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Abstract: Yager et. al.  defined a q-rung orthopair fuzzy sets as a new general class of Pythagorean 

fuzzy set in which the sum of the qth power of the support for and support against is bonded by one. 

Tapan et. al.  extended the concept of intuitionistic fuzzy sets as 3-rung orthopair fuzzy sets or 

Fermatean fuzzy sets (FFSs). Later C. Antony et. al. introduced the concept of Fermatean 

Neutrosophic Sets. In this work, we define Fermatean neutrosophic graphs and present some 

operations on Fermatean neutrosophic graphs. Further, we introduce the concepts of regular 

Fermatean neutrosophic graphs, strong Fermatean neutrosophic graphs, Cartesian, Composition, 

Lexicographic product of Fermatean neutrosophic graphs. Finally, we give the applications of 

Fermatean neutrosophic graphs. 

  

Keywords:  Pythagorean Fuzzy sets, Fermatean Fuzzy sets, Fermatean Neutrosophic sets, Fermatean 

Neutrosophic graphs 

 

1. Introduction 

 

Mohamed [1, 2] introduced the concept of strong interval-valued Pythagorean fuzzy graphs and 

established some algebraic operations.  Sangeetha et al. [3] defined the concept of Pythagorean Fuzzy 

Digraph (PyFDG), and PyFDG's score function in addition they proposed an algorithm for 

Pythagorean shortest path in package delivery robots. Peng et al. [4] introduced the concept of 

interval-valued Pythagorean fuzzy sets (IVPFSs) which is a generalization of Pythagorean Fuzzy Set 

(PFS) and interval-valued intuitionistic fuzzy set. Mohanta et al. [5] introduced the idea of Dombi 

picture fuzzy graph and develope some dombi picture graph operations.  Akram et al. [6] proposed 

a new generalization of fuzzy graph, called Simplified Interval-Valued Pythagorean Fuzzy Graph 

(SIVPFGs), to describe uncertain information in graph theory. Then, they developed a series of 

operations on two SIVPFGs and investigated their properties and introduced new multi-agent 

decision-making approach based on SIVPFG. By integrating the concepts Pythagorean Neutrosophic 
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Fuzzy Graph (PNDFG) and Dombi operator, Ajay et al. [7] defined a new concept Pythagorean 

Neutrosophic Graphs by applying the concepts of Pythagorean Neutrosophic Set to fuzzy graph and 

defined some of its basic definitions and properties. Ajay et al. [8, 9] proposed Pythagorean 

Neutrosophic fuzzy graphs using Dombi operator called Pythagorean Neutrosophic Dombi Fuzzy 

Graphs and solved a decision-making problem involving the selection of the best money-transfer 

applications. Recently, they developed a new Multi Criteria Decision Making (MCDM) method using 

the Pythagorean Neutrosophic graphs. Jun et al. [10] introduced Neutrosophic Cubic Sets as the 

combination of cubic sets with Neutrosophic sets. They also defined different operations of such sets. 

Muhammad et al. [11] applied Cubic Neutrosophic Set concept on graphs and introduced the notion 

of Cubic Neutrosophic Graphs.  

Senapati et al. [12, 13] proposed a new concept known as the Fermatean fuzzy set, in which the 

restrictions are that the total of the third powers of the membership grades and non-membership 

grades be less than one. By expanding the spatial extent of membership and non-membership grade, 

FFSs have a greater potential to support uncertain information. Later, they develop some Fermatean 

Fuzzy Sets operations. An extensively study of Fermatean Fuzzy Set and its applications is illustrated 

in [ 14 - 30].  Thamizhendhi et al. [31] defined the concept of Fermatean Fuzzy Hyper- Graphs 

(FFHGs) and developed some definition and properties. Operations on single valued Neutrosophic 

graphs are studied in [32] Further, the operations on Neutrosophic vague graphs are discussed in 

[33]. In [34], the authors extensively studied about the concept of single valued Neutrosophic graphs. 

Moreover, in [35], bipolar single valued Neutrosophic graphs are investigated with its related 

properties.  R. Sundareswaran et. al. introduced and studied the vulnerability parameters in 

Neutrosophic environment in [36, 37]. 

Recently, Antony and Jansi [38] proposed a new emerging concept of Fermatean neutrosophic by 

blending the concept of Neutrosophic sets and Fermatean fuzzy sets. By employing the concept of 

Fermatean Neutrosophic Sets (FNSs), this paper presents the Fermatean neutrosophic graphs. 

Motivated by the above-mentioned works, to the best of the authors’ knowledge, there is no work 

reported on the concepts of Fermatean neutrosophic graphs with the application. The major 

contributions in this work are explained as follows: 

1) The notions of Fermatean Neutrosophic Graphs (FNGs) are introduced. This study makes 

the first attempt in the literature about the concept in Fermatean Neutrosophic graphs. 

2) The importance of this new class of graphs and distinguishing this class with other existing 

classes are studied. 

3) In addition, the complete and strong FNG are defined. The operations like a Cartesian 

product, lexicographic product, composition, union and the join of FNGs with their 

properties are discussed. 

4) The optimum selection of a power plant among various power plants are identified by using 

FNG is made. 

The layout of this article is arranged systematically as follows: Section 2 provides some basic concepts 

Pythagorean Fuzzy Sets (PFS), Fermatean Fuzzy Set (FFS), Pythagorean Neutrosophic Set (PNS), 
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Fermatean Neutrosophic Set (FNS) and Pythagorean Neutrosophic Fuzzy Graph (PNFG) and we 

present the geometrical interpretation of Fermatean Neutrosophic Set and illustrated in subsection 

2.1. In section 3, we introduce a new class of Neutrosophic graphs called Fermatean Neutrosophic 

Graphs with an illustration. In Section 4, we present the idea of Size and Types of degrees in 

Fermatean Neutrosophic Graphs. Finally, we discuss different types of Fermatean Neutrosophic 

Graphs in Section 5. The conclusion of this research work is summarized in the last Section. 

 

2. Preliminaries 

 

In this section, we provide the basic concepts and definitions in of PFS, PFN, FFS, FNS, FFR, PFR and 

PNFG. In 1999, Smarandache, F. introduced the following definition for Neutrosophic Sets [NS]. 

 

Definition 2.1 [39] 

A fuzzy set (class) A in X is characterized by a membership (characteristic) function fA(x) which 

associates with each point in X a real number in the interval [0, 1], with the value of fA(x) at x 

representing the "grade of membership" of x in A.  

 

Definition 2.2 [40] 

Let X be a non-empty set. An intuitionistic fuzzy set A in X is an object having the form A =

{〈x, μA(x), νA(x)〉: x ∈ X} where the functions μA(x), νA(x) ∶ X → [0,1] define respectively, the degree of 

membership and degree of non-membership of the element x ∈ X to the set A and for every element 

x ∈ X, 0 ≤ μA(x) + νA(x) ≤ 1. 

 

Definition 2.3 [41] 

Let X be the universe. A Neutrosophic set (NS) A in X is characterized by a truth membership function  

TA , an indeterminacy membership function IA, and a falsity membership function  FA where TA, IA 

and FA are real standard elements of [0,1]. It can be written as A = {〈x, (TA(x), IA(x), FA(x)〉: x ∈

X, TA, IA, FA ∈ ]0
− ,1+ [ }. There is no restriction on the sum of TA(x), IA(x) and FA(x) and so 0− ≤

 TA(x) + IA(x) + FA(x) ≤ 3
+. 

 

Definition 2.4 [42]  

A Pythagorean fuzzy set (𝑃𝐹𝑆) A on a universe of discourse X is a structure having the form as 

A= {〈𝑥, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥)〉| 𝑥 ∈ 𝑋} 

where 𝑇𝐴(𝑥): 𝑋 → [0,1] indicates the degree of membership and 𝐹𝐴(𝑥): 𝑋 → [0,1] indicates the degree 

of non-membership of every element  𝑥 ∈ 𝑋 to the set  𝐴, respectively, with the constraints: 0 ≤

(𝑇𝐴(𝑥))
2
+(𝐹𝐴(𝑥))

2
≤ 1.  

