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Abstract 

In the present paper, we propose the Hyperbolic Sine Similarity Measure (HSSM) for 

pentapartitioned neutrosophic sets which is based on hyperbolic sine function. We also establish 

some properties of the similarity measures by providing some suitable examples. Further we 

develop an MADM (Multi-Attribute-Decision-Making) model for single valued pentapartitioned 

neutrosophic set (SVPNS) environment based on the similarity measure which we call 

HSSM-MADM strategy. We also validate our proposed model by solving a numerical example.  

Keywords: MADM; Neutrosophic Set; Pentapartitioned Neutrosophic Set; Similarity Measure.  

________________________________________________________________________________________ 

1. Introduction: 

Smarandache grounded the idea of Neutrosophic Set (NS) [1] as an extension of Fuzzy Set (FS) [2], 

and Intuitionistic Fuzzy Set (IFS) [3] to deal with incomplete and indeterminate information. In NS 

theory, truth-membership, indeterminacy-membership, and falsity-membership values are 

independent of each other. The concept of Single Valued NS (SVNS) was presented by Wang et al. 

[4], which is the subclass of an NS. By using SVNS, we can represent incomplete, imprecise, and 

indeterminate information that helps in decision making in the real- world problems. NS and the 

various extensions of NSs were studied and used for model/algorithm in different areas of research  

such as medical diagnosis ([5-7], social problems [8], conflict resolution [9], decision making [10-27], 

etc. Detail theoretical development and applications of NS and its extensions can be found in the 

studies [28-37].   

Chatterjee et al. [38] defined the Quadripartitioned SVNS (QSVNS) by introducing contradiction and 

ignorance membership functions in place of indeterminacy membership function. Mallick and 

Pramanik [39] defined Pentapartitioned Neutrosophic Set (PNS) by introducing unknown 

membership function in QSVNS to handle uncertainty and indeterminacy comprehensively. 
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Similarity measures [40-68] were defined in various NS environments and were utilized for 

decision, medical diagnosis, etc.  Mondal and Pramanik [69] proposed Hyperbolic Sine Similarity 

Measure (HSSM) and proved their basic properties in SVNS environment. Receiving motivation 

from the work of Mondal and Pramanik [70],  we extend the HSSM for Single Valued PNSs 

(SVPNSs) and prove their basic properties.  Based on HSSM, we propose an HSSM based MADM 

strategy which we call the HSSM-MADM model under SVPNS environment. Also, we validate our 

model by solving an illustrative example of an MADM problem. 

The remaining part of this paper is divided into several sections: 

In section 2, we recall PNS, and some relevant properties of PNSs. In section 3, we introduce the 

notion of SVPNS and HSSM between them. In section 4, we develop the SVPNS- MADM strategy. In 

section 5, we validate the proposed strategy by solving an illustrative MADM problem. In section 6, 

we conclude the paper by stating the future scope of research.   

   

2. Some Relevant Definitions:  

Definition 2.1. [4] An SVNS K over a non-empty set L is defined as follows: 

K = {(u, TK(u), IK(u), FK(u)): u ∈L}, where TK, IK, FK are truth, indeterminacy, and falsity membership 

mappings from L to]-0,1+[, and -0≤ TK(u) + IK(u) + FK(u) ≤ 3+. 

Example 2.1. Let L= {q, w, e} be a universe of discourse. Then {(q, 0.9, 0.6, 0.4), (w, 0.4, 0.6, 0.7), (e, 0.2, 

0.7, 0.7)} is an SVNS over L.  

Definition 2.2. [4] Suppose that L be a universe of discourse. Then P, a pentapartitioned 

neutrosophic set (P-NS) over L is denoted as follows: 

P= {(u, TP(q), CP(u), GP(u), UP(u), FP(u)): uL}, where TP, CP, GP, UP, FP : L ]0,1[ are the truth, 

contradiction, ignorance, unknown, falsity membership functions and so  0 TP(q)+CP(q)+GP(q)+ 

UP(q)+FP(q)5. 

