

University of New Mexico 🦾 📠

Generalized Neutrosophic Exponential map

^{1*} R.Dhavaseelan,²R. Subash Moorthy and ³S. Jafari

¹ Department of Mathematics, Sona College of Technology, Salem-636005, Tamil Nadu, India. E-mail: dhavaseelan.r@gmail.com

² Department of Mathematics, Amrita School of Engineering, Coimbatore-641112, Tamil Nadu, India. E-mail: subashvnp@gmail.com

³ Department of Mathematics, College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark. E-mail: jafaripersia@gmail.com

*Correspondence: Author (dhavaseelan.r@gmail.com)

Abstract: The concept of $\mathfrak{g} \otimes$ compact open topology is introduced. Some characterization of this topology are discussed.

Keywords: \mathfrak{g} locally Compact Hausdorff space; \mathfrak{g} product topology; \mathfrak{g} compact open topology; \mathfrak{g} homeomorphism; \mathfrak{g} evaluation map; \mathfrak{g} Exponential map.

1 Introduction

Ever since the introduction of fuzzy sets by Zadeh [12] and fuzzy topological space by Chang [5], several authors have tried successfully to generalize numerous pivot concepts of general topology to the fuzzy setting. The concept of intuitionistic fuzzy set was introduced are studied by Atanassov [1] and many works by the same author and his colleagues appeared in the literature [[2],[3],[4]]. The concepts of generalized intuitionistic fuzzy closed set was introduced by Dhavaseelan et al[6]. The concepts of Intuitionistic Fuzzy Exponential Map Via Generalized Open Set by Dhavaseelan et al[8]. After the introduction of the neutrosophic set concept [[10], [11]]. The concepts of Neutrosophic Set and Neutrosophic Topological Spaces was introduced by A.A.Salama and S.A.Alblowi[9].

In this paper the concept of $\mathfrak{g} \otimes$ compact open topology are introduced. Some interesting properties are discussed. In this paper the concepts of $\mathfrak{g} \otimes$ local compactness and generalized \otimes - product topology are developed. We have Throughout this paper neutrosophic topological spaces (briefly NTS) $(S_1, \xi_1), (S_2, \xi_2)$ and (S_3, ξ_3) will be replaced by S_1, S_2 and S_3 , respectively.

2 Preliminiaries

Definition 2.1. [10, 11] Let T,I,F be real standard or non standard subsets of $]0^-, 1^+[$, with $sup_T = t_{sup}, inf_T = t_{inf}$

 $\begin{aligned} \sup_{I} &= i_{sup}, inf_{I} = i_{inf} \\ \sup_{F} &= f_{sup}, inf_{F} = f_{inf} \\ n - \sup_{I} &= t_{sup} + i_{sup} + f_{sup} \\ n - inf_{I} &= t_{inf} + i_{inf} + f_{inf} \text{ . T,I,F are } \& - \text{ components.} \end{aligned}$

Definition 2.2. [10, 11] Let S_1 be a non-empty fixed set. A &- set (briefly *N*-set) Λ is an object such that $\Lambda = \{\langle x, \mu_{\Lambda}(x), \sigma_{\Lambda}(x), \gamma_{\Lambda}(x) \rangle : x \in S_1\}$ where $\mu_{\Lambda}(x), \sigma_{\Lambda}(x)$ and $\gamma_{\Lambda}(x)$ which represents the degree of membership function (namely $\mu_{\Lambda}(x)$), the degree of indeterminacy (namely $\sigma_{\Lambda}(x)$) and the degree of non-membership (namely $\gamma_{\Lambda}(x)$) respectively of each element $x \in S_1$ to the set Λ .

Remark 2.1. [10, 11]

- (1) An *N*-set $\Lambda = \{ \langle x, \mu_{\Lambda}(x), \sigma_{\Lambda}(x), \Gamma_{\Lambda}(x) \rangle : x \in S_1 \}$ can be identified to an ordered triple $\langle \mu_{\Lambda}, \sigma_{\Lambda}, \Gamma_{\Lambda} \rangle$ in $]0^-, 1^+[$ on S_1 .
- (2) In this paper, we use the symbol $\Lambda = \langle \mu_{\Lambda}, \sigma_{\Lambda}, \Gamma_{\Lambda} \rangle$ for the *N*-set $\Lambda = \{\langle x, \mu_{\Lambda}(x), \sigma_{\Lambda}(x), \Gamma_{\Lambda}(x) \rangle : x \in S_1\}.$

Definition 2.3. [7]Let $S_1 \neq \emptyset$ and the *N*-sets Λ and Γ be defined as