 

Definition 2.5 [7]  

A Pythagorean neutrosophic set (ℙℕ − 𝑠𝑒𝑡) A on a universe of discourse X is a structure having the 

form as 

A= {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉| 𝑥 ∈ 𝑋} 
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where 𝑇𝐴(𝑥): 𝑋 → [0,1] indicates the degree of membership, 𝐼𝐴(𝑥): 𝑋 → [0,1] indicates the degree of 

indeterminacy-membership, and 𝐹𝐴(𝑥): 𝑋 → [0,1] indicates the degree of non-membership of every 

element  𝑥 ∈ 𝑋 to the set  A, respectively, with the constraints: 0 ≤ (𝑇𝐴(𝑥))
2
+(𝐹𝐴(𝑥))

2
≤1 and 0 ≤

(𝐼𝐴(𝑥))
2
≤1 then  0 ≤ (𝑇𝐴(𝑥))

2
+(𝐼𝐴(𝑥))

2
+(𝑇𝐴(𝑥))

2
≤2.      

 

Here, 𝑇𝐴(𝑥) and 𝐹𝐴(𝑥) are dependent component and 𝐼(𝑥)  is independent component. 

 

Definition 2.6 [12, 13] 

A Fermatean fuzzy set (𝔽𝔽 − 𝑠𝑒𝑡) A on a universe of discourse X is a structure having the form as: 

A= {〈𝑥, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥)〉| 𝑥 ∈ 𝑋} 

where 𝑇𝐴(𝑥): 𝑋 → [0,1] indicates the degree of membership, and 𝐹𝐴(𝑥): 𝑋 → [0,1] indicates the degree 

of non-membership of the element  𝑥 ∈ 𝑋 to the set  A, respectively, with the constraints : 

0 ≤ (𝑇𝐴(𝑥))
3
+(𝐹𝐴(𝑥))

3
≤1 

Antony et al. [36] proposed the concept of Fermatean neutrosophic set considering more possible 

types of uncertainty including the measure of neutral membership. These are defined below 

 

Definition 2.7 [36]  

Fermatean neutrosophic set (𝔽ℕ − 𝑠𝑒𝑡) A on a universe of discourse X is a structure having the form 

as : 

A= {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉| 𝑥 ∈ 𝑋} 

where 𝑇𝐴(𝑥): 𝑋 → [0,1] indicates the degree of membership, 𝐼𝐴(𝑥): 𝑋 → [0,1] indicates the degree of 

indeterminacy-membership, and 𝐹𝐴(𝑥): 𝑋 → [0,1] indicates the degree of non-membership of the 

element  𝑥 ∈ 𝑋 to the set  𝐴, respectively, with the constraints : 0 ≤ (𝑇𝐴(𝑥))
3
+(𝐹𝐴(𝑥))

3
≤1 and 0 ≤

(𝐼𝐴(𝑥))
3
≤1 then 0 ≤ (𝑇𝐴(𝑥))

3
+(𝐼𝐴(𝑥))

3
+(𝑇𝐴(𝑥))

3
≤2   ∀ 𝑥 ∈  𝑋. 

Here, 𝑇𝐴(𝑥) and 𝐹𝐴(𝑥) are dependent component and 𝐼𝐴(𝑥)  is independent component. 

 

Definition 2.8 [43] 

Let G = (V, E) be a graph which is an ordered pair a set of vertices (nodes or points) and a 

set of edges (links or lines), which an edge is associated with two distinct vertices. 

 

Definition 2.9 [44, 45] 

Any fuzzy relation 𝜇: 𝑆 × 𝑆 →  [0,1] can be regarded as defining a weighted graph, or fuzzy graph, 

where the arc (𝑥, 𝑦) ∈  𝑆 ×  𝑆, for all x, y in S has weight 𝜇(𝑋, 𝑌) ∈  [0,1]. 

 

Definition 2.10 [46] 

An intuitionistic fuzzy graph is defined as G =  (V, E, μ, ν ), where   

(i) V = {v1, v2, v3, … vn}  (non-empty set) such that  μ1 ∶ V ⟶ [0,1], ν1: V ⟶ [0,1]  denote the 

degree of membership and non-membership of the element vi ∈ V respectively and 0 ≤

 μ1(vi) +  ν1(vi) ≤ 1 for every vi ∈ V, i = 1,2… , n 

https://en.wikipedia.org/wiki/Ordered_pair
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
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(ii) E ⊂ V × V where μ2 ∶ V × V → [0,1]and ν2: V × V → [0,1] are such that  μ2(vi, vj) ≤

min{μ1(vi), μ1(vj)} , ν2(vi, vj) ≤ max{ ν1(vi), ν1(vj)} and 0 ≤ μ2(vi, vj) + ν2(vi, vj) ≤ 1 , 0 ≤

μ2(vi, vj), ν2(vivj), π(vi, vj) ≤ 1 where π(vi, vj) = 1 − μ2(vi, vj) − ν2(vi, vj) for every (vi, vj) ∈

E, i = 1,2, … , n  

Definition 2.11 [47] 

A Neutrosophic graph is of the form 𝐺∗ = (𝑉, 𝜎, 𝜇) where 𝜎 = (𝑇1, 𝐼1, 𝐹1) & 𝜇 = (𝑇2, 𝐼2, 𝐹2) 

(i) 𝑉 = {𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛} such that 𝑇1 ∶ 𝑉 ⟶ [0,1], 𝐼1: 𝑉 ⟶ [0,1] and 𝐹1 : 𝑉 → [0,1] denote the 

degree of truth-membership function, indeterminacy –membership function and falsity-

membership function of the vertex 𝑣1 ∈ 𝑉  respectively and 0 ≤ 𝑇𝑖(𝑣) + 𝐼𝑖(𝑣) + 𝐹𝑖(𝑣) ≤

3, ∀ 𝑣𝑖 ∈ 𝑉 ( 𝑖 = 1,2 , 3, … 𝑛). 

(ii) 𝑇2 ∶ 𝑉 × 𝑉 ⟶ [0,1], 𝐼2: 𝑉 × 𝑉 ⟶ [0,1] and 𝐹2∶𝑉 × 𝑉 → [0,1] where 𝑇2(𝑣𝑖 , 𝑣𝑗), 𝐼2(𝑣𝑖 , 𝑣𝑗) and 

𝐹2(𝑣𝑖 , 𝑣𝑗) denote the degree of truth-membership function , indeterminacy –membership 

function and falsity-membership function of the edge (𝑣𝑖 , 𝑣𝑗)  respectively such that for every 

edge (𝑣𝑖 , 𝑣𝑗), 

𝑇2(𝑣𝑖 , 𝑣𝑗) ≤ min{ 𝑇1(𝑣𝑖), 𝑇1(𝑣𝑗)} ,  

 𝐼2(𝑣𝑖 , 𝑣𝑗) ≤ min{ 𝐼1(𝑣𝑖), 𝐼1(𝑣𝑗)} , 

𝐹2(𝑣𝑖 , 𝑣𝑗) ≤ max{𝐹1(𝑣𝑖), 𝐹1(𝑣𝑗)} ,  

 and 𝑇2(𝑣𝑖 , 𝑣𝑗) + 𝐼2(𝑣𝑖 , 𝑣𝑗) + 𝐹2(𝑣𝑖 , 𝑣𝑗) ≤ 3. 

