.1. 

 

Definition 2.4: [47]: Let    , , , , , ,
ˆ , , , , , ,N

ij l ij m ij k ij l ij m ij kr r r r r r r     , , ,, ,ij l ij m ij kr r r  then the score function and the 

accuracy function are defined as follows:  

       , , , , , , , , ,

1
8 2 2 2

12
ij l ij m ij k ij l ij m ij k ij l ij m ij ks r r r r r r r r r r               
    

                        
     , , , , , ,

1
2 2

4
ij l ij m ij k ij l ij m ij kH r r r r r r r          
  

 

Definition 2.5. [47]:      , , , , , , , , ,
ˆ , , , , , , , ,N

ij l ij m ij k ij l ij m ij k ij l ij m ij kr r r r r r r r r r    and  , , ,
ˆ , , ,N

ij l ij m ij ks s s s     , , ,, , ,ij l ij m ij ks s s  

 , , ,, ,ij l ij m ij ks s s be two arbitrary SVTNNs, the ranking of r and s by score function is described as follows: 

1.       if s r s s then r s      

2.        if s r s s and if   

a.        H r H s then r s      

b.        H r H s then r s      

c.        H r H s then r s      

3. The Proposed model  

Before we start the main algorithm, we introduce a sub-section i.e., shortcoming and limitation of some of 
the existing models: 

3.1 Discussion on shortcoming of some of the existing methods
 

At first, we talked about the inadequacy and constraint of the current techniques under various kinds of 
NS condition.  
 
Broumi et al.[73,75-77] proposed various techniques to locate the most brief way under various sorts of NS 
condition. In any case, we watch few shortcoming and confinement of the current techniques which is talked 
about beneath.  
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1. Author utilized some invalid numerical presumption to tackle the issue. This has been talked about 
in detail in Example 3.1. 

2. Author utilized some numerical definition for anticipating the best course among the two conti-
nuous ways. In any case, we see that this presumption can't anticipate the best course if both the 
way has a similar score work. This has been talked about in detail in Example 3.2. 

3. Author used some invalid mathematical assumption to resolve the matter. This has been mentioned 
well in Example 3.3. Here, we have a tendency to observe that the authors used score and accuracy 
functions with constant price. However, by this formulation, it's troublesome to settle on the short-
est path in between the 3 consecutive nodes. Therefore, we can’t decide the higher route to achieve 
the destination and therefore the journey is terminated 

 
Therefore, we tend to conclude that the present technique isn't valid because of higher than mentioned short-
comings and limitations. This has driven us to propose few new strategies that overcome such limitations 
and also the projected strategies are careful below in section 4. 

Example 3.1: Broumi et al:[73] Here authors have considered two arbitrary i.e., ,e f be the following IVTrNS 

numbers: 

     0.36,0.58,0.75 , 0.06,0.25,0.36 , 0.04,0.1,0.18 ,e   

     0.4,0.6,0.8 , 0.2,0.4,0.5 , 0.1,0.3,0.4 .f   

We observe that the authors used the identical invalid mathematical assumption to solve the hassle i.e., 

( ) ( ) ( )S e f S e S f    

 

 

Our goal is to show that the above-taken into consideration assumption isn't legitimate for all instances such as 

( ) ( ) ( ).S e f S e S f    

 

 

 
Solution : In this example, the authors Broumi et al. (2016), kind of like strategies of Broumi et al.[73,75-
77] contemplate the incorrect assumption. in keeping with the strategy of Broumi et al. [73] [see; iteration 
five, page no 173, ref. Broumi et al. (2016)] , we have::  

   

 

   

 

0.36,0.58,0.75 , 0.06,0.25,0.36 , 0.4,0.6,0.8 , 0.2,0.4,0.5 ,

0.04,0.1,0.18 0.1,0.3,0.4
e f    

     0.616,0.832,0.95 , 0.012,0.1,0.18 , 0.004,0.03,0.072 .e f   

Therefore, we get, ( )S e f  0.8225 . but ( ) ( )S e S f   = 1.1394.  

Hence, It is clear that ( ) ( ) ( ).S e f S e S f      

Subsequently, In this manner, we can say that the technique for Broumi et al.[73] isn't substantial. 
Example 3.2: Let us keep in mind a network proven in figure 1. The supply node i.e. 1 is connected to a few 
special nodes i.e. node 2, node three, node four with the subsequent values: 

     (1, 2) 1,3,15 , 1, 2,3 , 2, 4,12 ,Arc   

     (1,3) 3,5,14 , 1,1,5 , 4,6,11 ,Arc 
 

     (1, 4) 7,10,15 , 0, 2,4 , 8,11,12 ,Arc   

 

Figure 2.The network with 6 edges and 5 nodes. 