 $\Lambda = \{ \langle x, \mu_{\Lambda}(x), \sigma_{\Lambda}(x), \Gamma_{\Lambda}(x) \rangle : x \in S_1 \}, \Gamma = \{ \langle x, \mu_{\Gamma}(x), \sigma_{\Gamma}(x), \Gamma_{\Gamma}(x) \rangle : x \in S_1 \}.$ Then

- (a) $\Lambda \subseteq \Gamma$ iff $\mu_{\Lambda}(x) \leq \mu_{\Gamma}(x), \sigma_{\Lambda}(x) \leq \sigma_{\Gamma}(x)$ and $\Gamma_{\Lambda}(x) \geq \Gamma_{\Gamma}(x)$ for all $x \in S_1$;
- (b) $\Lambda = \Gamma$ iff $\Lambda \subseteq \Gamma$ and $\Gamma \subseteq \Lambda$;
- (c) $\bar{\Lambda} = \{ \langle x, \Gamma_{\Lambda}(x), \sigma_{\Lambda}(x), \mu_{\Lambda}(x) \rangle : x \in S_1 \}; [Complement of \Lambda] \}$
- (d) $\Lambda \cap \Gamma = \{ \langle x, \mu_{\Lambda}(x) \land \mu_{\Gamma}(x), \sigma_{\Lambda}(x) \land \sigma_{\Gamma}(x), \Gamma_{\Lambda}(x) \lor \Gamma_{\Gamma}(x) \rangle : x \in S_1 \};$
- (e) $\Lambda \cup \Gamma = \{ \langle x, \mu_{\Lambda}(x) \lor \mu_{\Gamma}(x), \sigma_{\Lambda}(x) \lor \sigma_{\Gamma}(x), \Gamma_{\Lambda}(x) \land \gamma_{\Gamma}(x) \rangle : x \in S_1 \};$
- (f) [] $\Lambda = \{ \langle x, \mu_{\Lambda}(x), \sigma_{\Lambda}(x), 1 \mu_{\Lambda}(x) \rangle : x \in S_1 \};$
- $(\mathbf{g}) \ \langle \rangle \Lambda = \{ \langle x, 1 \Gamma_{\scriptscriptstyle \Lambda}(x), \sigma_{\scriptscriptstyle \Lambda}(x), \Gamma_{\scriptscriptstyle \Lambda}(x) \rangle : x \in S_1 \}.$

Definition 2.4. [7] Let $\{\Lambda_i : i \in J\}$ be an arbitrary family of N-sets in S_1 . Then

- (a) $\bigcap \Lambda_i = \{ \langle x, \wedge \mu_{\Lambda_i}(x), \wedge \sigma_{\Lambda_i}(x), \vee \Gamma_{\Lambda_i}(x) \rangle : x \in S_1 \};$
- (b) $\bigcup \Lambda_i = \{ \langle x, \lor \mu_{\Lambda_i}(x), \lor \sigma_{\Lambda_i}(x), \land \Gamma_{\Lambda_i}(x) \rangle : x \in S_1 \}.$

Since our main purpose is to construct the tools for developing NTS, we must introduce the \aleph - sets 0_N and 1_N in X as follows:

Definition 2.5. [7] $0_N = \{ \langle x, 0, 0, 1 \rangle : x \in X \}$ and $1_N = \{ \langle x, 1, 1, 0 \rangle : x \in X \}.$

Definition 2.6. [7]A \aleph - topology (briefly *N*-topology) on $S_1 \neq \emptyset$ is a family ξ_1 of *N*-sets in S_1 satisfying the following axioms:

- (i) $0_N, 1_N \in \xi_1$,
- (ii) $G_1 \cap G_2 \in T$ for any $G_1, G_2 \in \xi_1$,
- (iii) $\cup G_i \in \xi_1$ for arbitrary family $\{G_i \mid i \in \Lambda\} \subseteq \xi_1$.

In this case the ordered pair (S_1, ξ_1) or simply S_1 is called an NTS and each N-set in ξ_1 is called a \aleph - open set (briefly N-open set). The complement $\overline{\Lambda}$ of an N-open set Λ in S_1 is called a \aleph - closed set (briefly N-closed set) in S_1 .

Definition 2.7. [7] Let Λ be an *N*-set in an *NTS* S_1 . Then

 $Nint(\Lambda) = \bigcup \{G \mid G \text{ is an } N \text{-open set in } S_1 \text{ and } G \subseteq \Lambda \}$ is called the \aleph - interior (briefly N -interior) of Λ ; $Ncl(\Lambda) = \bigcap \{G \mid G \text{ is an } N \text{-closed set in } S_1 \text{ and } G \supseteq \Lambda \}$ is called the \aleph - closure (briefly N - cl) of Λ .

