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Abstract. This paper aims to introduce and discuss anew 
mathematical tool for dealing with uncertainties, which is 
a combination of neutrosophic sets, soft sets and rough 
sets, namely neutrosophic soft rough set model. Also, its 
modification is introduced. Some of their properties are 
studied and supported with proved propositions and 
many counter examples. Some of rough relations are re-

defined as a neutrosophic soft rough relations. Compari-
sons among traditional rough model, suggested neutro-
sophic soft rough model and its modification, by using 
their properties and accuracy measures are introduced. 
Finally, we illustrate that, classical rough set model can 
be viewed as a special case of suggested models in this 
paper.
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1  Introduction

In recent years, many theories based on uncertainty have 
been proposed, such as fuzzy set theory [36], intuitionistic 
fuzzy set theory [5], vague set theory [10] and interval-
valued fuzzy set theory [11]. 
In 1982, Pawlak [22] initiated his rough set model, based 
on equivalence relations, as a new approach towards soft 
computing finding a wide application. Rough set model 
has been developed, in many papers, as a generalization 
models. These models based on reflexive relation, 
symmetric relation, preference relation, tolerance relation, 
any relation, coverings, different neighborhood operators, 
using uncertain function, etc. [12, 15, 16, 24, 25, 29, 32-34, 
37 ]. Also, many papers, recently, have been appeared to 
apply it in many real life applications such as [2, 3, 7, 17, 
27, 28, 30, 35]. 
In 1995, Smarandache, started his study of the theory of 
neutrosophic set as a new mathematical tool for handling 
problems involving imprecise data. Neutrosophic logic is a 
generalization of intuitionistic fuzzy logic. In neutrosophic 
logic a proposition is %t  true, %i  indeterminate, and 

%f  false. For example, let’s analyze the following 
proposition: Let (0.6,0.4,0.3)x belongs to A  means, 
with probability of 60%  ( x  in A ), with probability of
30%  ( x  not in A )and with probability of 40%
(undecidable). 
Soft set theory [21], proposed by Molodtsov in 1999, is 
also a mathematical tool for dealing with uncertainties. 
Recently, traditional soft model has been developed and 
applied in some decision making problems in many papers 
such as [1, 4, 6, 8, 13, 14, 18, 19, 31]. 

In 2011, Feng et al. [9] introduced the soft rough set model 
and proved its properties. In 2013, Maji [20] introduced 
neutrosophic soft set. 
In this paper, we introduce a combination of neutrosophic 
sets, soft sets and rough sets, called neutrosophic soft 
rough set model. Also, a modification of it is introduced. 
Basic properties and concepts of suggested models are 
deduced. We compare between traditional rough model 
and proposed models to illustrate that traditional rough 
model is a special case of these proposed models. 

2 Preliminaries 

In this section we recall some definitions and properties 
regarding rough set, neutrosophic set, soft set and 
neutrosophic soft set theories required in this paper. 
The following definitions and proposition are given in [22], 
as follows 

Definition 2.1 An equivalence class of an element Ux , 
determined by the equivalence relation E  is 

[ ] { : ( ) ( )}Ex x U E x E x    .

Definition 2.2 Lower, upper and boundary approximations 
of a subset UX   are defined as 

( ) = { : },[ ] [ ]E X XE Ex x 

( ) = { : = },[ ] [ ]E X XE Ex x   
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( ) = ( ) ( ).BND X E X E XE 

Definition 2.3 Pawlak determined the degree of crispness 
of any subset UX   by a mathematical tool, named the 
accuracy measure of it, which is defined as  

( ) = ( ) / ( ), ( ) .X E X E X E XE  

Properties of Pawlak’s approximations are listed in the fol-
lowing proposition. 

Proposition 2.1 Let ),( EU  be a Pawlak approximation 
space and let UYX , . Then, 

(a) )()( XEXXE  . 

(b) )(==)(  EE  and )(==)( UEUUE . 

(c) )()(=)( YEXEYXE  . 

(d) )()(=)( YEXEYXE  . 

(e) YX  , then )()( YEXE   and )()( YEXE  .

(f) )()()( YEXEYXE  . 

(g) )()()( YEXEYXE  . 

(h) cc
XEXE )]([=)( , 

c
X  is the complement of X . 

(i) cc
XEXE )]([=)( . 

(j) )(=))((=))(( XEXEEXEE . 

(k) )(=))((=))(( XEXEEXEE . 

Definition 2.4 [23] An information system is a quadruple 
),,,(= fVAUIS , where U  is a non-empty finite set of

objects, A  is a non-empty finite set of attributes, 

},{= AeVV e  , eV  is the value set of attribute e ,
an VAUf : , is called an information (knowledge) 
function. 