Here author aim is to predict the simplest path best route among the three consecutive ways. 
 
we observe that we won't predict the simplest route if a number of the trail have a similar score perform. 
Solution: To succeed in the destination node from the supply node, there square measure 3 doable ways that, i.e., 
via node 2, node 3 or node 4. However, in keeping with the Definition 2.4-2.5, the projected technique gives: 

     (1, 2) (1,3) (1, 4) 0s Arc s Arc s Arc   ,      (1,2) (1,3) (1,4) 0H Arc H Arc H Arc    
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Here, we have a tendency to observe that the authors used score and accuracy functions with constant price. 
However, by this formulation, it's troublesome to settle on the shortest path in between the 3 consecutive nodes. 
Therefore, we have a tendency to can’t decide the higher route to achieve the destination and therefore the 
journey is terminated. 

Example 3.3: We consider two arbitrary, i.e., ,e f be the following two different Type IVTpNS numbers: 

     1,3,15 , 1,2,3 , 2,4,12e   

     3,5,14 , 1,1,5 , 4,6,11 .f   

We observe that the authors used the identical invalid mathematical assumption to solve the hassle, i.e.,  

      if s e s f and  ( ) ( )  H e H f then e f     

Our goal is to show that the above-taken into consideration assumption isn't legitimate for all instances..  

This above circumstance is valid simplest when    ( ) ( )e f then only H e H f         and s e s f 
 

but not necessarily it is valid        if s e s f and  ( ) ( )  H e H f then e f     

Solution: Broumi et al. [63] suggested mathematical formulas show that  

    0 s e s f  , ( ) ( ) 0H e H f   

Here, we observe that        if s e s f and  ( ) ( )  H e H f then e f     

but in this case, .e f   Hence, we conclude that the method suggested by Broumi et al.[73] IVTrNS 

environment is scientifically incorrect. 
 
3.2. Existing crisp model in SPP 
In this section, we have a tendency to study the notation and existing linear model in crisp and proposed 
neutrosophic SPPs. 
Notations 
  : Starting node  
  : Final destination node 

1

s

mk
k

x

  : The total flow out of node s. 

1

s

mk
k

x

 : The total flow into node s. 

mkRK  : The shortest distance from associate degree mth node to kth node. 

The crisp SPP problem within the applied math model is as follows [78,82] 

1 1

s s

mk mk
m k

Min RK x
 

   

Subject to:                                                                                                     (4) 

1 1

s s

mk km m
m k

x x 
 

   


 

for all mkx   and non-negative where , 1,2,.....,m k s  and: 

  1       ,

  0      1, 2,.......... , 1

1     .

m

if m

if m

if m



 


    
 

 




                                                                 (5) 

 
3.3. Transformation of crisp SPP model into nutrosophic SPP  
If we tend to replaced the parameter mkRK  into neutrosophic parameters, i.e.. N

mkRK , then the applied math 
model of the neutrosophic surroundings is as follows: ( Kumar et al. [78 ] )  

1 1

. 
s s

N
mk mk

m k

Min RK x
 

   

Subject to:                                                                                                 (6) 

1 1

s s

mk km m
m k

x x 
 

   


    , 1, 2,....., .m k s  

mkx   And are non-negative. 
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3.4. Algorithm: A novel approach for finding the SPP under IVTrNS environment 
We consider a directed acyclic graph whose arc lengths are represented by neutrosophic number. Our proposed 
algorithm finds the shortest path from the source node s to the destination d of the graph. The steps of the 
algorithm are as follows: 
 
In this section, we tend to provide a completely unique methodology for locating absolutely the NSP in 
conjunction with the NSPL. we tend to think about IVTrNS numbers for the parameters. 
 
Step 1: Consider the neutrosophic model that is as follows. 