Definition 2.8. [7] Let X be a nonempty set. If r, t, s be real standard or non standard subsets of $]0^-, 1^+[$ then the \aleph - set $x_{r,t,s}$ is called a \aleph - point(in short NP) in X given by

$$x_{r,t,s}(x_p) = \begin{cases} (r,t,s), & \text{if } x = x_p \\ (0,0,1), & \text{if } x \neq x_p \end{cases}$$

for $x_p \in X$ is called the support of $x_{r,t,s}$ where r denotes the degree of membership value, t denotes the degree of indeterminacy and s is the degree of non-membership value of $x_{r,t,s}$.

Definition 2.9. [7] Let (S_1, ξ_1) be a NTS. A \aleph - set Λ in (S_1, ξ_1) is said to be a $\mathfrak{g} \aleph$ closed set if $Ncl(\Lambda) \subseteq \Gamma$ whenever $\Lambda \subseteq \Gamma$ and Γ is a \aleph - open set. The complement of a $\mathfrak{g} \aleph$ closed set is called a $\mathfrak{g} \aleph$ open set.

Definition 2.10. [7] Let (X, T) be a \aleph - topological space and Λ be a \aleph - set in X. Then the \aleph - generalized closure and \aleph - generalized interior of Λ are defined by,

(i)NGcl(Λ) = ∩{G: G is a generalized ℵ- closed set in S₁ and Λ ⊆ G}.
(ii)NGint(Λ) = ∪{G: G is a generalized ℵ- open set in S₁ and Λ ⊇ G}.

3 Neutrosophic Compact Open Topology

Definition 3.1. Let S_1 and S_2 be any two NTS. A mapping $f : S_1 \to S_2$ is generalized neutrosophic[briefly \mathfrak{g}] continuous iff for every \mathfrak{g} open set V in S_2 , there exists a \mathfrak{g} open set U in S_1 such that $f(U) \subseteq V$.

Definition 3.2. A mapping $f : S_1 \to S_2$ is said to be $\mathfrak{g} \otimes$ homeomorphism if f is bijective, $\mathfrak{g} \otimes$ continuous and $\mathfrak{g} \otimes$ open.

Definition 3.3. Let S_1 be a NTS. S_1 is said to be $\mathfrak{g} \otimes$ Hausdorff space or T_2 space if for any two \otimes - sets A and B with $A \cap B = 0_{\sim}$, there exist $\mathfrak{g} \otimes$ open sets U and V, such that $A \subseteq U, B \subseteq V$ and $U \cap V = 0_{\sim}$.

Definition 3.4. A NTS S_1 is said to be $\mathfrak{g} \otimes$ locally compact iff for any \otimes set A, there exists a $\mathfrak{g} \otimes$ open set G, such that $A \subseteq G$ and G is $\mathfrak{g} \otimes$ compact. That is each $\mathfrak{g} \otimes$ open cover of G has a finite subcover.

Remark 3.1. Let S_1 and S_2 be two NTS with $S_2 \aleph$ – compact. Let $x_{r,t,s}$ be any \aleph – point in S_1 . The \aleph – product space $S_1 \times S_2$ containing $\{x_{r,t,s}\} \times S_2$. It is cleat that $\{x_{r,t,s}\} \times S_2$ is \aleph – homeomorphic to S_2

Remark 3.2. Let S_1 and S_2 be two NTS with $S_2 \aleph$ - compact. Let $x_{r,t,s}$ be any \aleph - point in S_1 . The \aleph product space $S_1 \times S_2$ containing $\{x_{r,t,s}\} \times S_2$. $\{x_{r,t,s}\} \times S_2$ is \aleph - compact.

Remark 3.3. A \aleph - compact subspace of a \aleph - Hausdorff space is \aleph - closed.

Proposition 3.1. A $\mathfrak{g} \otimes$ Hausdorff topological space S_1 , the following conditions are equivalent.

(a) S_1 is $\mathfrak{g} \otimes$ locally compact

(b) for each \aleph set A, there exists a $\mathfrak{g} \aleph$ open set G in S_1 such that $A \subseteq G$ and NGcl(G) is $\mathfrak{g} \aleph$ compact

Proof. $(a) \Rightarrow (b)$ By hypothesis for each \aleph - set A in S_1 , there exists a $\mathfrak{g} \aleph$ open set G, such that $A \subseteq G$ and G is $\mathfrak{g} \aleph$ compact.Since S_1 is $\mathfrak{g} \aleph$ Hausdorff, by Remark 3.3($\mathfrak{g} \aleph$ compact subspace of $\mathfrak{g} \aleph$ Hausdorff space is $\mathfrak{g} \aleph$ closed), G is $\mathfrak{g} \aleph$ closed, thus G = NGcl(G). Hence $A \subseteq G = NGcl(G)$ and NGcl(G) is $\mathfrak{g} \aleph$ compact. (b) \Rightarrow (a) Proof is simple.