Definition 2.5 [21] Let U  be an initial universe set, E  be 
a set of parameters, EA  and let )(UP  denotes the 
power set of U . Then, a pair ),(= AFS  is called a soft 
set over U , where F  is a mapping given by 

)(: UPAF  . In other words, a soft set over U  is a 

parameterized family of subsets of U . For Ae , )(eF
may be considered as the set of e -approximate elements 
of S . 
Definition 2.6 [26] A neutrosophic set A  on the universe 
of discourse U  is defined as 

whereUxxFxIxTxA AAA },:)(),(),(,{= 

wherexFxIxT AAA ,3)()()(0  

, , : ] 0,1 [.T I F U    

Definition 2.7 [20] Let U  be an initial universe set and 
E  be a set of parameters. Consider EA , and let 

)(UP  denotes the set of all neutrosophic sets of U . The
collection ),( AF  is termed to be the neutrosophic soft set 
over U , where F  is a mapping given by  

).(: UPAF   

3 Neutrosophic soft lower and upper concepts 
and their properties  

In this section, neutrosophic soft rough lower and upper 
approximations are introduced and their properties are 
deduced and proved. Moreover, many counter examples 
are obtained.  

For more illustration the meaning of neutrosophic soft set, 
we consider the following example 
Example 3.1 Let U  be a set of cars under consideration 
and E  is the set of parameters (or qualities). Each 
parameter is a generalized neutrosophic word or sentence 
involving generalized neutrosophic words. Consider E  =  
{beautiful, cheap, expensive, wide, modern,in good repair, 
costly, comfortable}. In this case, to define a neutrosophic 
soft set means to point out beautiful cars, cheap cars and so 
on. Suppose that, there are five cars in the universe U , 
given by, U = { , , , , }1 2 3 4 5h h h h h  and the set of 
parameters A = { , , , }1 2 3 4e e e e , where each ie  is a specific 
criterion for cars: 1e stands for (beautiful), 2e  stands for
(cheap), 3e stands for (modern), 4e stands for (comfortab- 
le). Suppose that, 

F(beautiful) = 

1 2 3{ ,0.6,0.6,0.2 , ,0.4,0.6,0.6 , ,0.6,0.4,h h h    

0.2 , 4 ,0.6,0.3,0.3 ,h  5 ,0.8,0.2,0.3 }h 

F(cheap) = 

1 2 3{ ,0.8,0.4,0.3 , ,0.6,0.2,0.4 , ,0.8,0.1,h h h    

0.3 ,  4 ,0.8,h ,0.2,0.2 5 ,0.8,0.3,0.2 }h  ,

F(modern) = 
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1 2 3{ ,0.7,0.4,0.3 , ,0.6,0.4,0.3 , ,0.7,h h h     0.2,
0.5 , 4 ,0.5,0.2,0.6 ,h   5 ,0.7,0.3,0.4 }h  , 

F(comfortable)= 

1 2 3{ ,0.8,0.6,0.4 , ,0.7,0.6,0.6 , ,0.7,0.6,h h h    

0.4 , 4 ,0.7,0.5,0.6h 5, ,0.9,0.5,0.7 }h   . 

In order to store a neutrosophic soft set in a computer, we 
could represent it in the form of a table as shown in Table 
1 (corresponding to the neutrosophic soft set in Example 
3.1). In this table, the entries are ijc  corresponding to the 
car ih and the parameter je , where ijc =  (true membership 
value of ih , indeterminacy-membership value of ih , falsity
membership value of ih ) in ( )jF e . Table 1, represents the 
neutrosophic soft set (F, A) as follows 

Table1: Tabular representation of (F, A) of Example 3.1. 

Definition 3.1 Let ),( AG  be a neutrosophic soft set on a 
universe U . For any element Uh , a neutrosophic right 
neighborhood, with respect to Ae  is defined as follows  

= { :e ih h U

( ) ( ), ( ) ( ), ( ) ( )}.e i e e i e e i eT h T h I h I h F h F h    

Definition 3.2 Let ),( AG  be a neutrosophic soft set on a 
universe U . For any element Uh , a neutrosophic right 
neighborhood, with respect to all parameters A  is defined 
as follows  

] = { : }.
iA e ih h e A 

For more illustration of Definitions 3.1 and 3.2, the 
following example is introduced.  

Example 3.2 According Example 3.1, we can deduce the 
following results:  

11eh =
21eh =

31eh =  
41eh  =  }{

1
h , 

12 eh =
32 eh

=  },{
21

hh , 
22 eh =  },,,{

5421
hhhh , 

42 eh =  ,{
1

h  

},
32

hh , 
13eh  =  

43 eh  =  },{
31

hh , 
23 eh =  ,,{

31
hh  

},
54

hh , 
33eh =  },,{

531
hhh , 

14 eh =  },,{
431

hhh , 

24 eh =  },{
54

hh , 
34 eh =  U , 

44 eh =

},,,{
4321

hhhh , 
15 eh  =  

25 eh  =  
45 eh  =  }{

5
h , 

35 eh

=  },{
51

hh . It follows that, 
A

h ]
1

 =  }{
1

h , 
A

h ]
2

 =

},{
21

hh , 
A

h ]
3

=  },{
31

hh , 
A

h ]
4

=  }{
4

h  and 

A
h ]

5
 =  }{

5
h . 