Example 2.2. Let L = {q, w} be a universe of discourse. Then {(q, 0.9, 0.6, 0.4, 0.3, 0.5), (w, 0.4, 0.6, 0.7, 

0.8, 0.2)} is a PNS over L.  

Definition 2.3.[4] Assume that X= {(q, TX(q), CX(q), GX(q), UX(q), FX(q)): qW} and Y = {(q, TY(q), CY(q), 

GY(q), UY(q), FY(q)): qW} be two PNSs over W. Then X  Y  TX(q) TY(q), CX(q) CY(q), GX(q) GY(q), 

UX(q) UY(q), FX(q) FY(q), for all qW. 

Example 2.3. Let L= {q, w} be a universe of discourse. Consider two PNSs X={(q, 0.5, 0.6, 0.5, 0.7, 0.3), 

(w, 0.8, 0.8, 0.3, 0.3, 0.3)} and Y={(q, 0.9, 0.9, 0.3, 0.3, 0.3), (w, 1.0, 0.8, 0.2, 0.1, 0.3)} over L. Then XY.  

Definition 2.4.[4] Suppose that X= {(u, TX(u), CX(u), GX(u), UX(u), FX(u)): uL} and Y= {(u, TY(u), CY(u), 

GY(u), UY(u), FY(u)): uL} be two PNSs over L. Then X  Y= {(u, max {TX(u), TY(u)}, max {CX(u), CY(u)}, 

min {GX(u), GX(u)}, min {UX(u), UX(u)}, min {FX(u), FX(u)}): uL}. 

Example 2.4. Suppose that L= {q, w}. Consider two PNSs X= {(q, 0.7, 0.5, 0.5, 0.7 ,0.7), (w, 0.5, 0.6, 0.7, 

0.7, 0.6)} and Y= {(q,1.0, 0.6, 0.8, 0.7, 0.7), (w, 0.6, 0.7, 0.8, 0.4, 0.6)} over L. Then X  Y= 

{(q,1.0, 0.6, 0.5, 0.7, 0.7), (w, 0.6, 0.7, 0.7, 0.4, 0.6)}. 

Definition 2.5.[4] Suppose that X= {(u, TX(u), CX(u), GX(u), UX(u), FX(u)): uW} and Y= {(u, TY(u), 

CY(u), GY(u), UY(u), FY(u)): uL} are two PNSs over L. Then Xc= {(u, FX(u), UX(u), 1-GX(u), CX(u), TX(u)): 

uL}. 
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Example 2.5. Suppose that L= {q, w} be a universe of discourse and X= {(q, 0.5, 0.7, 0.7, 0.6, 1.0), (w, 

1.0,0.5, 0.5, 0.5, 1.0)} be a PNS over L. Then Xc= {(q, 1.0, 0.6, 0.3, 0.7, 0.5), (w,1.0, 0.5, 0.5, 0.5, 1.0)}. 

Definition 2.6.[4] Suppose that X= {(u, TX(u), CX(u), GX(u), UX(u), FX(u)): uL} and Y= {(u, TY(u), CY(u), 

GY(u), UY(u), FY(u)): uL} be two PNSs over L. Then X  Y = {(u, min {TX(u), TY(u)}, min {CX(u), CY(u)}, 

max {GX(u), GX(u)}, max {UX(u), UX(u)}, max {FX(u), FX(u)}): uL}. 

Example 2.6. Suppose that X and Y be two PNSs over a non-empty set L, as shown in Example 2.4. 

Then X  Y= {(q, 0.7, 0.5, 0.8, 0.7, 0.7), (w, 0.5, 0.6, 0.8, 0.7, 0.6)}. 

Definition 2.7. [4] The null PNS (0PN) and the absolute PNS (1PN) over L are defined by 

(i) 0PN = {(u, 0, 0, 1, 1, 1): uL}; 

(ii) 1PN = {(u,1, 1, 0, 0, 0): uL}. 