     , , , , , , , , , , , , , , , , ,ij l ij m ij k ij l ij m ij k ij l ij m ij k abMin NSC NS NS NS NS NS NS NS NS NS x                (7) 

Subject to constraints  
Subject to:                                                                             

1 1

s s

mk mk m
m k

  
 

   


 

for all mk   and non-negative where , 1,2,.....,m k s  and

 


  1       ,

  0      1, 2,.......... , 1

1     .

m

if m

if m

if m



 


       
  




                             (8) 

Step 2: Use the arithmatic operation from the definition 2.3, then we get 

, , , ,
1 1 1 1 1 1 1 1

, ,
1 1 1 1

,
1 1

, , , ,

; ;

, ,

,

k k k k k k k k

ij l ab ij m ab ij l ab ij m ab
a b a b a b a b

k k k k

ij k ab ij k ab
a b a b

k k

ij l ab
a b

NC x NC x NC x NC x

NC x NC x

NSC

NC x N

       

   

 

   
      

   
   

    
   





   

 



 



,
1 1

,
1 1

,

,

k k

ij m ab
a b

k k

ij k ab
a b

C x

NC x

 

 

 
 

 
 

 
 





         (9) 

With subject to constraints (8) 
Step 3: Solve the following crisp SP problem using standard algorithm such as  

*

,
1 1

        
k k

l l ab l ab
a b

NC Min NC NC x
 

                    (10) 

With subject to constraints (8) 

The optimum value of model 10, is 
*

lNC  

Step 4: Once more solve the subsequent crisp LPP mistreatment customary algorithmic program. 
*

,
1 1

        
k k

m m ab m ab
a b

NC Min NC NC x
 

                    (11) 

With subject to constraints 
*

,
1 1

m m

ab l ab l
a b

NC x NC
 

     

Constraints of model (10) 

The optimal value of model 11 is 
*

mNC  

Step 5: Again solve the subsequent crisp LPP mistreatment customary algorithmic program. 
*

,
1 1

        
k k

k k ab k ab
a b

NC Min NC NC x
 

                    (12) 

With subject to constraints 
*

,
1 1

m m

ab m ab m
a b

NC x NC
 

     

Constraints of model 11 

The optimal value of model 12 is 
*

kNC  
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Step 6: Similarly, solve the subsequent crisp LPP mistreatment customary algorithmic program. 

*
,

1 1

        
k k

l l ab l ab
a b

NC Min NC NC x
 

                  (13) 

With subject to constraints 
*

,
1 1

m m

ab k ab k
a b

NC x NC
 

     

Constraints of model 12  
The optimal value of model 13 is 

Step 7: Again solve the subsequent crisp LPP mistreatment customary algorithmic program.
 

*
,

1 1

        
k k

m m ab m ab
a b

NC Min NC NC x
 

                  (14) 

With subject to constraints 

*
,

1 1

    
k k

ab l ab l
a b

NC x NC
 

   

Constraints of model 13  

The optimal value of model 14 is *
mNC  

Step 8: Again solve the subsequent crisp LPP mistreatment customary algorithmic program. 

*
,

1 1

        
k k

k k ab k ab
a b

NC Min NC NC x
 

                  (15) 

With subject to constraints 

*
,

1 1

    
k k

ab m ab m
a b

NC x NC
 

   

Constraints of model 14  

The optimal value of model 15 is *
kNC  

Step 9: Again solve the subsequent crisp LPP mistreatment customary algorithmic program. 

*

,
1 1

        
k k

l l ab l ab
a b

NC Min NC NC x
 

                  (16) 

With subject to constraints 

*
,

1 1

    
k k

ab k ab k
a b

NC x NC
 

   

Constraints of model 15  

The optimal value of model 16 is 
*

lNC  

Step 10: Again solve the subsequent crisp LPP mistreatment customary algorithmic program. 

*

,
1 1

        
k k

m m ab m ab
a b

NC Min NC NC x
 

                  (17) 

With subject to constraints 

*

,
1 1

k k

ab l ab l
a b

NC x NC
 

   

Constraints of model 16  

The optimal value of model 17 is 
*

mNC  

Step 11: Again solve the subsequent crisp LPP mistreatment customary algorithmic program. 

*

,
1 1

        
k k

k k ab k ab
a b

NC Min NC NC x
 

                  (18) 

With subject to constraints 

*

,
1 1

k k

ab m ab m
a b

NC x NC
 

   

Constraints of model 17  

The optimal value of model 18 is 
*

kNC  

 
Theorem 1:The optimal value of model (18) provides the optimum value of IVNSSP problem (7). 
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Proof:let *
abx be the ideal arrangement of model (18) and abx  be an arbitrary neutrosophic viable solution of 

IVNSSP (7). the solution system of the proposed technique confirms that the most excellent solution of problem 