Proposition 3.1 Let ),( AG  be a neutrosophic soft set on 
a universe U ,   is the family of all neutrosophic right 
neighborhoods on it, and let   

.=)(,:
eee

hhRUR   Then, 

 (a) 
e

R  is reflexive relation. 

(b) 
e

R  is transitive relation. 

(c) 
e

R  may be not symmetric relation. 

Proof  Let 

 )(),(),(,
1111

hFhIhTh
eee

,  )(),(),(,
2222

hFhIhTh
eee

 and ,
3

h  ),(
3

hT
e

),(
3

hI
e

)(
3

hF
e

  )(AG . Then, 

(a) Obviously, 

)(=)(
11

hThT
ee

, )(=)(
11

hIhI
ee

 and 

)(=)(
11

hFhF
ee

. Hence, for every Ae , 
1

h   
e

h
1

.

Then 
1

h
e

R  
1

h  and then 
e

R  is reflexive relation. 

(b) Let 
1

h
e

R  
2

h  and 
2

h
e

R  
3

h . Then, 
2

h   
e

h
1

and 
3

h   
e

h
2

. Hence, )(
2

hT
e

   )(
1

hT
e

, )(
2

hI
e

   

)(
1

hI
e

, )(
2

hF
e

   )(
1

hF
e

, )(
3

hT
e

   )(
2

hT
e

, 

)(
3

hI
e

   )(
2

hI
e

 and )(
3

hF
e

   )(
2

hF
e

. 

Consequently, we have )(
3

hT
e

   )(
1

hT
e

, )(
3

hI
e

   

)(
1

hI
e

 and )(
3

hF
e

   )(
1

hF
e

. It follows that, 
3

h   

U 1e 2e 3e 4e

1h   (0.6, 0.6, 0.2)  (0.8, 0.4, 0.3) (0.7, 0.4, 0.3) (0.8, 0.6, 0.4) 

2h  (0.4, 0.6, 0.6)  (0.6, 0.2, 0.4)  (0.6, 0.4, 0.3)  (0.7, 0.6, 0.6)

3h  (0.6, 0.4, 0.2)  (0.8, 0.1, 0.3)  (0.7, 0.2, 0.5)  (0.7, 0.6, 0.4)

4h  (0.6, 0.3, 0.3)  (0.8, 0.2, 0.2)  (0.5, 0.2, 0.6)  (0.7, 0.5, 0.6) 

5h  (0.8, 0.2, 0.3)  (0.8, 0.3, 0.2) (0.7, 0.3, 0.4) (0.9, 0.5, 0.7) 
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e
h

1
. Then 

1
h

e
R  

3
h  and then 

e
R  is transitive relation. 

The following example proves (c), of Proposition 3.1. 

Example 3.3 From Example 3.2, we have, 

11eh = }{
1

h  and  
13eh =  },{

31
hh . Hence, ),(

13
hh   

1e
R  but ),(

31
hh  

1e
R . Then, eR  isn’t symmetric 

relation. 

Neutrosophic soft lower and upper approximations are 
defined as follows 
Definition 3.3. Let ),( AG  be a neutrosophic soft set on  
U . Then, neutrosophic soft lower, upper and boundary 
approximations of UX  , respectively, are 

},],:]{= XhUhhXNR
AA


},=],:]{=  XhUhhXNR
AA

.= XNRXNRXb
NR

  

Properties of neutrosophic soft rough set approximations 
are introduced in the following proposition. 
Proposition 3.2 Let ),( AG  be a neutrosophic soft set on 
U , and let UZX , . Then the following properties 
hold     

(a) XNRXXNR  . 

(b)  == NRNR . 

(c) UUNRUNR == . 

(d) ZX     ZNRXNR  .

(e) ZX     ZNRXNR  . 

(f) )( ZXNR   =  XNR    ZNR .

(g) )( ZXNR     XNR    ZNR .

(h) )( ZXNR     XNR    ZNR .

(i) )( ZXNR   =  XNR    ZNR .

Proof

(a) From Definition 3.3, obviously, we can deduce that,  

XXNR  . Also, let Xh , but
e

R , defined in 

Proposition 3.1, is reflexive relation. Then, for all Ae , 

there exists 
e

h  such that, h  
e

h , and then h   
A

h] .

So Xh
A
]  =   . Hence, h  XNR . Therefor 

XNRXXNR  . 

(b) Proof of (b), follows directly, from Definition 3.3 and 
Property (a).  

(c) From Property (a), we have  U    UNR , but U  is

the universe set, then UNR  =  U . Also, from Definition 
3.3, we have UNR  =  }]:]{ Uhh

AA
 , but for all 

h   U , we have h   
A

h]   U . Hence, UNR  =

U . Therefor UNR  =  UNR  =  U . 

(d) Let X    Z  and p   XNR . Then, there exists

A
h] such that, p  

A
h]   X . But X    Z , then

p   
A

h]   Z . Hence, p   ZNR . Therefor

XNR    ZNR .

(e) Let X    Z  and p   XNR . Then, there exists

A
h] such that, p  

A
h] , Xh

A
]  =   . But X

  Z , then Zh
A
]  =   . Hence, p   ZNR .