 

3. Single Valued Pentapartitioned Neutrosophic Set (SVPNS): 

Definition 3.1. [39] Assume that L be a universe of discourse. An SVPNS Y over L is characterized by 

a truth-membership function TY, a contradiction-membership function CY, an 

ignorance-membership function GY, an unknown-membership function UY, a falsity-membership 

function FY. For each element uL, TY(u), CY(u), GY(u), UY(u), FY(u)[0,1]. 

The SVPNS Y is denoted as follows: 

Y= {(u, TY(u), CY(u), GY(u), UY(u), FY(u)): uL}. 

Definition 3.2. [39] Suppose that B= {(u, TB(u), CB(u), GB(u), UB(u), FB(u)): uL} and A= {(u, TA(u), 

CA(u), GA(u), UA(u), FA(u)): uL} be any two SVPNSs over L. Then  

(i) B=A  TB(u) = TA(u), CB(u) = CA(u), GB(u) = GA(u), UB(u) = UA(u), FB(u) = FA(u), for each uL; 

(ii) BY TB(u)  TA(u), CB(u)  CA(u), GB(u)  GA(u), UB(u)  UA(u), FB(u)  FA(u), for each uL. 

Definition 3.3. Suppose that M= {(u, TM(u), CM(u), GM(u), UM(u), FM(u)): uL} and W = {(u, TW(u), 

CW(u), GW(u), UW(u), FW(u)): uL} are any two SVPNSs over L. Then the hyperbolic sine similarity 

measure between M and W is defined by: 

HSSM(M, W)= 

1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶M(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈M(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1         (1) 

Definition 3.4. Suppose that M = {(u, TM(u), CM(u), GM(u), UM(u), FM(u)): uL} and W = {(u, TW(u), 

CW(u), GW(u), UW(u), FW(u)): uL} be any two SVPNSs over L. Then the weighted hyperbolic sine 

similarity measure between M and W is defined by: 

WHSSM(M, W)= 

1- 
1

𝑛
∑ 𝑤𝑖 (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶M(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈M(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1      (2) 

where 0  𝑤𝑖 1 and ∑ 𝑤𝑖
𝑛
𝑖= =1. 

Theorem 3.1. Assume that HSSM(M, W) is the hyperbolic sine similarity measure between two 

SVPNSs M and W. Then 0 ≤ HSSM(M, W) ≤ 1. 

Proof. Suppose that M={(u, TM(u), CM(u), GM(u), UM(u), FM(u)): uL} and W={(u, TW(u), CW(u), GW(u), 

UW(u), FW(u)): uL} aew any two SVPNSs over L.  

Now 0TM(ui), CM(ui), GM(ui), UM(ui), FM(ui), TW(ui), CW(ui), GW(ui), UW(ui), FW(ui)1.  
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 0 | TM(ui)- TW(ui) |+| CM(ui)- CW(ui) |+| GM(ui)- GW(ui) |+| UM(ui)- UW(ui) |+| FM(ui)- FW(ui) | 5.  

 0  (
𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶M(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈M(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)  1. 

 0  1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶M(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈M(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1   1. 

 0 ≤ HSSM(M, W) ≤ 1. 

Theorem 3.2. Assume that HSSM(M, W) is the hyperbolic sine similarity measure between two 

SVPNSs M and W. Then HSSM(M, W) = 1 if M = W. 

Proof. Suppose that M= {(u, TM(u), CM(u), GM(u), UM(u), FM(u)): uL} and W= {(u, TW(u), CW(u), GW(u), 

UW(u), FW(u)): uL} are any two SVPNSs over L such that M=W.  

So TM(ui) = TW(ui), CM(ui)= CW(ui), GM(ui)= GW(ui), UM(ui)= UW(ui), FM(ui)= FW(ui) for each uiL.  

|TM(ui)- TW(ui)|=0,|CM(ui)- CW(ui)|=0,|GM(ui)- GW(ui)|=0,|UM(ui)- UW(ui)|=0,|FM(ui)- FW(ui)|=0 for 

each uiL. 