Proposition 3.2. Let S_1 be a $\mathfrak{g} \otimes$ Hausdorff topological space. Then S_1 is $\mathfrak{g} \otimes$ locally compact on an \otimes - set A in S_1 iff for every $\mathfrak{g} \otimes$ open set G containing A, there exists a $\mathfrak{g} \otimes$ open set V, such that $A \subseteq V, NGcl(V)$ is $\mathfrak{g} \otimes$ compact and $NGcl(V) \subseteq G$.

Proof. Suppose that S_1 is $\mathfrak{g} \otimes \mathfrak{locally}$ compact on an \otimes - set A. By Definition 3.4, there exists a $\mathfrak{g} \otimes \mathfrak{open}$ set G, such that $A \subseteq G$ and G is $\mathfrak{g} \otimes \mathfrak{compact}$. Since S_1 is $\mathfrak{g} \otimes \mathfrak{Hausdorff}$ space, by Remark 3.3($\mathfrak{g} \otimes \mathfrak{compact}$ subspace of $\mathfrak{g} \otimes \mathfrak{Hausdorff}$ space is $\mathfrak{g} \otimes \mathfrak{closed}$), G is $\mathfrak{g} \otimes \mathfrak{closed}$, thus G = NGcl(G). Consider an \otimes - set $A \subseteq \overline{G}$. Since S_1 is $\mathfrak{g} \otimes \mathfrak{Hausdorff}$ space, by Definition 3.3, for any two \otimes - sets A and B with $A \cap B = 0_{\sim}$, there exist a $\mathfrak{g} \otimes \mathfrak{open}$ sets C and D, such that $A \subseteq C$, $B \subseteq D$ and $C \cap D = 0_{\sim}$. Let $V = C \cap G$. Hence $V \subseteq G$ implies $NGcl(V) \subseteq NGcl(G) = G$. Since NGcl(V) is $\mathfrak{g} \otimes \mathfrak{closed}$ and G is $\mathfrak{g} \otimes \mathfrak{compact}$, by Remark 3.3(every $\mathfrak{g} \otimes \mathfrak{closed}$ subset of a $\mathfrak{g} \otimes \mathfrak{compact}$ space is $\mathfrak{g} \otimes \mathfrak{compact}$. It follows that NGcl(V) is \otimes - compact. Thus $A \subseteq NGcl(V) \subseteq G$ and NGcl(G) is $\mathfrak{g} \otimes \mathfrak{compact}$.

The converse follows from Proposition 3.1(b).

Definition 3.5. Let S_1 and S_2 be two NTS. The function $T : S_1 \times S_2 \to S_2 \times S_1$ defined by T(x, y) = (y, x) for each $(x, y) \in S_1 \times S_2$ is called a \aleph - switching map.

Proposition 3.3. The \aleph - switching map $T: S_1 \times S_2 \to S_2 \times S_1$ defined as above is $\mathfrak{g} \aleph$ continuous.

We now introduce the concept of \mathfrak{g} compact open topology in the set of all \mathfrak{g} continuous functions from a NTS S_1 to a NTS S_2 .

Definition 3.6. Let S_1 and S_2 be two NTS and let $S_2^{S_1} = \{f : S_1 \to S_2 \text{ such that } f \text{ is } \mathfrak{g} \otimes \text{ continuous}\}$. We give this class $S_2^{S_1}$ a topology called the $\mathfrak{g} \otimes \text{ compact open topology as follows:Let } \mathcal{K} = \{K \in I_1^S : K \text{ is } \mathfrak{g} \otimes \text{ compact } S_1\}$ and $\mathcal{V} = \{V \in I_1^S : V \text{ is } \mathfrak{g} \otimes \text{ open in } S_2\}$. For any $K \in \mathcal{K}$ and $V \in \mathcal{V}$, let $S_{K,V} = \{f \in S_2^{S_1} : f(K) \subseteq V\}$. The collection of all such $\{S_1 = K \in \mathcal{K}, V \in \mathcal{V}\}$ generates an \mathfrak{V} structure on the class $S_2^{S_1}$.

The collection of all such $\{S_{K,V} : K \in \mathcal{K}, V \in \mathcal{V}\}$ generates an \aleph - structure on the class $S_2^{S_1}$.