Therefor XNR    ZNR .

(f) Let p   )( ZXNR   =

)}(]:]{ ZXhh
AA

 . So, there exists 
A

h] such

that, p  
A

h]   )( ZX  , then p
A

h]   X

and p  
A

h]   Z . Consequently, p  XNR  and

p  ZNR , then p  XNR    ZNR . Thus,

)( ZXNR     XNR    ZNR . Conversely, let p
 XNR    ZNR . Hence XNRp  and ZNRp .

Then there exists 
A

h] such that, p
A

h]   X  and

p  
A

h]   Z , then p
A

h]   )( ZX  .

Consequently, p  )( ZXNR  , it follows that XNR
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  ZNR    )( ZXNR  . Therefor )( ZXNR   =

XNR    ZNR .

(g) Let p    )( ZXNR   =

}]:]{ ZXhh
AA

 . So, for all 
A

h] , such that

p  
A

h] , we have
A

h]   ZX  , then for all 
A

h]

containing p , we have 
A

h]   X  and
A

h]   Z .

Consequently, p  XNR  and p  ZNR , then p
XNR    ZNR . Therefor )( ZXNR     XNR

  ZNR .

(h) Let p  )( ZXNR  = }=)(]:]{  ZXhh
AA

. 

So, there exists 
A

h] such that, p
A

h] and 
A

h]

)( ZX   =   , then Xh
A
]  =    and Zh

A
]

=   . Consequently, p  XNR  and p  ZNR , then 

p  XNR    ZNR . Therefor )( ZXNR   

XNR    ZNR .

(i) Let p  )( ZXNR  = }=)(]:]{  ZXhh
AA

. 

So, for all 
A

h] containing p , we have

)(] ZXh
A

  =   , then for all 
A

h] containing p ,

we have Xh
A
]  =    and Zh

A
]  =   . 

Consequently, p  XNR  and p  ZNR , then p
XNR    ZNR . Then, )( ZXNR     XNR  

ZNR . Conversely, let p  )( ZXNR  . Then, there

exists 
A

h] such that,
A

hp ]  and )(] ZXh
A

  

=   , it follows that, Xh
A
]  =    or Zh

A
]

=   . Consequently, p  XNR  or p  ZNR , hence, 

p  XNR    ZNR , then XNR    ZNR  

)( ZXNR  . Therefor XNR    ZNR  =

)( ZXNR  . 

The following example illustrates that, containments of 
Property (a), may be proper. 

Example 3.4 From Example 3.1, If 

}{=
1

hX , then XNR  =  }{
1

h  and XNR  =

},,{
321

hhh . Hence, XNR    X  and X    XNR . 

The following example illustrates that, containments of 
Properties (d) and (e), may be proper. 
Example 3.5 From Example 3.1, If  

X  =  }{
2

h  and },{=
42

hhZ , then XNR  =   , 

ZNR  =  }{
4

h , XNR  =  },{
21

hh  and ZNR  =

},,{
421

hhh . Hence, XNR    ZNR  and XNR  

ZNR . 

The following example illustrates that, a containment of 
Property (g), may be proper. 

Example 3.6 From Example 3.1, If X  =  }{
1

h  and 

}{=
2

hZ , then XNR  =  }{
1

h , ZNR  =    and 

)( ZXNR   =  },{
21

hh . Therefor )( ZXNR   

XNR    ZNR .

The following example illustrates that, a containment of 
Property (h), may be proper. 

Example 3.7 From Example 3.1, If X  =  },{
41

hh  and 

},{=
42

hhZ , then XNR  =  },,,{
4321

hhhh , ZNR

=  },,{
421

hhh  and )( ZXNR   =  }{
4

h . Therefor 

)( ZXNR     XNR    ZNR .

Proposition 3.3  Let ),( AG  be a neutrosophic soft set on 
a unverse U , and let UZX , . Then the following 
properties hold.  

 (a) NR  XNR  =  XNR . 

 (b) NR  XNR  =  XNR . 

 Proof 

(a) Let XNRW =  and Wp  =  }]:]{ Xhh
AA
 . 

Then, there exists some 
A

h] containing p , such that

A
h]   W . So, p  WNR . Hence, W    WNR .
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Thus, XNR    NR  XNR . Also, from Property (a), of

Proposition 3.2, we have XNR    X  and by using

Property (d), of Proposition 3.2, we get NR  XNR  

XNR . Therefor NR  XNR  =  XNR .

(b) Let XNRW = , by using Property (a), of Proposition 
3.2, we have WNR    W . Conversely, let Wp  =

}=]:]{  Xhh
AA

, hence there exists 
A

h]

containing p  such that, 
A

hp ]  W , it follows that, 

p  WNR . Consequently, W    WNR , then W  =

WNR , but XNRW = . Thus, XNRNR  =  XNR .

Proposition 3.4 Let ),( AG  be a neutrosophic soft set on 
U , and let UZX , . Then, the following properties 
don’t hold   

 (a) NR  XNR  =  XNR .  

 (b) NR  XNR  =  XNR . 