𝑠𝑖𝑛ℎ (
|𝑇𝑀(𝑢𝑖) − 𝑇𝑊(𝑢𝑖)|+ |𝐶M(𝑢𝑖) − 𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖) − 𝐺𝑊(𝑢𝑖)|

+|𝑈M(𝑢𝑖) − 𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖) − 𝐹𝑊(𝑢𝑖)|
)= 0. 

 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶M(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈M(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1 = 0 

1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶M(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈M(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1 = 1 

 HSSM(M, W) = 1. 

Theorem 3.3. Assume that HSSM(M, W) is the hyperbolic sine similarity measure between two 

SVPNSs M and W. Then HSSM(M, W) = HSSM(W, M). 

Proof. Suppose that M = {(u, TM(u), CM(u), GM(u), UM(u), FM(u)): uL} and W = {(u, TW(u), CW(u), GW(u), 

UW(u), FW(u)): uL}  any two SVPNSs over L. 

Now HSSM(M, W)= 

1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶𝑀(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺𝑀(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈𝑀(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹𝑀(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1  

=1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑊(𝑢𝑖)−𝑇𝑀(𝑢𝑖)| +  |𝐶𝑊(𝑢𝑖)−𝐶𝑀(𝑢𝑖)| + |𝐺𝑊(𝑢𝑖)−𝐺𝑀(𝑢𝑖)| +  |𝑈𝑊(𝑢𝑖)−𝑈𝑀(𝑢𝑖)| + |𝐹𝑊(𝑢𝑖)−𝐹𝑀(𝑢𝑖)|)

75
)𝑛

𝑖=1  

= HSSM(W, M). 

Therefore HSSM(M, W)= HSSM(M, W). 

Theorem 3.4. Assume that SSM(M, W) is the hyperbolic sine similarity measure between the 

SVPNSs M and W. If Q is an SVPNS over L such that MWQ, then HSSM(M, W) HSSM(M, Q), 

HSSM(W, Q)   HSSM(M, Q). 

Proof. Suppose that M= {(u, TM(u), CM(u), GM(u), UM(u), FM(u)): uL} and W= {(u, TW(u), CW(u), GW(u), 

UW(u), FW(u)): uL} are any two SVPNSs over L. Let Q be an SVPNS over L such that MWQ. Since 

MWQ, so |TM(ui)-TW(ui)||TM(ui)-TQ(ui)|, |CM(ui)-CW(ui)||CM(ui)-CQ(ui)|, |GM(ui)-GW(ui)| 

|GM(ui)-GQ(ui)|, |UM(ui)-UW(ui)||UM(ui)-UQ(ui)|, |FM(ui)-FW(ui)||FM(ui)-FQ(ui)|.  

Now HSSM(M, W)= 

1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶𝑀(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺𝑀(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈𝑀(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹𝑀(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1  
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 1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑄(𝑢𝑖)| +  |𝐶𝑀(𝑢𝑖)−𝐶𝑄(𝑢𝑖)| + |𝐺𝑀(𝑢𝑖)−𝐺𝑄(𝑢𝑖)| +  |𝑈𝑀(𝑢𝑖)−𝑈𝑄(𝑢𝑖)| + |𝐹𝑀(𝑢𝑖)−𝐹𝑄(𝑢𝑖)|)

75
)𝑛

𝑖=1   

  = HSSM(M, Q). 

Therefore, HSSM(M, W)  HSSM(M, Q). 

Again, from MWQ, we can say that |TW(ui)-TQ(ui)||TM(ui)-TQ(ui)|, 

|CW(ui)-CQ(ui)||CM(ui)-CQ(ui)|, |GW(ui)-GQ(ui)||GM(ui)-GQ(ui)|, |UW(ui)-UQ(ui)||UM(ui)-UQ(ui)|, 

|FM(ui)-FW(ui)||FM(ui)-FQ(ui)|.   