4 Generalized Neutrosophic Evaluation Map and Generalized Neutrosophic Exponential Map

We now consider the $\mathfrak{g} \otimes \mathfrak{product}$ topological space $S_2^{S_1} \times S_1$ and define a $\mathfrak{g} \otimes \mathfrak{continuous}$ map from $S_2^{S_1} \times S_1$ into S_2 .

Definition 4.1. The mapping $e: S_2^{S_1} \times S_1 \to S_2$ defined by e(f, A) = f(A) for each \aleph - set A in S_1 and $f \in S_2^{S_1}$ is called the $\mathfrak{g} \aleph$ evaluation map.

Definition 4.2. Let S_1, S_2 and S_3 be three NTS and $f: S_3 \times S_1 \to S_2$ be any function. Then the induced map $\widehat{f}: S_1 \to S_2^{S_3}$ is defined by $(\widehat{f}(A_1))(A_2) = f(A_2, A_1)$ for \aleph - sets A_1 of S_1 and A_2 of S_3 .

Conversely, given a function $\hat{f}: S_1 \to S_2^{S_3}$, a corresponding function f can be also be defined be the same rule.

Proposition 4.1. Let S_1 be a $\mathfrak{g} \otimes$ locally compact Hausdorff space. Then the $\mathfrak{g} \otimes$ evaluation map $e : S_2^{S_1} \times S_1 \rightarrow S_2$ is $\mathfrak{g} \otimes$ continuous.

Proof. Consider $(f, A_1) \in S_2^{S_1} \times S_1$, where $f \in S_2^{S_1}$ and \aleph - set A_1 of S_1 . Let V be a $\mathfrak{g} \aleph$ open set containing $f(A_1) = e(f, A_1)$ in S_2 . Since S_1 is $\mathfrak{g} \aleph$ locally compact and f is $\mathfrak{g} \aleph$ continuous, by Proposition 3.2, there exists an $\mathfrak{g} \aleph$ open set U in S_1 , such that $A_1 \subseteq NGcl(U)$ and NGcl(U) is $\mathfrak{g} \aleph$ compact and $f(NGcl(U)) \subseteq V$.

Consider the $\mathfrak{g} \otimes \mathfrak{open}$ set $S_{NGcl(U),V} \times U$ in $S_2^{S_1} \times S_1.(f, A_1)$ is such that $f \in S_{NGcl(U),V}$ and $A_1 \subseteq U$. Let (g, A_2) be such that $g \in S_{NGcl(U),V}$ and $A_2 \subseteq U$ be arbitrary, thus $g(NGcl(U)) \subseteq V$. Since $A_2 \subseteq U$, we have $g(A_2) \subseteq V$ and $e(g, A_2) = g(A_2) \subseteq V$. Thus $e(S_{NGcl(U),V} \times U) \subseteq V$. Hence e is $\mathfrak{g} \otimes \mathfrak{continuous}$.

Proposition 4.2. Let S_1 and S_2 be two NTS with S_2 is $\mathfrak{g} \otimes \mathsf{compact}$. Let A_1 be any $\otimes -$ set in S_1 and N be a $\mathfrak{g} \otimes \mathsf{open}$ set in the $\mathfrak{g} \otimes \mathsf{product}$ space $S_1 \times S_2$ containing $\{A_1\} \times S_2$. Then there exists some $\mathfrak{g} \otimes \mathsf{open} W$ with $A_1 \subseteq W$ in S_1 , such that $\{A_1\} \times S_2 \subseteq W \times S_2 \subseteq N$.

Proof. It is clear that by Remark 3.1, $\{A_1\} \times S_2$ is $\mathfrak{g} \otimes$ homeomorphism to S_2 and hence by Remark 3.2, $\{A_1\} \times S_2$ is $\mathfrak{g} \otimes$ compact. We cover $\{A_1\} \times S_2$ by the basis elements $\{U \times V\}$ (for the $\mathfrak{g} \otimes$ product topology) lying in N.Since $\{A_1\} \times S_2$ is $\mathfrak{g} \otimes$ compact, $\{U \times V\}$ has a finite subcover, say a finite number of basis elements $U_1 \times V_1, ..., U_n \times V_n$. Without loss of generality we assume that $\{A_1\} \subseteq U_i$ for each i = 1, 2, ..., n.Since otherwise the basis elements would be superfluous.