 (c) 
c

XNR  =  
c

XNR ][ . 

(d) 
c

XNR  =  
c

XNR ][ . 

(e) .=)( ZNRXNRZXNR 

(f) .=)( ZNRXNRZXNR   
The following example proves (a) of Proposition 3.4.

Example 3.8 From Example 3.1, If }{=
2

hX , then 

XNR  =  },{
21

hh  and NR  XNR  =  },,{
321

hhh . 

Hence, NR  XNR    XNR . 

The following example proves (b) of Proposition 3.4.

Example 3.9 From Example 3.1, If }{=
1

hX , then 

XNR  =  }{
1

h  and NR  XNR  =  },,{
321

hhh . 

Hence, NR  XNR    XNR . 

The following example proves (c) of Proposition 3.4. 

Example 3.10 From Example 3.1, If }{=
2

hX , then 

c
XNR  =  },,,{

5431
hhhh  and 

c
XNR ][  =

},,{
543

hhh . Therefor 
c

XNR  =  
c

XNR ][ . 

The following example proves (d) of Proposition 3.4. 

Example 3.11 From Example 3.1, If =X

},,,{
5431

hhhh , then 
c

XNR  =  },{
21

hh  and 
c

XNR ][  =  }{
2

h . Therefor 
c

XNR  =  
c

XNR ][ . 

The following example proves (e), (f) of  Proposition 3.4.

Example 3.12 From Example 3.1, If  X  =  },{
21

hh  and 

},{=
31

hhZ , then XNR  =  },{
21

hh , ZNR  =

},{
31

hh , )( ZXNR   =   , XNR  =  },,{
321

hhh , 

ZNR  =  },,{
321

hhh , )( ZXNR   =  },{
21

hh . 

Therefor )( ZXNR     XNR    ZNR  and 

)( ZXNR     XNR    ZNR .

4 Modification of suggested neutrosophic soft 
rough set approximations 

In this section, we introduce a modification of suggested 
neutrosophic soft rough set approximations, introduced in 
Section 3. Some basic properties are introduced and proved. 
Finally, a comparison among traditional rough set model, 
suggested neutrosophic soft rough set model and its 
modification, by using their properties. 

Modified neutrosophic soft lower and upper 
approximations are defined as follows 
Definition 4.1 Let ),( AG  be a neutrosophic soft set on 
U . Then, modified neutrosophic soft lower, upper and 
boundary approximations of UX  , respectively, are  

},],:]{= XhUhhXN
AAR


,][=
cc

R

R
XNXN

.= XNXNXb
R

R

NR


Modified neutrosophic soft lower and upper 
approximations properties are introduced in the following 
proposition.

Proposition 4.1 Let ),( AG  be a neutrosophic soft set on 
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U , and let UZX , . Then the following properties
hold   

 (a) XNXXN
R

R
 . 

(b)  ==
R

R
NN . 

(c) UUNUN
R

R
== . 

(d) ZX     ZNXN
RR

 . 

(e) ZX     ZNXN
RR

 . 

(f) )( ZXN
R

  =  XN
R

   ZN
R

. 

(g) )( ZXN
R

    XN
R

   ZN
R

. 

(h) )( ZXN
R

    XN
R

   ZN
R

. 

 (i) )( ZXN
R

  =  XN
R

   ZN
R

. 

(j) 
R

N  XN
R

 =  XN
R

. 

(k) 
R

N  XN
R

=  XN
R

. 

 (l) 
c

R
XN  =  

cR
XN ][ . 

(m) 
cR

XN  =  
c

R
XN ][ . 

Proof 

Properties (a)-(i) are proved at the same way as Proposition 
3.2. 
(j) Let 

XNW
R

=  and Wp  =  }]:]{ Xhh
AA
 . 

Then, there exists some 
A

h] containing p , such that

A
h]   W . So, p  WN

R
. Hence, W    WN

R
. 

Thus, XN
R

   
R

N  XN
R

. Also, from Property (a), of 

Proposition 3.2, we have XN
R

   X  and by using 

Property (d), of Proposition 3.2, we can deduce that 
R

N

XN
R

   XN
R

. Therefor 
R

N  XN
R

 =  XN
R

. 

(k) 
R

N  XN
R

=
R

N  
cc

R
XN ][  =  

R
N[

cccc

R
XN ])]([  =  

R
N[

cc

R
XN ] , from Property (j) of 

Proposition 4.1, we can deduce that 
R

N
c

R
XN  =

XN
R

. Then 
R

N[
cc

R
XN ]  =  

cc

R
XN ][ , from 

Definition 4.1, we have 
cc

R
XN ][  =  XN

R

. Therefor 
R

N  XN
R

=  XN
R

. 

Properties (l), (m) can be proved, directly, by using 
Definition 4.1.  

The following example illustrates that, containments of 
Property (a), may be proper. 

Example 4.1 From Example 3.1, If }{=
1

hX , then 

XN
R

 =  }{
1

h  and XN
R

 =  },,{
321

hhh . Hence, 

XN
R

  X  and X    XN
R

. 