 

Definition 2. 12 [1, 2]     

A Pythagorean Fuzzy Graph on a universal set X is a pair 𝔾=(𝒫, 𝒬) where  𝒫  is Pythagorean fuzzy 

set on X and 𝒬 is a pythagorean fuzzy relation on X such that: 

{
𝑇𝒬(𝑢, 𝑣) ≤  min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)}

𝐹𝒬(𝑢, 𝑣) ≥ max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)}
 

and  0 ≤  𝑇𝒬
2(𝑢, 𝑣) + 𝐹𝒬

2(𝑢, 𝑣) ≤ 1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ 𝑋, where , 𝑇𝒬: 𝑋 × 𝑋 → [0,1]. 𝐹𝒬: 𝑋 × 𝑋 → [0,1] indicates 

degree of membership, and degree of non-membership of 𝒬, correspondingly. 

 

Definition 2. 13 [31]  

A Fermatean fuzzy Graph (FFG) on a universal set  X is a pair 𝔾=(𝒫, 𝒬) where  𝒫  is Fermatean fuzzy 

set on X and 𝒬 is a Fermatean fuzzy relation on X such that : 

{
𝑇𝒬(𝑢, 𝑣) ≤  min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)}

𝐹𝒬(𝑢, 𝑣) ≥ max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)}
 

and  0 ≤  𝑇𝒬
3(𝑢, 𝑣) + 𝐹𝒬

3(𝑢, 𝑣) ≤ 1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ 𝑋, where , 𝑇𝒬: 𝑋 × 𝑋 → [0,1], 𝐹𝒬: 𝑋 × 𝑋 → [0,1] indicates 

degree of membership  and degree of non-membership of 𝒬, correspondingly.  Here  𝒫 is the 

Fermatean fuzzy vertex set of 𝔾 and 𝒬 is the Fermatean fuzzy edge set of 𝔾. 

 

Definition 2. 14 [7]  

Pythagorean Neutrosophic Fuzzy Graph (PNFG) is of the form 𝐺∗ = (𝑉, 𝜎, 𝜇) where 𝜎 =

(𝑇1, 𝐼1, 𝐹1) & 𝜇 = (𝑇2, 𝐼2, 𝐹2) 
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(i) 𝑉 = {𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛} such that 𝑇1 ∶ 𝑉 ⟶ [0,1], 𝐼1: 𝑉 ⟶ [0,1] and 𝐹1: 𝑉 → [0,1] denote the 

degree of truth-membership function , indeterminacy –membership function and falsity-

membership function of the vertex 𝑣1 ∈ 𝑉  respectively and 0 ≤ 𝑇𝑖(𝑣)
2 + 𝐼𝑖(𝑣)

2 + 𝐹𝑖(𝑣)
2 ≤

2, ∀ 𝑣𝑖 ∈ 𝑉 ( 𝑖 = 1,2 , 3, … 𝑛). 

(ii) 𝑇2 ∶ 𝑉 × 𝑉 ⟶ [0,1], 𝐼2: 𝑉 × 𝑉 ⟶ [0,1] and 𝐹2 : 𝑉 × 𝑉 → [0,1] where 𝑇2(𝑣𝑖 , 𝑣𝑗), 𝐼2(𝑣𝑖 , 𝑣𝑗) and 

𝐹2(𝑣𝑖 , 𝑣𝑗) denote the degree of truth-membership function , indeterminacy –membership 

function and falsity-membership function of the edge (𝑣𝑖 , 𝑣𝑗)  respectively such that for every 

edge (𝑣𝑖 , 𝑣𝑗), 

𝑇2(𝑣𝑖 , 𝑣𝑗) ≤ min{ 𝑇1(𝑣𝑖), 𝑇1(𝑣𝑗)} ,  

        𝐼2(𝑣𝑖 , 𝑣𝑗) ≤ min{ 𝐼1(𝑣𝑖), 𝐼1(𝑣𝑗)} , 

𝐹2(𝑣𝑖 , 𝑣𝑗) ≤ max{𝐹1(𝑣𝑖), 𝐹1(𝑣𝑗)} ,  

 and 𝑇2(𝑣𝑖 , 𝑣𝑗) + 𝐼2(𝑣𝑖 , 𝑣𝑗) + 𝐹2(𝑣𝑖 , 𝑣𝑗) ≤ 3. 

 

2.1 Merits and De-merits of uncertainty sets 

Several researchers have been introduced different kinds of sets based on the uncertainty situations.  

Each time, a new set is introduced, it gives an information about the limitations and advantages of 

the new set with a comparison of an existing one. In this section, we have listed out such discussions.  

 

 

Sets Advantages Limitations 

Fuzzy  

- Zadeh (1965) 
Problems with uncertainty can be solved by fuzzy 

sets with membership values. 

Decision makers can be used only 

membership degree 0 ≤ 𝜇 ≤ 1. 

Intuitionistic Fuzzy –

Atanassov (1986) 

The concept of fuzzy sets is inconclusive because the 

exclusion of non-membership function. The IFS 

incorporates both membership function, 𝜇 and 

nonmembership function, 𝜈 with hesitation margin, 

𝜋 (that is, neither membership nor nonmembership 

functions), such that 𝜇 +  𝜈 ≤  1 𝑎𝑛𝑑 𝜇 +  𝜈 +  𝜋 =
 1. 

 

Intuitionistic fuzzy sets can only 

handle incomplete information not 

the indeterminate information and 

inconsistent information which exists 

commonly in belief system.  For 

example, when we ask the opinion of 

an expert about certain statement, he 

or she may that the possibility that the 

statement is true is 0.6 and the 

statement is false is 0.5 and the degree 

that he or she is not sure is 0.1 

Neutrosophic  

– Smarandache(2019) 

In Neutrosophic set, indeterminacy is quantified 

explicitly and truth-membership, indeterminacy 

membership and falsity-membership are 

independent. Neutrosophy was introduced by 

Smarandache in 1995. “It is a branch of philosophy 

which studies the origin, nature and scope of 

neutralities, as well as their interactions with 

different ideational spectra”. 

A Neutrosophic set A in X is 

characterized by a truth-membership 

function 𝑇𝐴, an indeterminacy 

membership function 𝐼𝐴  and a falsity-

membership function 𝐹𝐴. 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) 

and 𝐹𝐴(𝑥) are real standard or non-

standard subsets of ]0- ,1+ [. That is 
𝑇𝐴: 𝑋 → ]0 − ,1[           

 𝐼𝐴: 𝑋 → ]0 − ,1 + [         

𝐹𝐴: 𝑋 → ]0 − ,1 + [  There is no 

restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) 

and 𝐹𝐴(𝑥), so 0− ≤ 𝑠𝑢𝑝 𝑇𝐴(𝑥) +
𝑠𝑢𝑝 𝐼𝐴(𝑥) + 𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 3 + . 
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Single valued 

Neutrosophic  

The set theoretic operators on an instance of 

Neutrosophic set is single valued Neutrosophic set 

(SVNS). 

A Single Valued Neutrosophic Set 

(SVNS) A in X is characterized by 

truth-membership function 𝑇𝐴, 

indeterminacy-membership function 

𝐼𝐴 and falsity-membership function 

𝐹𝐴. For each point x in 

X, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)  ∈  [0,1].  

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 

Pythagorean fuzzy  

-Yager (2014) 

FFS is firstly proposed by Senapati and Yager (2020) 

as a special case of q-rung orthopair fuzzy sets (q-

ROFS). The theory of q-ROFS which is developed by 

Yager (2017) requires the sum of the qth power of 

membership (e.g., support for an idea) and non-

membership (e.g., support against an idea) degrees 

should be equal to or smaller than 1. It is obvious that 

when q increases the space of acceptable orthopairs 

will increase and this geometric area supplies more 

independence to users or decision-makers while 

declaring their preferences, ideas, and claims. By 

setting q = 2, Yager (2014) rename the q-ROFS as 

Pythagorean fuzzy sets (PFS) and developed basic 

operations on them. It deals with vagueness 

considering the membership grade, μ and 

nonmembership grade, ν satisfying the conditions 

𝜇 + 𝜈 ≤  1 𝑜𝑟 𝜇 +  𝜈 ≥  1, and, it follows that 𝜇2  +

 𝜈2  +  𝜋2  =  1, where 𝜋 is the Pythagorean fuzzy set 

index. 