Let $W = \bigcap_{i=1}^{n} U_i$. Clearly W is $\mathfrak{g} \otimes \mathfrak{open}$ and $A_1 \subseteq W$. We show that $W \times S_2 \subseteq \bigcup_{i=1}^{n} (U_i \times V_i)$. Let (A_1, B) be an \otimes - set in $W \times S_2$. Now $(A_1, B) \subseteq U_i \times V_i$ for some i, thus $B \subseteq V_i$. But $A_1 \subseteq U_i$ for every i = 1, 2, ..., n (because $A_1 \subseteq W$). Therefore, $(A_1, B) \subseteq U_i \times V_i$ as desired. But $U_i \times V_i \subseteq N$ for all i = 1, 2, ..., n and $W \times S_2 \subseteq \bigcup_{i=1}^{n} (U_i \times V_i)$, therefore $W \times S_2 \subseteq N$.

Proposition 4.3. Let S_3 be a g \otimes locally compact Hausdorff space and S_1, S_2 be arbitrary NTS. Then a map $f: S_3 \times S_1 \to S_2$ is g \otimes continuous iff $\hat{f}: S_1 \to S_2^{S_3}$ is g \otimes continuous, where \hat{f} is defined by the rule $(\hat{f}(A_1))(A_2) = f(A_2, A_1)$.

Proof. Suppose that \widehat{f} is $\mathfrak{g} \otimes \mathfrak{continuous}$. Consider the functions $S_3 \times S_1 \xrightarrow{i_Z} \times \widehat{f}S_3 \times S_2^{S_3} \xrightarrow{t} S_2^{S_3} \times S_3 \xrightarrow{e} S_2$, where i_Z denote the \aleph - identity function on Z,t denote the \aleph - switching map and e denote the $\mathfrak{g} \otimes \mathfrak{evaluation}$ map. Since $et(i_Z \times \widehat{f})(A_2, A_1) = et(A_2, \widehat{f}(A_1)) = e(\widehat{f}(A_1), A_2) = (\widehat{f}(A_1))(A_2) = f(A_2, A_1)$ it follows that $f = et(i_Z \times \widehat{f})$ and f being the composition of $\mathfrak{g} \otimes \mathfrak{continuous}$ functions is itself $\mathfrak{g} \otimes$.

Conversely, suppose that f is $\mathfrak{g} \otimes \mathfrak{continuous}$, let A_1 be any arbitrary $\otimes -$ set in S_1 . We have $\widehat{f}(A_1) \in S_2^{S_3}$. Consider $S_{K,U} = \{g \in S_2^{S_3} : g(K) \subseteq U, K \in I^{S_3} \text{ is } \mathfrak{g} \otimes \mathfrak{compact} \text{ and } U \in I^{S_2} \text{ is } \mathfrak{g} \otimes \mathfrak{open}\}$, containing $\widehat{f}(A_1)$. We need to find a $\mathfrak{g} \otimes \mathfrak{open} W$ with $A_1 \subseteq W$, such that $\widehat{f}(A_1) \subseteq S_{K,U}$; this will suffice to prove \widehat{f} to be a $\mathfrak{g} \otimes \mathfrak{continuous}$ map.

For any \aleph - set A_2 in K, we have $(\widehat{f}(A_1))(A_2) = f(A_2, A_1) \in U$ thus $f(K \times \{A_1\}) \subseteq U$, that is $K \times \{A_1\} \subseteq f^{-1}(U)$. Since f is $\mathfrak{g} \aleph$ continuous, $f^{-1}(U)$ is a $\mathfrak{g} \aleph$ open set in $S_3 \times S_1$. Thus $f^{-1}(U)$ is a $\mathfrak{g} \aleph$ open set $S_3 \times S_1$ containing $K \times \{A_1\}$. Hence by Proposition 4.2, there exists a $\mathfrak{g} \aleph$ open W with $A_1 \subseteq W$ in S_1 , such that $K \times \{A_1\} \subseteq K \times W \subseteq f^{-1}(U)$. Therefore $f(K \times W) \subseteq U$. Now for any $A_1 \subseteq W$ and $A_2 \subseteq K, f(A_2, A_1) = (\widehat{f}(A_1))(A_2) \subseteq U$. Therefore $\widehat{f}(A_1)(K) \subseteq U$ for all $A_1 \subseteq W$. That is $\widehat{f}(A_1) \in S_{K,U}$ for all $A_1 \subseteq W$. Hence $\widehat{f}(W) \subseteq S_{K,U}$ as desired.

Proposition 4.4. Let S_1 and S_3 be two $\mathfrak{g} \otimes$ locally compact Hausdorff spaces. Then for any NTS S_2 , the function $E: S_2^{S_3 \times S_1} \to (S_2^{S_3})^{S_1}$ defined by $E(f) = \widehat{f}(\text{that is } E(f)(A_1)(A_2) = f(A_2, A_1) = (\widehat{f}(A_1))(A_2))$ for all $f: S_3 \times X \to S_2$ is a $\mathfrak{g} \otimes$ homeomorphism. **Proof.**

(a) Clearly E is onto.