The following example illustrates that, containments of 
Properties (d) and (e), may be proper. 

Example 4.2 From Example 3.1, If X  =  }{
2

h  and 

},{=
42

hhZ , then XN
R

 =   , ZN
R

 =  }{
4

h , 

XN
R

 =  }{
2

h  and ZN
R

 =  },{
42

hh . Hence, 

XN
R

   ZN
R

 and XN
R

  ZN
R

. 

The following example illustrates that, a containment of 
Property (g), may be proper. 

Example 4.3 From Example 3.1, If X  =  }{
1

h  and 

}{=
2

hZ , then ZN
R

 =   , XN
R

 =  }{
1

h  and 

)( ZXN
R

  =  },{
21

hh . Therefor )( ZXN
R

  

XN
R

   ZN
R

. 

The following example illustrates that, a containment of 
Property (h), may be proper. 

Example 4.4 From Example 3.1, If X  =  },{
41

hh  and 

},{=
42

hhZ , then XN
R

 =  },,,{
4321

hhhh , ZN
R

=  },{
42

hh  and )( ZXN
R

  =  }{
4

h . Therefor 
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)( ZXN
R

    XN
R

   ZN
R

. 

Proposition 4.2 Let ),( AG  be a neutrosophic soft set on 
a unverse U , and let UZX , . Then, the following 
properties don’t hold 

 (a) 
R

N  XN
R

=  XN
R

. 

(b) 
R

N  XN
R

 =  XN
R

. 

(c) .=)( ZNXNZXN
RRR



 (d) .=)( ZNXNZXN
RRR

  

The following example proves (a) of Proposition 4.2. 

Example 4.5 From Example 3.1, If }{=
2

hX , then 

XN
R

 =  }{
2

h  and 
R

N  XN
R

 =   . Hence, 
R

N

XN
R

  XN
R

. 

The following example proves (b) of Proposition 4.2. 

Example 4.6 From Example 3.1, If }{=
1

hX , then 

XN
R

 =  }{
1

h  and 
R

N  XN
R

 =  },,{
321

hhh . 

Hence, 
R

N  XN
R

  XN
R

. 

The following example proves (c), (d) of Proposition 4.2. 

Example 4.7 From Example 3.1, If X  =  },{
21

hh  and 

},{=
31

hhZ , then XN
R

 =  },{
21

hh , ZN
R

 =

},{
31

hh , )( ZXN
R

 =   , XN
R

 =  },,{
321

hhh , 

ZN
R

 =  },,{
321

hhh , )( ZXN
R

  =  }{
2

h . 

Therefor )( ZXN
R

    XN
R

   ZN
R

 and 

)( ZXN
R

    XN
R

   ZN
R

. 

Remark 4.1 A comparison among traditional rough model, 
suggested neutrosophic soft rough model and its 
modification, by using their properties, is concluded in 
Table 2, where traditional rough are symboled by ( T ), 
neutrosophic soft rough by( N ), its modification by ( M ) 
and (*) means that, this property is satisfied, as follows  

  Rough properties  T  N  M 

 =)(=)( EE * * * 

UUEUE =)(=)(  *  * * 

)()( XEXXE   * * * 

)()(=)( YEXEYXE   *  *  * 

)()(=)( YEXEYXE  *  *  * 

)()()( YEXEYXE  * * * 

)()()( YEXEYXE   * *  * 

cc
XEXE )]([=)(  *  * 

cc
XEXE )]([=)(  *  * 

)()( YEXEYX   *  * * 

)()( YEXEYX   * * * 

)(=))(( XEXEE  * * * 

)(=))(( XEXEE * * 

)(=))(( XEXEE  * 

)(=))(( XEXEE *  * 

Table 2: Comparison among traditional rough and suggested models, by 
using their properties.  

To compare between suggested neutrosophic soft upper 
approximation and its modification, the following 
proposition is introduced. 
Proposition 4.3 Let ),( AG  be a neutrosophic soft set on 
a unverse U . For any considered set UX  , the 
following property holds 

XNRXN
R
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Proof  Obvious. 

The following example illustrates that a containment 
relationship between suggested neutrosophic soft upper     
and its modification, may be proper. 
Example 4.7 According to Example 3.1, Table 3 can be 
created as follows 

X XN
R

XNR

}{
2

h }{
2

h },{
21

hh

}{
3

h }{
3

h },{
31

hh

},{
32

hh },{
32

hh },,{
321

hhh

},{
42

hh },{
42

hh },,{
421

hhh

},{
52

hh },{
52

hh },,{
521

hhh

},{
43

hh },{
43

hh },,{
431

hhh

},{
53

hh },{
53

hh },,{
531

hhh

},,{
432

hhh },,{
432

hhh },,,{
4321

hhhh

},,{
532

hhh },,{
532

hhh },,,{
5321

hhhh

},,{
542

hhh },,{
542

hhh },,,{
5421

hhhh

},,{
543

hhh },,{
543

hhh },,,{
5431

hhhh

},,,{
5432

hhhh },,,{
5432

hhhh U

Table 3: Comparison between suggested upper approximation and its 
modification.  