(18) is the greatest answer of the problems (7)-(17). Owing the optimality of *
abx  for problem (10) and feasibility 

of abx  for problem (10), we conclude that 
*

*
, ,

1 1 1 1

k k k k

l ab l ab ab l ab
a b a b

NC NC x NC x
   

         moreover, owing the 

optimality of *
abx  for hassle (11) and we conclude that 

*
*

, ,
1 1 1 1

k k k k

m ab m ab ab m ab
a b a b

NC NC x NC x
   

         similar 

discussions make sure that 
*

*
, ,

1 1 1 1

,
k k k k

k ab k ab ab k ab
a b a b

NC NC x NC x
   

        * *
, ,

1 1 1 1

k k k k

l ab l ab ab l ab
a b a b

NC NC x NC x
   

     
 

* *
, ,

1 1 1 1

,
k k k k

m ab m ab ab m ab
a b a b

NC NC x NC x
   

      * *
, ,

1 1 1 1

k k k k

k ab k ab ab k ab
a b a b

NC NC x NC x
   

       

* *
, ,

1 1 1 1

,
k k k k

l ab l ab ab l ab
a b a b

NC NC x NC x
   

      * *
, ,

1 1 1 1

,
k k k k

m ab m ab ab m ab
a b a b

NC NC x NC x
   

       

* *
, ,

1 1 1 1

,
k k k k

k ab k ab ab k ab
a b a b

NC NC x NC x
   

       

Therefore  

 
 

 

* * * , , ,
1 1 1 1 1 1, , ,

* * *
, , , ,

* * *

, , ,

, , , ;
, , ,

, , ,

, ,

k k k k k k

ij l ab ij m ab ij k ab
a b a b a bab l ab m ab k

ab l ab m ab k ij l

ab l ab m ab k

NC x NC x NC x
NC NC NC

NSC NC NC NC NC x

NC NC NC

     

 
   

 

 

    
  

 , ,
1 1 1 1 1 1

, , ,
1 1 1 1 1 1

, , , ;

, , ,

k k k k k k

ab ij m ab ij k ab
a b a b a b

k k k k k k

ij l ab ij m ab ij k ab
a b a b a b

NC x NC x

NC x NC x NC x

     

     

 
  

 

 
   

 

  

  

  

 
4.  Example of network application: 

To justify our proposed algorithms, we consider a network shown in Figure 3 [Broumi et al.[73,75-77], Kumar et 
al. [78] ] and figure 4 [Kumar et al. [11]] 

Example 4.1: Consider a network (Figure 3), with six nodes and eight edges, where node 1 is the SV and 

node 6 is the DV. The IVTrNS cost is given in Table 3[73]. 

Table 3. The conditions of Example 4.1 [73] 

T H IVTrNS Cost T H IVTrNS Cost 

1 2 <(0.1,0.2,0.3);(0.2,0.3,0.5);(0.4,0.5,0.6)> 3 4 <(0.2,0.3,0.5);(0.2,0.5,0.6);(0.4,0.5,0.6)> 

1 3 <(0.2,0.4,0.5);(0.3,0.5,0.6);(0.1,0.2,0.3)> 3 5 <(0.3,0.6,0.7);(0.1,0.2,0.3);(0.1,0.4,0.5)> 

2 3 <(0.3,0.4,0.6);(0.1,0.2,0.3);(0.3,0.5,0.7)> 4 6 <(0.4,0.6,0.8);(0.2,0.4,0.5);(0.1,0.3,0.4)> 

2 5 <(0.1,0.3,0.4);(0.3,0.4,0.5);(0.2,0.3,0.6)> 5 6 <(0.2,0.3,0.4);(0.3,0.4,0.5);(0.1,0.3,0.5)> 

   *IVTrNS: Integer valued triangular neutrosophic  
 
Solution: Applying steps 1-11 in proposed Algorithm, we get the NSSP as 1 2 5 6    with the NSPL is 
<(0.4, 0.8, 1.1), (0.8, 1.1, 1.5), (0.7, 1.1, 2.1)>.  