 

 

 

 

 

 

 

 

 

 

In a voting process, a judgement may 

give based on a candidate satisfies his 

expectations with a possibility of 0.80 

and this candidate dissatisfies the 

expectations with a possibility of 0.75.  

But their sum is 1.55 (>1) and their 

square sum is 1.20 (>1). the sum of the 

cubes is equal to 0.93 (<1). 

 

Fermatean Fuzzy  

- Sanapati(2019) 

Senapati and Yager (2019) set q = 3 and this novel q-

ROFS is called Fermatean fuzzy sets (FFS). Under this 

new concept, the decision-makers have more 

freedom since they can specify their ideas about 

agreeing (membership) and/or disagreeing (non-

membership) regarding the state of a subject.   It deals 

with vagueness considering the membership grade, 

μ and non-membership grade, ν satisfying the 

conditions 𝜇 + 𝜈 ≤  1 𝑜𝑟 𝜇 +  𝜈 ≥  1, and, it follows 

that 𝜇3  +  𝜈3  +  𝜋3  =  1, where 𝜋 is the Pythagorean 

fuzzy set index. 

Pythagorean  

Neutrosophic  

Pythagorean fuzzy sets has limitation that their 

square sum is less than or equal to 1. In neutrosophic 

set, if truth membership and falsity membership are 

100% dependent and indeterminacy is 100% 

independent, that is 0 ≤  𝑇𝐴(𝑥)  + 𝐼𝐴(𝑥)  + 𝐹𝐴(𝑥)  ≤

 2. Sometimes in real life, we face many problems 

which cannot be handled by using neutrosophic 

when 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) > 2. In such condition, a 

neutrosophic set has no ability to obtain any 

satisfactory result. In Pythagorean neutrosophic set 

with T and F are dependent neutrosophic 

components [PNS] of condition is as their square sum 

does not exceeds 2. Here, T and F are dependent 

neutrosophic components and we make 𝑇𝐴(𝑥), 𝐹𝐴(𝑥) 

𝑎𝑠 Pythagorean, then (𝑇𝐴(𝑥))
2
 +  (𝐹𝐴(𝑥))

2
 ≤  1 with 

In a voting process, a judgement may 

give based on a candidate satisfies his 

expectations with a possibility of 0.80 

and this candidate dissatisfies the 

expectations with a possibility of 0.95 

and neutrally give 0.85   But their 

sum is 2.80 (>2) and their square sum 

is 2.265 (<2). the sum of the cubes is 

equal to 1.9835 (<2). 
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2.2 Flow chart of literature survey of uncertainty sets 

 

 

2.3 Geometrical interpretation  

The Graphical representation of sets which deal with uncertain may be useful to the reader to 

understand the flow of the T, F and I values. In this section, we give a graphical representation of 

membership, non-membership, and indeterminacy grades for all fuzzy sets and Neutrosophic 

sets.   

 
Intuitionistic fuzzy set Pythagorean fuzzy set Fermatean fuzzy Set (Benchmark 

of IFS, PFS, and FFS) 

𝑇𝐴(𝑥), 𝐹𝐴(𝑥) 𝑖𝑛 [0,1]. If 𝐼𝐴(𝑥) is an Independent from 

them, then 0 ≤ 𝐼𝐴(𝑥)  ≤  1. Then 0 ≤  ((𝑇𝐴(𝑥))
2
 +

 (𝐹𝐴(𝑥))
2
+ (𝐼𝐴(𝑥))

2
 ≤

 2 ,with 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) in [0,1]. 

Fermatean 

Neutrosophic  sets 

Fermatean neutrosophic sets, then (𝑇𝐴(𝑥))
3
 +

 (𝐹𝐴(𝑥))
3
 ≤  1 with 𝑇𝐴(𝑥), 𝐹𝐴(𝑥) 𝑖𝑛 [0,1]. If 𝐼𝐴(𝑥) is an 

Independent from them, then 0 ≤ 𝐼𝐴(𝑥)  ≤  1. Then 

0 ≤  ((𝑇𝐴(𝑥))
3
 +  (𝐹𝐴(𝑥))

3
+ (𝐼𝐴(𝑥))

3
 ≤

 2,𝑤𝑖𝑡ℎ 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) 𝑖𝑛 [0,1]. 
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Neutrosophic set Pythagorean Neutrosophic set Fermatean Neutrosophic set 

 

 

                            

 

                               
 

 

3. Fermatean neutrosophic graphs 

In this section, we propose the new class of graph namely, Fermatean Neutrosophic Graph which is 

associated with Fermatean Neutrosophic Set (FNS).  

 

Definition 3.1: Let X be a universal set. A mapping  𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) : 𝑋 × 𝑋 → [0,1] is called a 

Fermatean Neutrosophic relation on X such that 𝑇𝒫(𝑢, 𝑣), 𝐼𝒫(𝑢, 𝑣), 𝐹𝒫(𝑢, 𝑣) ∈ [0,1] for all 𝑢, 𝑣 ∈ 𝑋. 

 

Definition 3.2: Let 𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) and 𝒬 = (𝑇𝒬 , 𝐼𝒬 , 𝐹𝒬) be Fermatean Neutrosophic sets on X if 𝒬 is 

Fermatean Neutrosophic relation on X, then 𝒬  is called a Fermatean Neutrosophic relation on 𝒫 if 

{

𝑇𝒬(𝑢, 𝑣) ≤  min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)}

𝐼𝒬(𝑢, 𝑣) ≥ max{𝐼𝒫(𝑢), 𝐼𝒫(𝑣)}

𝐹𝒬(𝑢, 𝑣) ≥ max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)}

 

if  𝑇𝒫(𝑢, 𝑣), 𝐼𝒫(𝑢, 𝑣), 𝐹𝒫(𝑢, 𝑣) ∈ [0,1] for all 𝑢, 𝑣 ∈ 𝑋. 

Definition 3.3: A Fermatean neutrosophic graph on a universal set X is a pair 𝔾=(𝒫, 𝒬) where  𝒫  is 

Fermatean Neutrosophic set on X and 𝒬 is a Fermatean Neutrosophic relation on X such that: 

{

𝑇𝒬(𝑢, 𝑣) ≤  min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)}

𝐼𝒬(𝑢, 𝑣) ≥ max{𝐼𝒫(𝑢), 𝐼𝒫(𝑣)}

𝐹𝒬(𝑢, 𝑣) ≥ max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)}

 



Neutrosophic Sets and Systems, Vol. 50, 2022     257  

 

 

Said Broumi, R. Sundareswaran, M. Shanmugapriya, Assia Bakali,Mohamed Talea, Theory and Applications of Fermatean 

Neutrosophic Graphs 

 

and  0 ≤  𝑇𝒬
3(𝑢, 𝑣) + 𝐼𝒬

3(𝑢, 𝑣) + 𝐹𝒬
3(𝑢, 𝑣) ≤ 2  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ 𝑋, where , 𝑇𝒬: 𝑋 × 𝑋 → [0,1], 𝐼𝒬: 𝑋 × 𝑋 →

[0,1] and 𝐹𝒬: 𝑋 × 𝑋 → [0,1] indicates degree of membership, degree of indeterminacy-membership 

and degree of non-membership of 𝒬, correspondingly. 

Here,  𝒫 is the Fermatean Neutrosophic vertex set of 𝔾 and 𝒬 is the Fermatean Neutrosophic edge 

set of 𝔾. 

An example of Fermatean Neutrosophic graph is given below. 