Now, HSSM(W, Q)= 

1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑊(𝑢𝑖)−𝑇𝑄(𝑢𝑖)| +  |𝐶𝑊(𝑢𝑖)−𝐶𝑄(𝑢𝑖)| + |𝐺𝑊(𝑢𝑖)−𝐺𝑄(𝑢𝑖)| +  |𝑈𝑊(𝑢𝑖)−𝑈𝑄(𝑢𝑖)| + |𝐹𝑊(𝑢𝑖)−𝐹𝑄(𝑢𝑖)|)

75
)𝑛

𝑖=1  

 1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑄(𝑢𝑖)| +  |𝐶𝑀(𝑢𝑖)−𝐶𝑄(𝑢𝑖)| + |𝐺𝑀(𝑢𝑖)−𝐺𝑄(𝑢𝑖)| +  |𝑈𝑀(𝑢𝑖)−𝑈𝑄(𝑢𝑖)| + |𝐹𝑀(𝑢𝑖)−𝐹𝑄(𝑢𝑖)|)

75
)𝑛

𝑖=1   

  = HSSM(M, Q). 

Therefore, HSSM(M, W)  HSSM(M, Q). 

 

4.  SVPNS- MADM Strategy 

Suppose that Q = {Q1, Q2, ..., Qn} is a finite set of possible alternatives from which a decision maker 

needs to choose the best alternative. Let P= {P1, P2, ..., Pm} be the finite collection of attributes for every 

alternative. A decision maker provides their evaluation information of each alternative Qi (i = 1, 2,..., 

n) against the attribute Pj (j = 1, 2, ..., m) in terms of single valued pentapartitioned numbers. The 

whole evaluation information of all alternatives can be expressed by a decision matrix. The steps of 

proposed HSSM-MADM strategy (see figure 1) are described as follows: 

 

Step-1: Construct the decision matrix  

The whole evaluation information of each alternative Qi (i = 1, 2,..., n) based on the attributes Pj (j = 1, 

2, ..., m) is expressed in terms of  SVPNS 𝐸𝑄𝑖
= {(Pj,𝑇𝑖𝑗(Qi, Pj),𝐶𝑖𝑗(Qi, Pj),𝐺𝑖𝑗(Qi, Pj),𝑈𝑖𝑗(Qi, Pj),𝐹𝑖𝑗(Qi, Pj)): 

PjP}, where (𝑇𝑖𝑗(Qi, Pj),𝐶𝑖𝑗(Qi, Pj),𝐺𝑖𝑗(Qi, Pj),𝑈𝑖𝑗(Qi, Pj),𝐹𝑖𝑗(Qi, Pj)) denotes the evaluation assessment 

of Qi (i = 1, 2,..., n) against Pj (j = 1, 2, ..., m).  

Then the Decision Matrix (DM[Q|P] ) can be expressed as: 

DM[Q|P] = 

 

 P1 P2 …...

.... 

…..... Pm 

Q1 <𝑇11(Q1, P1),𝐶11(Q1, P1), 

𝐺11(Q1, P1),𝑈11(Q1, P1), 

𝐹11(Q1, P1)> 

𝑇12(Q1, P2),𝐶12(Q1, P2), 

𝐺12(Q1, P2),𝑈12(Q1, P2), 

𝐹12(Q1, P2) 

.......

.. 

….... 𝑇1𝑚(Q1, Pm),𝐶1𝑚(Q1, Pm), 

𝐺1𝑚(Q1, Pm),𝑈1𝑚(Q1, Pm), 

𝐹1𝑚(Q1, Pm) 

Q2 𝑇21(Q2, P1),𝐶21(Q2, P1), 

𝐺21(Q2, P1),𝑈21(Q2, P1), 

𝐹21(Q2, P1) 

𝑇22(Q2, P2),𝐶22(Q2, P2), 

𝐺22(Q2, P2),𝑈22(Q2, P2), 

𝐹22(Q2, P2) 

…

…

….. 