From Table 3, we can deduce that, for any considered set 
X , the modified upper approximation is decreased. It 

follows that its boundary region is decreased.  

5 Neutrosophic soft rough concepts and their  
modification  

In this section, some of neutrosophic soft rough concepts 
are defined as a generalization of rough concepts. Their 
modification are introduced and compare with them.  

Neutrosophic soft rough NR -definability and 
R

N -

definability of any subset UX  , is defined as follows
Definition 5.1. Let ),( AG  be a neutrosophic soft set on 
U , and let UX  . A subset UX  , is called  

(a) NR -definable, if XNR  =  XNR  =  X . 

(b) 
R

N -definable, if XN
R

=  XN
R

 =  X . 

(c) Internally NR -definable, if XNR  =  X  and 

XNR  X . 

(d) Internally 
R

N -definable, if XN
R

 =  X  and 

XN
R

 =  X . 

(e) Externally NR -definable, if XNR  =  X  and 

XNR  =  X . 

(f) Externally 
R

N -definable, if XN
R

 =  X  and 

XN
R

 =  X . 

(g) NR -rough, if XNR  =  X  and XNR  X .      

(h) 
R

N -rough, if XN
R

=  X  and XN
R

 =  X . 

Proposition 5.1 Let ),( AG  be a neutrosophic soft set on 
U . For any considered set UX  , the following 
properties hold   

 (a) X  is NR -definable set   X  is 
R

N -definable set. 

(b) X  is externally NR -definable set   X  is 
externally 

R
N -definable set. 

(c) X  is 
R

N -rough set   X  is NR -rough set. 

Proof  Obvious. 

The following example proves that the inverse of 
Proposition 5.1, does not hold. 

Example 5.1 According to Example 3.1, Table 4 can be 
created, where (Ex) means externally definable and (R) 
means rough as follows 
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Ex- NR  Ex-
R

N
R

N -R NR -R 

}{
2

h  }{
2

h  

}{
3

h  }{
3

h  

},{
32

hh  },{
32

hh  

},{
42

hh  },{
42

hh  

},{
52

hh  },{
52

hh  

},{
43

hh  },{
43

hh  

},{
53

hh  },{
53

hh  

},,{
432

hhh  },,{
432

hhh  

},,{
532

hhh  },,{
532

hhh  

},,{
542

hhh  },,{
542

hhh  

},,{
543

hhh  },,{
543

hhh  

},,,{
5432

hhhh  },,,{
5432

hhhh  

Table 4: Comparison between NR -definabilityand its modification.  

From Table 4, it is clear that, by using a modified 
suggested upper approximation, any considered set has a 
big chance to change from NR -rough set to externally 

R
N -definable set. The reason of this is that its suggested 

modified upper approximation is decreased in some 
degrees. 

In the following definition neutrosophic soft rough 
membership relations and their modifications are defined. 
Definition 5.2 Let ),( AG  be a neutrosophic soft set on 
U , and let Ux , UX  . Then  

,, XNRxifXx
NR



,, XNRxifXx
NR



., XNxifXx
R

R
N



Proposition 5.2 Let ),( AG  be a neutrosophic soft set on 
a unverse U , and let Ux , UX  . Then,  

.XxXxXxXx
NR

R
NNR

  

Proof From Propositions 3.2, 4.1 and 4.3, we can deduce 
that 

XNR    X    XN
R

  XNR . Then, by using
Definition 5.2, we get the proof, directly. 

The following example illustrates that, the inverse of 
Proposition 5.2, doesn’t hold. 

Example 5.2 In Example 3.1, if 

=X  }{
1

h  and =Z  }{
2

h , then ZNR  =   , ZNR

=  },{
21

hh , ZN
R

 =  }{
2

h  and XN
R

 =

},,{
321

hhh . Hence, 
2

h  Z
NR

 , although, Zh 
2

, 
1

h

Z

R
N

 , although, 
1

h  Z
NR

  and 
3

h  X , although,

3
h  X

R
N

 . 

In the following definition neutrosophic soft rough 
inclusion relations and their modifications are defined. 
Definition 5.3 Let ),( AG  be a neutrosophic soft set on 
U , and let UZX , . Then  

,, ZNRXNRifZX

NR




,, ZNRXNRifZX
NR




., ZNXNifZX
RR

R
N




In the following definition neutrosophic soft rough equality 
relations and their modifications are defined.
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Definition 5.4 Let ),( AG  be a neutrosophic soft set on a 
unverse U , and let UZX , . Then  

,=, ZNRXNRifZX
NR



,=, ZNRXNRifZX
NR





,=, ZNXNifZX
RR

R
N





,, ZXandZXifZX
NRNR

NR






., ZXandZXifZX
R

N
R

NR
N




  

The following examples illustrate Definition 5.4. 
Example 5.3 In Example 3.1, if  

1
X  =  }{

2
h , 

2
X  =  }{

3
h , 

3
X  =  },{

21
hh  and 

4
X

=  },{
31

hh . Then, 
1

XNR  =
2

XNR  =    and 

3
XNR  =

4
XNR  =

3
XN

R
=

4
XN

R
=

},,{
321

hhh . Consequently, 
21

XX
NR

 , 

43
XX

NR



  and 
43

XX
R

N



 . 