Example 3.1  Consider a Fermatean neutrosophic graph 𝔾=(𝒫, 𝒬) defined on G = (V, E), where 𝒫 be 

a Fermatean Neutrosophic set on V and 𝒬 be a Fermatean Neutrosophic relation on V, defined by  

𝒫={ 〈𝑣1,(0.6, 1,0.7)〉,〈 𝑣2,(0.5, 0.8,0.4)〉,〈 𝑣3,(0.7, 0.5,0.3)〉} 

and 

𝒬={ 〈𝑣1𝑣2, (0.4, 1,0.8)〉, 〈𝑣2𝑣3, (0.4, 0.9,0.6)〉, 〈𝑣1𝑣3, (0.5, 1,0.8)〉} 

 

Figure 1. Fermatean Neutrosophic graph 

Definition 3.4 Let 𝔾=(𝒫, 𝒬) be A Fermatean neutrosophic graph 𝔽ℕ𝔾 on G=( V, E). The complement 

of Fermatean Neutrosophic graph is 𝔽ℕ𝔾 𝔾̅=(𝒫̅, 𝒬̅) where  𝒫̅ = (𝑇𝒫̅̅ ̅, 𝐼𝒫̅ , 𝐹̅𝒫) and 𝒬̅ = (𝑇𝒬̅̅ ̅, 𝐼𝒬̅ , 𝐹𝒬̅̅ ̅), defined 

by 

(i) 𝒫 = 𝒫̅ 

(ii) 𝑇𝒫̅̅ ̅(𝑢)= 𝑇𝒫(𝑢), 𝐼𝒫̅(𝑢)= 𝐼𝒫(𝑢), 𝐹̅𝒫(𝑢) = 𝐹𝒫(𝑢) ∀ 𝑢 ∈ 𝑉 

(iii)𝑇𝒬̅̅ ̅(𝑢𝑣) = |𝑇𝒫(𝑢) ∧ 𝑇𝒫(𝑣) − 𝑇𝒬(𝑢𝑣)|, 𝑇𝒬̅̅ ̅(𝑢𝑣) = |𝐼𝒫(𝑢) ∨ 𝐼𝒫(𝑣) − 𝐼𝒬(𝑢𝑣)| and 

(iv) 𝑇𝒬̅̅ ̅(𝑢𝑣) = |𝐹𝒫(𝑢) ∨ 𝐹𝒫(𝑣) − 𝐹𝒬(𝑢𝑣)|, for all  𝑢, 𝑣 ∈ 𝑉 

 

Note: In the below example, T, I and F values are very close to 1. This situation will happen in the 

most of real time problems.  But 𝟎 ≤ 𝑻𝟐 + 𝑰𝟐 + 𝑭𝟐 ≰ 𝟐 . So , we adopt 𝟎 ≤ 𝑻𝟑 + 𝑰𝟑 + 𝑭𝟑 ≤ 𝟐 . Hence, 

we can model this situation by Fermatean Neutrosophic graphs. 
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4. Size and Types of degrees in Fermatean Neutrosophic graphs 

The concept of regularity has been explored by many academics on fuzzy graphs and several of its 

generalizations. We will now propose a description on regularity of Fermatean Neutrosophic graphs 

(𝔽ℕ𝔾). First, we introduce few definitions in this context.          

Definition 4.1 Let  𝔾=(𝒫, 𝒬) be a Fermatean Neutrosophic graph  (𝔽ℕ𝔾) defined on G = (V, E). The 

order  𝑜𝑓  𝔾 is symbolized by O(𝔾) and defined as 

                        O(𝔾)= (∑ 𝑇𝒫(𝑢)𝑢∈ 𝑉 , ∑ 𝐼𝒫(𝑢)𝑢∈ 𝑉 , ∑ 𝐹𝒫(𝑢)𝑢∈ 𝑉 )  

Definition 4.2 Let  𝔾=(𝒫, 𝒬) be a Fermatean Neutrosophic graph  (𝔽ℕ𝔾)  defined on G = (V, E). The 

size of 𝔾 is symbolized by S(𝔾)  and defined as 

                      S(𝔾)= (∑ 𝑇𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 , ∑ 𝐼𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 , ∑ 𝐹𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 ) 

Example 4.1 Consider a Fermatean Neutrosophic graph 𝔾=(𝒫, 𝒬) defined on G = (V, E), where 𝒫 be 

a Fermatean Neutrosophic set on V and 𝒬 be a Fermatean Neutrosophic relation on V, defined by  

𝒫={ 〈𝑣1,(0.6, 1,0.7)〉,〈 𝑣2,(0.5, 0.8,0.4)〉,〈 𝑣3,(0.7, 0.5,0.3)〉} and 

𝒬={ 〈𝑣1𝑣2, (0.4, 1,0.8)〉, 〈𝑣2𝑣3, (0.4, 0.9,0.6)〉, 〈𝑣1𝑣3, (0.5, 1,0.8)〉} 

The order and size of Fermatean Neutrosophic graph displayed in Fig. 1 are  

O(𝔾) = (1.8, 2.3, 1.4) and S(𝔾)= (1.3, 2.9, 2.2), respectively. 

 

Definition 4.3 Let  𝔾=(𝒫, 𝒬) be a Fermatean Neutrosophic graph  𝔽ℕ𝔾 defined on G= (V, E). The 

degree of a vertex 𝑢 𝑜𝑓  𝔾 is symbolized by 𝑑𝔾(𝑢) =  (dT(u), dI(u), dF(u)) and defined as 

𝑑𝔾(𝑢)=(∑ 𝑇𝒫(𝑢)𝑢≠𝑣 , ∑ 𝐼𝒫(𝑢)𝑢≠𝑣 , ∑ 𝐹𝒫(𝑢)𝑢≠𝑣 ) for 𝑢𝑣 ∈  𝐸. 

Definition 4.4 𝔾=(𝒫, 𝒬) is a Fermatean Neutrosophic graph  𝔽ℕ𝔾 defined on G= (V, E). The total 

degree of a vertex 𝑢 of  𝔾 is symbolized by 𝑡𝑑𝔾(𝑢) =  (tdT(u), tdI(u), tdF(u)) and defined as 

𝑡𝑑𝔾(𝑢)=(∑ 𝑇𝒬(𝑢𝑣) +𝑢≠𝑣 𝑇𝒫(𝑢), ∑ 𝐼𝒬(𝑢𝑣) +𝑢≠𝑣 𝐼𝒫(𝑢), ∑ 𝐹𝒬(𝑢𝑣) +𝑢≠𝑣 𝐹𝒫(𝑢)) for 𝑢𝑣 ∈  𝐸. 

Example 4.2. For the Fermatean Neutrosophic graph  𝔾 in Figure 1, the degree and the total degree 

of the vertices are 

𝑑𝔾 (𝑣1) = (1.2, 1.3, 0.7) and 𝑡𝑑𝔾 (𝑣1)= (1.5, 2.8, 1.8) ; 

𝑑𝔾 (𝑣2) = (1.3, 1.5, 1.0) and 𝑡𝑑𝔾 (𝑣2)= (1.8, 2.5, 1.8) ; 

𝑑𝔾 (𝑣3) = (1.1, 1.8, 1.1) and 𝑡𝑑𝔾 (𝑣3)= (1.5, 2.8, 1.8), respectively. 

The following theorem is developed to demonstrate an interesting fact regarding degree of vertices 

of 𝔽ℕ𝔾s. 

Theorem 4.1 For any Fermatean Neutrosophic graph  𝔾=(𝒫, 𝒬) defined on V={𝑢1, 𝑢2, … , 𝑢𝑛}, the 

following relation for degree of vertices of 𝔾 must holds: 

∑ d 𝔾(u𝑗)
𝑛
𝑗=1 = 2(∑ 𝑇𝒬(u𝑗u𝑖)

𝑛−1
𝑗=1
𝑖>𝑗

, ∑ 𝐼𝒬(u𝑗u𝑖)
𝑛−1
𝑗=1
𝑖>𝑗

, ∑ 𝐹𝒬(u𝑗u𝑖)
𝑛−1
𝑗=1
𝑖>𝑗

)  for all 1 ≤ i ≤n. 