…..... 𝑇2𝑚(Q2, Pm),𝐶2𝑚(Q2, Pm), 

𝐺2𝑚(Q2, Pm),𝑈2𝑚(Q2, Pm), 

𝐹2𝑚(Q2, Pm) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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. 

 

. 

 

. 

 

 

. 

 

. 

 

 

Qn 𝑇𝑛1(Qn, P1),𝐶𝑛1(Qn, P1), 

𝐺𝑛1(Qn, P1),𝑈𝑛1(Qn, P1), 

𝐹𝑛1(Qn, P1) 

𝑇𝑛2(Qn, P2),𝐶𝑛2(Qn, P2), 

𝐺𝑛2(Qn, P2),𝑈𝑛2(Qn, P2), 

𝐹𝑛2(Qn, P2) 

…

…

….. 

……

…. 

𝑇𝑛𝑚(Qn, Pm),𝐶𝑛𝑚(Qn, Pm), 

𝐺𝑛𝑚(Qn, Pm),𝑈𝑛𝑚(Qn, Pm), 

𝐹𝑛𝑚(Qn, Pm) 

 

Step-2: Determine the weights of the attributes 

In an MADM strategy, the weights of the attributes play an important role in taking decision. When 

the weights of the attributes are totally unknown to the decision makers, then the attribute weights 

can be determined by using the compromise function defined in equation (3). 

Compromise Function: The compromise function of Q is defined by: 

𝑗=∑ 𝑛
𝑖=1 (3+𝑇𝑖𝑗(Qi, Pj)+𝐶𝑖𝑗(Qi, Pj)-𝐺𝑖𝑗(Qi, Pj)-𝑈𝑖𝑗(Qi, Pj)-𝐹𝑖𝑗(Qi, Pj))/5                                 (3) 

Then the desired weight of the jth attribute is defined by wj = 
𝑗

∑ 𝑗
𝑚
𝑗=1

                              (4) 

Here ∑ 𝑤𝑗
𝑚
𝑗=1 =1. 

 

Step-3: Determination of ideal solution 

In every MADM process, the attributes chosen by the decision maker can be split into two different 

types. One is “benefit type” attribute and the other is “cost type” attribute. In our proposed 

SVPNS-MADM model, an ideal alternative can be identified by the decision maker using the 

following operators: 

(i) For the cost type attributes (Pj), we use the maximum operator to determine the best value (Pj*) of 

each attribute among all the alternatives. The best value (Pj*) is defined by: 

Pj* = (max 𝑇11(Q1, P1),max 𝐶11(Q1, P1),min 𝐺11(Q1, P1),min 𝑈11(Q1, P1),min 𝐹11(Q1, P1))         (5) 

where j=1, 2, ….., m. 

(ii) For the benefit type attributes (Pj), we use the minimum operator to determine the best value (Pj*) 

of each attribute among all the alternatives. The best value (Pj*) is defined by: 

Pj* = (min 𝑇11(Q1, P1),min 𝐶11(Q1, P1),max 𝐺11(Q1, P1),max 𝑈11(Q1, P1),max 𝐹11(Q1, P1))        (6) 

where j=1, 2, ….., m. 

Then we define an ideal solution as follows: 

Q*= {P1*, P2*, ……., Pm*}, which is also an SVPNS. 

 

Step-4: Determination of hyperbolic sine similarity value. 

After the formation of ideal solution in step-3, by using eq (1), we calculate the HSSM values for 

every alternative between the ideal solutions and the corresponding SVPNS from decision matrix 

DM[Q|P]. 

 

Step-5: Ranking order of the alternatives. 

The rank of the alternatives Q1, Q2, ……., Qn is determined based on the ascending order of hyper 

sine similarity values. The alternative with lowest hyper sine similarity value is the best alternative 

among the set of possible alternatives. 
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Step-6: End. 