- (b) For E to be injective. Let E(f) = E(g) for f, g : S₃ × S₁ → S₂. Thus f̂ = ĝ, where f̂ and ĝ are the induced maps of f and g respectively. Now for any ℵ- set A₁ in S₁ and any ℵ- set A₂ in S₃, f(A₂, A₁) = (f̂(A₁))(A₂) = (ĝ(A₁))(A₂) = g(A₂, A₁); thus f = g.
- (c) For proving the gN continuity of E, consider any gN subbasis neighbourhood V of \hat{f} in $(S_2^{S_3})^{S_1}$, that is V is of the form $S_{K,W}$ where K is a gN compact subset of S_1 and W is gN open in $S_2^{S_3}$. Without loss of generality we may assume that $W = S_{L,U}$, where L is a gN compact subset of S_3 and U is a gN open set in S_2 . Then $\hat{f}(K) \subseteq S_{L,U} = W$ and this implies that $\hat{f}(K)(L) \subseteq U$. Thus for any \aleph set $A_1 \subseteq K$ and for all \aleph sets $A_2 \subseteq L$. We have $(\hat{f}(A_1))(A_2) \subseteq U$, that is $f(A_2, A_1) \subseteq U$ and therefore $f(L \times K) \subseteq U$. Now since L is gN compact in S_3 and K is gN compact in $S_1, L \times K$ is also gN compact in $S_3 \times S_1[6]$ and since U is a gN open set in S_2 , we conclude that $f \in S_{L \times K, U} \subseteq S_2^{S_3 \times S_1}$. We assert that $E(S_{L \times K, U}) \subseteq S_{K, W}$. Let $g \in S_{L \times K, U}$ be arbitrary. Thus $g(L \times K) \subseteq U$, that is $g(A_2, A_1) = (\hat{g}(A_1))(A_2) \subseteq U$ for all \aleph sets $A_2 \subseteq L$ in S_3 and for all \aleph sets $A_1 \subseteq K$ in S_1 . So $(\hat{g}(A_1))(L) \subseteq U$ for all \aleph sets $A_1 \subseteq K$ in S_1 , that is $\hat{g}(A_1) \subseteq S_{L, U} = W$ for all \aleph sets $A_1 \subseteq K$ in U is a gN open. Set $A_1 \subseteq K$ in S_1 is $g \in S_{L \times K, U}$. Thus $E(S_{L \times K, U}) \subseteq S_{K, W}$. This proves that E is gN continuous.
- (d) For proving the gN continuity of E^{-1} , we consider the following gN evaluation maps: $e_1 : (S_2^{S_3})^{S_1} \times S_1 \to S_2^{S_3}$ defined by $e_1(\hat{f}, A_1) = \hat{f}(A_1)$ where $\hat{f} \in (S_2^{S_3})^{S_1}$ and A_1 is an \aleph set in S_1 and $e_2 : S_2^{S_3} \times S_3 \to S_2$ defined by $e_2(g, A_2) = g(A_2)$ where $g \in S_2^{S_3}$ and A_2 is a \aleph set in S_3 . Let ψ denote the composition of the following gN continuous functions $\psi : (S_3 \times S_1) \times (S_2^{S_3})^{S_1} \to (S_2^{S_3})^{S_1} \times (S_3 \times S_1) = (S_2^{S_3})^{S_1} \times (S_1 \times S_3) \xrightarrow{=} ((S_2^{S_3})^{S_1} \times S_1) \times S_3 \xrightarrow{e_1 \times i_Z} (S_2^{S_3}) \times S_3 \xrightarrow{e_2} S_2$, where i, i_Z denote the \aleph identity maps on $(S_2^{S_3})^{S_1}$ and S_3 respectively and T, t denote the \aleph switching maps. Thus $\psi : (S_3 \times S_1) \times (S_2^{S_3})^{S_1} \to S_2$ that is $\psi \in S_2^{(S_3 \times S_1) \times (S_2^{S_3})^{S_1}}$. We consider the map $\widetilde{E} : S_2^{(S_3 \times S_1) \times (S_2^{S_3})^{S_1}} \to (S_2^{(S_3 \times S_1)})^{(S_2^{S_3})^{S_1}}$ (as defined in the statement of the proposition in fact it is E). So $\widetilde{E}(\psi) : (S_2^{S_3})^{S_1} \to S_2^{(S_3 \times S_1)}$. Now for any \aleph sets A_2 in S_3, A_1 in S_1 and $f \in S_2^{(S_3 \times S_1)}$, again to check that $(\widetilde{E}(\psi) \circ E)(f)(A_2, A_1) = f(A_2, A_1)$; hence $\widetilde{E}(\psi) \circ E$ =identity. Similarly for any $\widehat{g} \in (S_2^{S_3})^{S_1}$ and \aleph sets A_1 in S_1, A_2 in S_3 , again to check that $(E \circ \widetilde{E}(\psi))(\widehat{g})(A_1, A_2) = (\widehat{g}(A_1))(A_2)$;hence $E \circ \widetilde{E}(\psi)$ =identity. Thus E is a g \aleph homeomorphism.