Proof : Let V={𝑢1, 𝑢2, … , 𝑢𝑛}, and 𝔾=(𝒫, 𝒬) be a Fermatean neutrosophic graph defined on G = (V, E) 

∑ d 𝔾(𝑢𝑗)
𝑛
𝑗=1 =∑ (𝑑𝑇(𝑢𝑗), 𝑑𝐼(𝑢𝑗), 𝑑𝐹(𝑢𝑗))

𝑛
𝑗=1  

                       = (𝑑𝑇(𝑢1), 𝑑𝐼(𝑢1), 𝑑𝐹(𝑢1))+ (𝑑𝑇(𝑢2), 𝑑𝐼(𝑢2), 𝑑𝐹(𝑢2))+….+(𝑑𝑇(𝑢𝑛), 𝑑𝐼(𝑢𝑛), 𝑑𝐹(𝑢𝑛)) 

                         =[(𝑇𝒬(𝑢1𝑢2), 𝐼𝒬(𝑢1𝑢2), 𝐹𝒬(𝑢1𝑢2)) + (𝑇𝒬(𝑢1𝑢3), 𝐼𝒬(𝑢1𝑢3), 𝐹𝒬(𝑢1𝑢3)) +… 
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                           +(𝑇𝒬(𝑢1𝑢𝑛), 𝐼𝒬(𝑢1𝑢𝑛), 𝐹𝒬(𝑢1𝑢𝑛))] 

                         +[(𝑇𝒬(𝑢2𝑢1), 𝐼𝒬(𝑢2𝑢1), 𝐹𝒬(𝑢2𝑢1)) + (𝑇𝒬(𝑢2𝑢2), 𝐼𝒬(𝑢2𝑢2), 𝐹𝒬(𝑢2𝑢2)) +… 

                           +(𝑇𝒬(𝑢2𝑢𝑛), 𝐼𝒬(𝑢2𝑢𝑛), 𝐹𝒬(𝑢2𝑢𝑛))] 

                         +[(𝑇𝒬(𝑢𝑛𝑢1), 𝐼𝒬(𝑢𝑛𝑢1), 𝐹𝒬(𝑢𝑛𝑢1)) + (𝑇𝒬(𝑢𝑛𝑢2), 𝐼𝒬(𝑢𝑛𝑢2), 𝐹𝒬(𝑢𝑛𝑢2)) +… 

                           +(𝑇𝒬(𝑢𝑛𝑢𝑛−1), 𝐼𝒬(𝑢𝑛𝑢𝑛−1), 𝐹𝒬(𝑢𝑛𝑢𝑛−1))] 

                        =2[(𝑇𝒬(𝑢1𝑢2), 𝐼𝒬(𝑢1𝑢2), 𝐹𝒬(𝑢1𝑢2)) + (𝑇𝒬(𝑢1𝑢3), 𝐼𝒬(𝑢1𝑢3), 𝐹𝒬(𝑢1𝑢3)) +… 

                           +(𝑇𝒬(𝑢1𝑢𝑛), 𝐼𝒬(𝑢1𝑢𝑛), 𝐹𝒬(𝑢1𝑢𝑛))] 

                         + 2[(𝑇𝒬(𝑢2𝑢3), 𝐼𝒬(𝑢2𝑢3), 𝐹𝒬(𝑢2𝑢3)) +… 

                            +𝑇𝒬(𝑢2𝑢𝑛), 𝐼𝒬(𝑢2𝑢𝑛), 𝐹𝒬(𝑢2𝑢𝑛)] +… 

                           +2(𝑇𝒬(𝑢𝑛−1𝑢𝑛), 𝐼𝒬(𝑢𝑛−1𝑢𝑛), 𝐹𝒬(𝑢𝑛−1𝑢𝑛))] 

                          =2(∑ 𝑇𝒬(u𝑗u𝑖)
𝑛−1
𝑗=1
𝑖>𝑗

, ∑ 𝐼𝒬(u𝑗u𝑖)
𝑛−1
𝑗=1
𝑖>𝑗

, ∑ 𝐹𝒬(u𝑗u𝑖)
𝑛−1
𝑗=1
𝑖>𝑗

) 

Hence proved. 

Theorem 4.2 For any Fermatean Neutrosophic graph  𝔾=(𝒫, 𝒬) defined on V={𝑢1, 𝑢2, … , 𝑢𝑛}, the 

following relation for total degree of vertices of 𝔾 must holds: 

∑ 𝑡d 𝔾(u𝑗)
𝑛
𝑗=1 = (2∑ 𝑇𝒬(u𝑗u𝑖) + ∑ 𝑇𝒫(u𝑗)

𝑛
𝑗=1

𝑛−1
𝑗=1
𝑖>𝑗

, 2 ∑ 𝐼𝒬(u𝑗u𝑖) + ∑ 𝐼𝒫(u𝑗)
𝑛
𝑗=1

𝑛−1
𝑗=1
𝑖>𝑗

, 2 ∑ 𝐹𝒬(u𝑗u𝑖)
𝑛−1
𝑗=1
𝑖>𝑗

+

+∑ 𝐹𝒫(u𝑗)
𝑛
𝑗=1 ) , for all 1 ≤ i ≤n. 

Proof : The proof directly follows from Theorem 4.1 and Definition 4.4. 

Definition 4.5. A Fermatean Neutrosophic graph is complete if  

𝑇𝒬(𝑢, 𝑣)= min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)} 

𝐼𝒬(𝑢, 𝑣)= max{𝐼𝒫(𝑢), 𝐼𝒫(𝑣)} 

𝐹𝒬(𝑢, 𝑣)= max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)} 

We illustrate it by giving an example. 

Example 4.3. Let the vertex set 𝕍 = {𝑣1, 𝑣2, 𝑣3} and the edge sets 𝔼={𝑣1𝑣2, 𝑣2𝑣3, 𝑣1𝑣3} in 𝔾′=(𝑉, 𝐸). Take 

the Fermatean Neutrosophic set 𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) in  𝕍 and the Fermatean Neutrosophic edge sets in 

𝔼 ⊆  𝕍 × 𝕍 defined by 

(𝑇𝒫(𝑣1), 𝐼𝒫(𝑣1), 𝐹𝒫(𝑣1)) = (0.6, 1, 0.7) 

(𝑇𝒫(𝑣2), 𝐼𝒫(𝑣2), 𝐹𝒫(𝑣2)) = (0.5, 0.8, 0.4) 

(𝑇𝒫(𝑣3), 𝐼𝒫(𝑣3), 𝐹𝒫(𝑣3)) = (0.7, 0.5, 0.3) 

and 

(𝑇𝒬(𝑣1𝑣2), 𝐼𝒬(𝑣1𝑣2), 𝐹𝒬(𝑣1𝑣2)) = (0.5, 1, 0.7) 

(𝑇𝒫(𝑣2𝑣3), 𝐼𝒫(𝑣2𝑣3), 𝐹𝒫(𝑣2𝑣3)) = (0.5, 0.8, 0.4) 

(𝑇𝒫(𝑣1𝑣3), 𝐼𝒫(𝑣1𝑣3), 𝐹𝒫(𝑣1𝑣3)) = (0.6, 1, 0.7) 

Then, it is a complete 𝔽ℕ𝔾.  
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Figure 2. Complete Fermatean Neutrosophic graph 