  

Figure 3.A network where node 1 is the SV and node 
6 is the DV[Broumi et al.[73,75-77], Kumar et al. [78] 

Figure 4. A network with eleven vertices and 
twenty-five edges Kumar et al. [11] 
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Solution approach is shown in below steps:  
 
Step 1:  The GVNSSP model is detailed as shown in equation 7: 

           12 130.1,0.2,0.3 ; 0.2,0.3,0.5 ; 0.4,0.5,0.6 0.2,0.4,0.5 ; 0.3,0.5,0.6 ; 0.1,0.2,0. 3Min GVC x x      

           23 250.3,0.4,0.6 ; 0.1,0.2,0.3 ; 0.3,0.5,0.7 0.1,0.3,0.4 ; 0.3,0.4,0.5 ; 0.2,0.3,0.6x x          

           34 350.2,0.3,0.5 ; 0.2,0.5,0.6 ; 0.4,0.5,0.6 0.3,0.6,0.7 ; 0.1,0.2,0.3 ; 0.1,0.4,0.5x x        

           46 560.4,0.6,0.8 ; 0.2,0.4,0.5 ; 0.1,0.3,0.4 0.2,0.3,0.4 ; 0.3,0.4,0.5 ; 0.1,0.3,0.5x x        

Subject to constraints in line with equation (8) 

12 13 1;x x    23 25 12 ;x x x    34 35 13 23 ;x x x x     

46 34 ;x x   56 25 35 ;x x x    56 46 1;x x    

Step 2: Execute the arithmatic operation on equation (7) then proceed to step 3 
Step 3: Now we get the linear standard equation (10)  

12 46 13 34 56 25 23 3

*

50.1   0.4   0.2   0.2   0.1   0.2   0.3   0.3   r r x x xNGV M x xn GV x xN xi                    

Subject to constraints in line with equation (8) 
 After excecuting the LPP then the optimal solution is 0.4. 
Step 4: Now we get the linear standard equation (11)  

*

12 46 13 34 56 25 23 350.2   0.6   0.4   0.3   0.3   0.3   0.3   0. 3  a aNGV Min N x x x x x x x xGV                   

Subject to constraints in line with equation (10) and  

12 46 13 34 56 25 23 350.1   0.4   0.2   0.2   0.1   0.2   0.3   0.3 0.4;x x x x x x x x                

After excecute the LPP then the optimal solution is 0.8 
Similarly proceed from step 5 to step 11, we get the final optimum solution the NSSP is 1 2 5 6    and the 
GVNSSPL is <(0.4, 0.8, 1.1), (0.8, 1.1, 1.5), (0.7, 1.1, 2.1)>. 
 Finally the shortest route is shown in figure 5: 

 
Figure 5: shown the suggested shortest route 

 
Figure 6.  Membership graph for solution obtained 
in example 4.2. 

Example 4.2. Consider figure 4 with 11 nodes and 25 edges, where SV is 1 and DV is 11. The IVTrNS time 

is given in Table 4[81]. 

Table 4. The conditions of Example 4.2 [81] 

T H TrNS time T H TrNS time 

1 2 <(1,3,15);(1,2,3);(2,4,12)> 9 7 <(5,10,15); (2.5,5,7.5);(10,17.5; 19)> 

1 6 <(3,5,14);(1,1,5);(4,6,11)> 10 7 <(4,6,8); (3,6,9);(1,1.75,2.5)> 

1 9 <(7,10,15);(0,2,4);(8,11,12)> 4 6 <(9,16,23);(5.5,11,16.5);(11,19.25,25)> 

1 10 <(1,3,4); (1,1,5);(1,2,6)> 10 11 <(0,4,11);(0,1,4.5);(7.5,11.75,24)> 

2 3 <(10,15,20);(14,16,22); (12,15,19)> 1 3 <(0,1,3);(0,1,6);(1,1,2)> 

2 5 <(20,60,120);(7.5,30,67.5);(10,30.63,62.5)> 4 11 <(1,2,3);(0.5,1.5,2.5);(1.2,2.7,3.5)> 

3 4 <(12,18,24);(9,18,27);(3,5.25,7.5)> 2 9 <(0.5,1.5,2.5);(0.3,1.3,2.2);(0.7,1.7,2.2)> 

3 5 <(0.3,1.2,2.8);(0.5,1.5,2.5);(0.8,1.7,2.7)> 3 8 <(1,3,5);(0.5,1.5,2.5);(1.2,2.7,4.5)> 

4 5 <(1,5,8);(1.5,3,6.5);(4,7,9)> 6 11 <(1,4,7);(1,3,5);(3.5,6,7.5)> 

5 6 <(2,4,6);(1.5,2.5,3.5);(3,5,7)> 7 11 <(1,5,9);(1.5,4.5,6.5);(4,7,10)> 

7 6 <(1,5,8);(1.5,3.5,6.5);(4,6,8.5)> 9 8 <(10,15,20);(14,16,22); (12,15,19)> 

8 4 <(12,18,24);(9,18,27);(3,5.25,7.5)> 9 10 <(4,6,8); (3,6,9);(1,1.75,2.5)> 

8 7 <(9,16,23);(5.5,11,16.5);(11,19.25,25)>    
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Solution: Applying steps 1-11 in proposed Algorithm, the NSSP is 1 10 11   and the NSSPL is <(1, 7, 15);(1, 
2, 9.5);(8.5, 13.75, 30)>. The result is shown in Table 4. And the final NSSPL shown in figure 6 where red graph 
is the truth value , green value is falsity value and blue value indeterminancy value. 
 