 

 

 

Figure 1: Flow chart of the SVPNS- MADM strategy  

 

4. Validation of the Proposed Model: 

In this section, we validate our proposed model / strategy by giving a numerical example.   

4.1. Numerical example: 

In this section, we demonstrate a numerical example as a real- life application of our proposed 

strategy. In our daily life time management is very important for everyone. Suppose a passenger 

needs to travel from the city-X to the city-Y by road. The passenger wants to book a car (alternative) 

by an online App to reach his/her destination. The selection of car by the passenger can be done 

based on some attributes, namely, Charges(P1), Payment mode (P2),  AC / Non-AC(P3), Rating(P4). 

So, the selection of affordable car (for travelling) by an online App can be considered as a MADM 

approach. 

 

Then the MADM strategy is presented by using the following steps. 

Step-1: Construct the decision matrix under single valued pentapartitioned neutrosophic 

environment. 

The decision matrix is shown in table 1. 
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Table-1: Decision matrix 

 𝑃1 𝑃2 𝑃3 𝑃4 

𝑄1 (0.7,0.3,0.1,0.3,0.4) (0.8,0.4,0.2,0.3,0.8) (0.8,0.2,0.5,0.7,0.3) (0.8,0.4,0.2,0.3,0.6) 

𝑄2 (0.7,0.4,0.3,0.6,0.2) (0.7,0.4,0.4,0.7,0.5) (0.6,0.2,0.4,0.5,0.7) (0.9,0.3,0.9,0.2,0.3) 

𝑄3 (0.5,0.4,0.6,0.3,0.4) (0.6,0.4,0.4,0.7,0.9) (0.5,0.3,0.4,0.5,0.6) (0.7,0.5,0.7,0.3,0.8) 

 

Step-2: Determine the weights of attributes. 

By using the eq. (3) and (4), we have the weight vector as follows: 

(w1, w2, w3, w4) = (0.279, 0.234, 0.222, 0.263). 

 

Step-3: Determine the ideal solution. 

In this problem, the attribute P1 is cost type attribute and P2, P3, P4 are the benefit type attributes. The 

ideal solution is given in the table 2: 

 

Table-2:  The ideal solution 

 𝑃1
∗ 𝑃2

∗ 𝑃3
∗ 𝑃4

∗ 

𝑄∗ (0.7,0.4,0.1,0.3,0.2) (0.6,0.4,0.4,0.4,0.7,0.9) (0.5,0.2,0.5,0.7,0.7) (0.7,0.3,0.9,0.7,0.8) 

 

Step-4: Determine the weighted hyperbolic sine similarity values. 

By using eq. (2), we calculate the similarity measure values for each alternative. The weighted 

hyperbolic sine similarity values are:  

WHSSM(Q1, Q) = 0.996488; 

WHSSM(Q2, Q) = 0.997482; 

WHSSM(Q3, Q) = 0.997881. 

Step-5: Ranking the alternatives. 

From the above step, we see that WHSSM(Q1, Q) < WHSSM(Q2, Q) < WHSSM(Q3, Q). Therefore, Q1 

is the best suitable alternative (car) for the passenger to book for travelling.  

 

5. Conclusions: 

In the study, we propose a hyperbolic sine similarity measure and weighted hyperbolic sine 

similarity measures for single valued pentapartitioned neutrosophic set and prove some of their 

basic properties. We develop a novel HSSM-MADM strategy based on the proposed weighted 

hyperbolic sine similarity measure to solve MADM problems. We also validate the proposed 

strategy by solving an illustrative MADM problem to demonstrate the effectiveness of the proposed 

SVPNS-MADM strategy. 

The proposed SVPNS-MADM strategy can also be used to deal with other decision-making 

problems such as teacher selection [71], weaver selection [72], brick selection [73], logistic center 

location selection [74], personnel selection [75], etc. 
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