Definition 4.6: The minimum degree of Fermatean Neutrosophic graph 𝔽ℕ𝔾, 𝔾=(𝒫, 𝒬) is designated 

as δ(𝔾)=(δ𝑇(𝔾), δ𝐼(𝔾), δ𝐹(𝔾)) where, 

δ𝑇(𝔾)=min{𝑑𝑇(𝑢)|𝑢 ∈ 𝑉};  is minimum T-degree of 𝔾 

δ𝐼(𝔾)=min{𝑑𝐼(𝑢)|𝑢 ∈ 𝑉} ; is minimum I-degree of 𝔾 

δ𝐹(𝔾)=min{𝑑𝐹(𝑢)|𝑢 ∈ 𝑉} ; is minimum F-degree of 𝔾 

Definition 4.7: The maximum degree of Fermatean Neutrosophic graph 𝔽ℕ𝔾, 𝔾=(𝒫, 𝒬) is designated 

as Δ(𝔾)=(Δ𝑇(𝔾), Δ𝐼(𝔾), Δ𝐹(𝔾)) where, 

Δ𝑇(𝔾)=max{𝑑𝑇(𝑢)|𝑢 ∈ 𝑉} ; is maximum T-degree of 𝔾 

Δ𝐼(𝔾)=max{𝑑𝐼(𝑢)|𝑢 ∈ 𝑉} ; is maximum I-degree of 𝔾 

Δ𝐹(𝔾)=max{𝑑𝐹(𝑢)|𝑢 ∈ 𝑉} ; is maximum F-degree of 𝔾 

Example 4.4. Let the vertex set 𝕍 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and the edge sets 𝔼={𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣1𝑣4} in 

𝔾′=(𝑉, 𝐸). Take the Fermatean Neutrosophic set 𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) in  𝕍 and the Fermatean 

Neutrosophic edge sets in 𝔼 ⊆  𝕍 × 𝕍 defined by 

(𝑇𝒫(𝑣1), 𝐼𝒫(𝑣1), 𝐹𝒫(𝑣1)) = (0.3, 0.7, 0.5) 

(𝑇𝒫(𝑣2), 𝐼𝒫(𝑣2), 𝐹𝒫(𝑣2)) = (0.6, 0.5, 0.7) 

(𝑇𝒫(𝑣3), 𝐼𝒫(𝑣3), 𝐹𝒫(𝑣3)) = (0.8, 0.3, 0.7)  

(𝑇𝒫(𝑣4), 𝐼𝒫(𝑣4), 𝐹𝒫(𝑣4)) = (0.7, 0.2, 0.4) 

and 

(𝑇𝒬(𝑣1𝑣2), 𝐼𝒬(𝑣1𝑣2), 𝐹𝒬(𝑣1𝑣2)) = (0.3, 0.7, 0.7) 

(𝑇𝒫(𝑣2𝑣3), 𝐼𝒫(𝑣2𝑣3), 𝐹𝒫(𝑣2𝑣3)) = (0.4, 0.6, 0.7) 

(𝑇𝒫(𝑣3𝑣4), 𝐼𝒫(𝑣3𝑣4), 𝐹𝒫(𝑣3𝑣4)) = (0.6, 0.5, 0.8) 

(𝑇𝒫(𝑣1𝑣4), 𝐼𝒫(𝑣1𝑣4), 𝐹𝒫(𝑣1𝑣4)) = (0.3, 0.8, 0.6) 

Then, it is 𝔽ℕ𝔾. 
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Figure 3.  Minimum and maximum degree of a Fermatean Neutrosophic graph 

δ(𝔾)=(0.6,1.1,1.3); Δ(𝔾)=(1,1.5,1.5) 

 

Next, the definition of effective edge of 𝔽ℕ𝔾 are 

Definition 4.9. The edge 𝑒 = (𝑢, 𝑣) of 𝔾=(𝒫, 𝒬) be a 𝔽ℕ𝔾 is called an effective edge of 𝔾 is defined as 

𝑇𝒬(𝑢, 𝑣)= min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)} 

𝐼𝒬(𝑢, 𝑣)= max{𝐼𝒫(𝑢), 𝐼𝒫(𝑣)} 

𝐹𝒬(𝑢, 𝑣)= max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)} 

In Fig. 3,  𝑣1𝑣2 is an effective edge of 𝔽ℕ𝔾. 

Definition 4.10. The effective degree of a vertex 𝑢 of 𝔽ℕ𝔾, 𝔾=(𝒫, 𝒬) is defined by 

𝑑ℰ(𝑢)=( 𝑑ℰ𝑇(𝑢), 𝑑ℰ𝐼(𝑢), 𝑑ℰ𝐹(𝑢))  ∀ 𝑢 ∈  ℰ; here 𝑑ℰ𝑇(𝑢) is the sum of the T−values of the effective edges 

of 𝔽ℕ𝔾 incident with 𝑢, 𝑑ℰ𝐼(𝑢)is the sum of the I−values of the effective edges of 𝔽ℕ𝔾 incident with 

𝑢 and 𝑑ℰ𝐹(𝑢) is the sum of the F−values of the effective edges of 𝔽ℕ𝔾 incident with 𝑢.  

Definition 4.11. The minimum effective degree of 𝔾=(𝒫, 𝒬) in 𝔽ℕ𝔾 is designated  as 

δℰ(𝔾) =(δℰ𝑇(𝔾), δℰ𝐼(𝔾), δℰ𝐹(𝔾)) where, 

δℰ𝑇(𝔾)=⋀{𝑑ℰ𝑇(𝑢)|𝑢 ∈ 𝒫}; 

δℰ𝐼(𝔾)=⋀{𝑑ℰ𝐼(𝑢)|𝑢 ∈ 𝒫} ; 

δℰ𝐹(𝔾) =⋀{𝑑ℰ𝐹(𝑢)|𝑢 ∈ 𝒫} 

Definition 4.12. The maximum effective degree of 𝔾=(𝒫, 𝒬) in 𝔽ℕ𝔾 is designated  as 

Δℰ(𝔾) =(Δℰ𝑇(𝔾), Δℰ𝐼(𝔾), Δℰ𝐹(𝔾)) where, 

Δℰ𝑇(𝔾)=⋁{𝑑ℰ𝑇(𝑢)|𝑢 ∈ 𝒫}; 

Δℰ𝐼(𝔾)=⋁{𝑑ℰ𝐼(𝑢)|𝑢 ∈ 𝒫} ; 

Δℰ𝐹(𝔾) =⋁{𝑑ℰ𝐹(𝑢)|𝑢 ∈ 𝒫} 

Example 4.6. Let the vertex set 𝕍 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and the edge sets 𝔼={𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣1𝑣4} in 

𝔾′=(𝑉, 𝐸).Take the  Fermatean Neutrosophic set 𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) in  𝕍 and the Fermatean 

Neutrosophic edge sets in 𝔼 ⊆  𝕍 × 𝕍 defined by 

(𝑇𝒫(𝑣1), 𝐼𝒫(𝑣1), 𝐹𝒫(𝑣1)) = (0.3, 0.7, 0.5) 

(𝑇𝒫(𝑣2), 𝐼𝒫(𝑣2), 𝐹𝒫(𝑣2)) = (0.6, 0.5, 0.7) 

(𝑇𝒫(𝑣3), 𝐼𝒫(𝑣3), 𝐹𝒫(𝑣3)) = (0.8, 0.3, 0.7)  

(𝑇𝒫(𝑣4), 𝐼𝒫(𝑣4), 𝐹𝒫(𝑣4)) = (0.7, 0.2, 0.4) 

and 

(𝑇𝒬(𝑣1𝑣2), 𝐼𝒬(𝑣1𝑣2), 𝐹𝒬(𝑣1𝑣2)) = (0.3, 0.7, 0.7) 

(𝑇𝒫(𝑣2𝑣3), 𝐼𝒫(𝑣2𝑣3), 𝐹𝒫(𝑣2𝑣3)) = (0.6, 0.5, 0.7) 

(𝑇𝒫(𝑣3𝑣4), 𝐼𝒫(𝑣3𝑣4), 𝐹𝒫(𝑣3𝑣4)) = (0.7, 0.3, 0.7) 

(𝑇𝒫(𝑣1𝑣4), 𝐼𝒫(𝑣1𝑣4), 𝐹𝒫(𝑣1𝑣4)) = (0.3, 0.8, 0.6) 

Then, it is 𝔽ℕ𝔾. 
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Figure 4.  Fermatean Neutrosophic graph 

In Fig. 4,  𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4  are the effective edges of 𝔽ℕ𝔾. 