5. Result and Discussion 
At first, we examined the Example 4.1, which is considered by Broumi et al.[73], We found that the proposed 
calculation gives indistinguishable SPP recommended by Broumi et al. [73] however in Model 4.1, their 
proposed least neutrosophic time taken is <(0.352, 0.608, 0.748), (0.018, 0.048,0.125), (0.002, 0.018, 0.09)> 
which isn't like our proposed neutrosophic time<(0.4,0.8, 1.1),(0.8, 1.1, 1.5), (0.7, 1.1, 2.1)>. So as to assess 
which time taken are progressively exact we execute def. 2.4-2.5, we found that Broumi et al. [73] recommended 
time gives 0.8291 scoring value, if there should arise an occurrence of  Example 4.1 while our proposed 
technique gives 0.1333 scoring value in the event of Example 4.1. So obviously our recommended time is 
increasingly precise. So plainly our recommended neutrosophic times are increasingly exact. Also, our proposed 
techniques foresee the better neutrosophic ongoing values as contrasted and the referenced existing strategies. 

This can be logically shown as Broumi et al. Method [73] our proposed method.  The best part about our 

proposed calculations is that it gives the fresh ideal cost esteems as contrasted and the present existing technique. 
This is appeared in Table 5 (Numerical examination with existing techniques) individually.  
 
Presently, we consider Example 4.2, any of the current strategies cannot take care of these two issues because of 
the impediment of the current techniques which is examined before in Section 3. As a result of these restrictions, 
the current technique isn't substantial. Presently, subsequent to executing proposed Calculation; in Example 4.2 , 
the NSSP and the NSRT is1 10 11   and is <(1, 7, 15);(1, 2, 9.5);(8.5, 13.75, 30)>Obviously the current 
techniques are not material wherever our proposed strategies execute the ideal arrangement. 

Table 5. Numerical Comparison of our proposed method with the existing methods. 

Ex The method’s name Proposed path SVNSPP 

 

 

4.1 

Process 1 [75]  NA 

Process 2 [73] 1 2 5 6    NSOC: <(0.352, 0.608, 0.748), (0.018, 0.048,0.125), (0.002, 

0.018, 0.09)> 

Process 3 [76] - NA 

Process 4 [77] - NA 

Suggested Algorithm 1 2 5 6    Suggested NSOC: <(0.4,0.8, 1.1),(0.8, 1.1, 1.5), (0.7, 1.1, 2.1)>. 

 

 

4.2 

Process 1 [75]  NA 

Process 2 [73]  NA 

Process 3 [76]  NA 

Process 4 [77]   NA 
Suggested Algorithm 1 10 11   Suggested NSOT: is <(1, 7, 15);(1, 2, 9.5);(8.5, 13.75, 30)> 

*NSOC: Neutrosophic optimum cost. *NSOT: Neutrosophic optimum time. 

Because of these capabilities, we can say that our proposed algorithms are superior to the existing methods. 

 
6. Conclusion 

 
Conventional SPP expect exact qualities for the curve loads which isn't generally the situation in genuine cir- 
cumstances. In this paper, a SPP having number esteemed neutrosophic circular segment loads has been explored. 
We intially figured the issue in the number esteemed neutrosophic condition. At that point, we proposed another 
arrangement appraoch for understanding whole number esteemed neutrosophic SPP. We changes over the 
IVNSSPP issue under thought into multi-objective LP issues which can be illuminated utilizing the standard LP 
calculations. According to the proposed optimization manner, the integer-valued neutrosophic source weight has 
preserved the shape of an integer-valued neutrosophic quantitiy. Furthermore, the shortcoming of the prevailing 
algorithms are pointed out and to show the benefits of the proposed algorithms. For this purpose, we have 
considered NSSPP and evaluate with existing methods. The numerical results show that the new algorithms 
outperform the present day stratgies. In future, we will extend the method to more complicated community 
issues involving integer-valued neutrosophic costs.  
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