Example 5.4 According to Example 3.1, if 'A  =

},{
31

ee . Tabular representation of Neutrosophic soft set 

),( 'AG  can be seen in Table 5, as follows  

'A
1

h
2

h
3

h
4

h
5

h

1
e  (.6, .6, .2) (.4, .6, .6) (.6, .4, .2) (.6, .3, .3) (.8, .2, .3)

3
e  (.7, .4, .3) (.6, .4, .3) (.7, .2, .5) (.5, .2, .6) (.7, .3, .4)

Table 5: Tabular representation  of neutrosophic soft set in Example 5.4. 

It follows that, 

'1
]

A

h  =  }{
1

h , 
'2

]
A

h =  },{
21

hh , 
'3

]
A

h =

},{
31

hh , 
'4

]
A

h  =  },,{
431

hhh  and 
'5

]
A

h  =  }{
5

h . 

If we take 
1

X  =  }{
3

h  and 
2

X  =  },{
43

hh , then 

1
XNR  =

2
XNR  =    and 

1
XNR  =

2
XNR  =

},,{
431

hhh  and 
1

XN
R

 =
2

XN
R

 =  },{
43

hh . 

Therefor 
21

XX
NR

  and 
25

XX
R

N
 .

Proposition 5.3 Let ),( AG  be a neutrosophic soft set on 

a unverse U , UZX ,  and let I   },{
R

NNR . 

Then, 

(a) XNRX
NR

 . 

(b) XNX
R

R
N

 . 

(c) XNX
R

R
N



 . 

(d) YX =    ZX
I

 . 

(e) ZXZX
I

  and .ZX
I



        

(f) ZX  , 
 I

Z    
 I

X . 

(g) ZX  , UX
I

    UZ
I

 . 

(h) ZX  , 


I
Z    



I
X . 

(i) ZX  , UX
I



    UZ
I



 . 

Proof  From Propositions 3.2, 3.3 and 4.1, we get the proof, 
directly. 

We can determine the degree of neutrosophic soft 

NR -definability and 
R

N -definability of ,UX   by 

using their accuracy measures denoted by XC
NR

 and 

XC
RN , respectively, which are defined as follows

Definition 5.5 Let ),( AG  be a neutrosophic soft set on 
U  and let UX  . Then,  
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,,= X
XNR
XNRXC

NR

.,= X
XN

XN
XC R

R

R
N

Proposition 5.4 Let ),( AG  be a neutrosophic soft set on 
U  and let UX  , the following statements are satisfied 

(a) 1.)()(0  XCXC
R

NNR

(b) X  is NR -definable, if and only if, 1.=)(XC
NR

 

(c) X  is 
R

N -definable, if and only if, 1.=
RNC  

Proof  From Definitions 3.3, 4.1, 5.1 and 5.5, we get the 
proof, directly. 

A comparison between suggested neutrosophic soft rough 
model and its modification, by using their accuracy 
measures, is concluded in Table 6. 
Example 5.5 From Example 3.1, we can create Table 6, as 
follows 

Accuracy measures 
Sets NR

C
RNC

},{
43

hh 0.33 0.50 

},{
42

hh 0.33 0.50 

},{
52

hh 0.33 0.50 

},,{
542

hhh 0.50 0.67 

},,{
543

hhh 0.50 0.67 

},,,{
5432

hhhh 0.40 0.50 

Table 6: Comparison between suggested neutrosophic soft rough model 
and its modification, by using their accuracy measures.  

From Table 6, by using suggested modified 
approximations, the degree of definability of all these 
subsets is increased. It means that, when we use suggested 

modified approximations, we notice that, for any 
considered neutrosophic soft rough set, its boundary region 
is decreased. It leads to more accurate results of any real 
life application. 

Remark 5.1 Let ),( AG  be a neutrosophic soft set on 
a unverse U , and let Uh , UX  . If we consider the 
following case : If  

)(
ie hT  0.5> , then )(he  =  1 , otherwise, )(he  =  0 . 

Hence, neutrosophic right neighborhood of an element h
is replaced by the following equivalence class 


i

hh {=][  :U  ),(=)( hehe
i

 }Ae . It follows that, 

neutrosophic soft rough set approximations will be 
returned to Pawlak’s rough set approximations. 
Consequently, all properties of traditional rough set 
approximations will be satisfied. Hence, Pawlak’s 
approach to rough sets is a special case of the proposed 
approaches in this paper. 

Conclusion 

The difference in neutrosophic logic is that there is a 
component of indeterminate I , which means, for example 
in decision making and control theory, that we have ( %I ) 
hesitating to take a decision. It follows that proposed 
models, in this paper, are more realistic than Pawlak’s 
model. Pawlak’s approach to rough sets can be viewed as a 
special case of neutrosophic soft approach to rough sets. 
Our future work, aims to apply them in solving many 
practical problems in medical science. 
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