Definition 4.3. The map E in Proposition 4.4 is called the $\mathfrak{g} \otimes$ exponential map.

As easy consequence of Proposition 4.4 is as follows.

Proposition 4.5. Let S_1, S_2 and S_3 be three $\mathfrak{g} \otimes \mathfrak{locally}$ compact Hausdorff spaces. Then the map $N : S_2^{S_1} \times S_3^{S_2} \to S_3^{S_1}$ defined by $N(f,g) = g \circ f$ is $\mathfrak{g} \otimes \mathfrak{continuous}$.

Proof. Consider the following compositions: $S_1 \times S_2^{S_1} \times S_3^{S_2} \xrightarrow{T} S_2^{S_1} \times S_{32}^S \times S_1 \xrightarrow{t \times i_X} S_{32}^S \times S_2^{S_1} \times S_1 \xrightarrow{=} S_3^S \times (S_2^{S_1} \times S_1) \xrightarrow{i \times e_2} S_3^{S_2} \times S_2 \xrightarrow{e_2} S_3$ where T, t denote the \aleph - switching maps, i_X, i denote the \aleph - identity functions on S_1 and S_3^S respectively and e_2 denote the $\mathfrak{g} \aleph$ evaluation maps. Let $\varphi = e_2 \circ (i \times e_2) \circ (t \times i_X) \circ T$. By proposition 4.4, we have an exponential map. $E : S_3^{S_1 \times S_2^{S_1} \times S_3^S} \to (S_3^{S_1})^{S_2^{S_1} \times S_3^S}$. Since $\varphi \in S_3^{S_1 \times S_2^{S_1} \times S_3^S}, E(\varphi) \in (S_3^{S_1})^{S_2^{S_1} \times S_3^S}$. Let $N = E(\varphi)$, that is $N : S_2^{S_1} \times S_3^S \to S_3^{S_1}$ is an $\mathfrak{g} \aleph$ continuous. For $f \in S_2^{S_1}, g \in S_3^{S_2}$ and for any \aleph - set A_1 in S_1 , it is easy to see that $N(f, g)(A_1) = g(f(A_1))$.

5 Conclusions

In this paper, we introduced the concept of \mathfrak{g} compact open topology and Some characterization of this topology are discussed.

References

- K. Atanassov. Intuitionistic fuzzy sets, in: V. Sgurev, Ed., VII ITKR's Session, Sofia (June 1983 Central Sci. and Techn. Library, Bulg. Academy of Sciences., 1984).
- [2] K. Atanassov. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87 96.
- [3] K. Atanassov. Review and new results on Intuitionistic fuzzy sets, Preprint IM-MFAIS-1-88, Sofia, 1988.
- [4] K. Atanassov and S. Stoeva. Intuitionistic fuzzy sets, in: Polish Syrup. on Interval & Fuzzy Mathematics, Poznan, (August 1983) 23 - 26.
- [5] C.L. Chang. Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182 190.
- [6] R.Dhavaseelan, E.Roja and M.K.Uma. Generalized intuitionistic Fuzzy Closed Sets, Advances in Fuzzy Mathematics, 5, (2010) 152-172.
- [7] R.Dhavaseelan and S.Jafari. Generalized Neutrosophic closed sets, New Trends in Neutrosophic Theory and Applications, Volume II, 2017, 261–273.
- [8] R. Dhavaseelan, E. Roja and M. K. Uma. Intuitionistic Fuzzy Exponential Map Via Generalized Open Set, International Journal of Mathematical Archive,3(2), 2012, Page: 636-643
- [9] A.A.Salama and S.A.Alblowi. Neutrosophic Set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, Volume 3, Issue 4 (Sep-Oct. 2012), PP 31-35.
- [10] F. Smarandache. Neutrosophy and Neutrosophic Logic , First International Conference on Neutrosophy , Neutrosophic Logic , Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA(2002) , smarand@unm.edu
- [11] F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Research Press, Rehoboth, NM, 1999.
- [12] L.A. Zadeh. Fuzzy sets, Inform. and Control.,8 (1965),338-353.

Received: March 18, 2019. Accepted: June 23, 2019