 

𝑑ℰ(𝑣1)=( 1.3,0.7,1.1) δℰ(𝔾) =(0.8,0.3,0.7) 

𝑑ℰ(𝑣2)=( 1.1,1.0,1.2)   

𝑑ℰ(𝑣3)=( 1.3,0.7,1.1)   Δℰ(𝔾) =(1.3,1.0,1.2) 

𝑑ℰ(𝑣4)=( 0.8,0.3,0.7) 

 

Definition 4.13. The neighborhood of any vertex 𝑢 in 𝔾=(𝒫, 𝒬)of a 𝔽ℕ𝔾 is designated  as 

𝒩(𝑢)=(𝒩𝑇(𝑢), 𝒩𝐼(𝑢),𝒩𝐹(𝑢)) where, 

𝒩𝑇(𝑢) = {𝑣 ∈ 𝒫: 𝑇𝒬(𝑢, 𝑣) =  𝑇𝒫(𝑢)⋀𝑇𝒫(𝑣)} ; 

𝒩𝐼(𝑢) = {𝑣 ∈ 𝒫: 𝐼𝒬(𝑢, 𝑣) =  𝐼𝒫(𝑢)⋁𝐼𝒫(𝑣)} ; 

𝒩𝐹(𝑢) = {𝑣 ∈ 𝒫: 𝐹𝒬(𝑢, 𝑣) =  𝐹𝒫(𝑢)⋁𝐹𝒫(𝑣)}  

And  𝒩[𝑢]= 𝒩(𝑢)⋃𝑢 is called the closed neighbourhood of 𝑢. 

Definition 4.14. The neighborhood degree of a vertex 𝑢 in 𝔾=(𝒫, 𝒬)of a 𝔽ℕ𝔾 is designated as 

d𝒩(𝑢)=(d𝒩𝑇(𝑢), d𝒩𝐼(𝑢), d𝒩𝐹(𝑢)) where, 

d𝒩𝑇(𝑢) = ∑ 𝑇𝒫(𝑢)𝑢∈𝒩(𝑝) , 

d𝒩𝐼(𝑢) = ∑ 𝐼𝒫(𝑢)𝑢∈𝒩(𝑝) , 

d𝒩𝐹(𝑢) ∑ 𝐹𝒫(𝑢)𝑢∈𝒩(𝑝)  

Definition 4.15. The minimum neighborhood degree of 𝔾=(𝒫, 𝒬) in 𝔽ℕ𝔾 is designated as 

δ𝒩(𝔾)=(δ𝒩𝑇(𝔾), δ𝒩𝐼(𝔾), δ𝒩𝐹(𝔾)) where, 

δ𝒩𝑇(𝔾)=⋀{𝑑𝒩𝑇(𝑢)|𝑢 ∈ 𝒫} ; 

δ𝒩𝐼(𝔾)=⋀{𝑑𝒩𝐼(𝑢)|𝑢 ∈ 𝒫} ; 

δ𝒩𝐹(𝔾) =⋀{𝑑𝒩𝐹(𝑢)|𝑢 ∈ 𝒫} 

Definition 4.16. The maximum neighborhood degree of 𝔾=(𝒫, 𝒬) in 𝔽ℕ𝔾 is designated as 

Δ𝒩(𝔾)=(Δ𝒩𝑇(𝔾), Δ𝒩𝐼(𝔾), Δ𝒩𝐹(𝔾)) where, 

Δ𝒩𝑇(𝔾)=⋁{𝑑𝒩𝑇(𝑢)|𝑢 ∈ 𝒫} ; 

Δ𝒩𝐼(𝔾)=⋁{𝑑𝒩𝐼(𝑢)|𝑢 ∈ 𝒫} ; 

Δ𝒩𝐹(𝔾) =⋁{𝑑𝒩𝐹(𝑢)|𝑢 ∈ 𝒫}  

Example 4.7.  
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Let the vertex set 𝕍 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and the edge sets 𝔼={𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣1𝑣4} in 𝔾′=(𝑉, 𝐸). Take the 

Fermatean Neutrosophic set 𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) in  𝕍 and the Fermatean Neutrosophic edge sets in 𝔼 ⊆

 𝕍 × 𝕍 defined by 

(𝑇𝒫(𝑣1), 𝐼𝒫(𝑣1), 𝐹𝒫(𝑣1)) = (0.3, 0.7, 0.5) 

(𝑇𝒫(𝑣2), 𝐼𝒫(𝑣2), 𝐹𝒫(𝑣2)) = (0.6, 0.5, 0.7) 

(𝑇𝒫(𝑣3), 𝐼𝒫(𝑣3), 𝐹𝒫(𝑣3)) = (0.8, 0.3, 0.7)  

(𝑇𝒫(𝑣4), 𝐼𝒫(𝑣4), 𝐹𝒫(𝑣4)) = (0.7, 0.2, 0.4) 

and 

(𝑇𝒬(𝑣1𝑣2), 𝐼𝒬(𝑣1𝑣2), 𝐹𝒬(𝑣1𝑣2)) = (0.2, 0.7, 0.8) 

(𝑇𝒫(𝑣2𝑣3), 𝐼𝒫(𝑣2𝑣3), 𝐹𝒫(𝑣2𝑣3)) = (0.6, 0.5, 0.7) 

(𝑇𝒫(𝑣3𝑣4), 𝐼𝒫(𝑣3𝑣4), 𝐹𝒫(𝑣3𝑣4)) = (0.7, 0.3, 0.7) 

(𝑇𝒫(𝑣1𝑣4), 𝐼𝒫(𝑣1𝑣4), 𝐹𝒫(𝑣1𝑣4)) = (0.3, 0.8, 0.6) 

Then, it is 𝔽ℕ𝔾. 

 

Figure 5.  Fermatean Neutrosophic graph 

𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4  are the effective edges of 𝔽ℕ𝔾 

 

𝛿𝒩(𝔾) = = (0.6,0.3,0.7); Δ𝒩(𝔾) = (1.3,1.0,1.2) 

Definition 4.17. The closed neighborhood degree of a vertex 𝑢 of 𝔾=(𝒫, 𝒬)in a 𝔽ℕ𝔾 is designated  as 

d𝒩[𝑢]=(d𝒩𝑇[𝑢], d𝒩𝐼[𝑢], d𝒩𝐹[𝑢]) 

where, 

d𝒩𝑇[𝑢] = ∑ 𝑇𝒫(𝑣) + 𝑇𝒫(𝑢)𝑣∈𝒩(𝑝) , 

d𝒩𝐼[𝑢] ∑ 𝐼𝒫(𝑣) + 𝐼𝒫(𝑢)𝑣∈𝒩(𝑝) , 

𝒩(𝑣1)=(𝒩𝑇(𝑣1), 𝒩𝐼(𝑣1),𝒩𝐹(𝑣1)) 

𝒩𝑇(𝑣1) = {𝑣2}; 𝒩𝐼(𝑣1) =  {𝑣2};𝒩𝐹(𝑣1) = {𝑣2} 

d𝒩(𝑣1) = (0.6, 0.5, 0.7) 

 

𝒩(𝑣2)=(𝒩𝑇(𝑣2), 𝒩𝐼(𝑣2),𝒩𝐹(𝑣2)) 

𝒩𝑇(𝑣2) = {𝑣1, 𝑣3 }; 𝒩𝐼(𝑣2) =  {𝑣1, 𝑣3 }; 𝒩𝐹(𝑣2) = {𝑣1, 𝑣3 } 

d𝒩(𝑣2) = (1.1,1.0,1.2) 

𝒩(𝑣3)=(𝒩𝑇(𝑣3), 𝒩𝐼(𝑣3),𝒩𝐹(𝑣3)) 

𝒩𝑇(𝑣3) = {𝑣2, 𝑣4}; 𝒩𝐼(𝑣3) =  {𝑣2, 𝑣4};𝒩𝐹(𝑣3) = {𝑣2, 𝑣4} 

d𝒩(𝑣3) = (1.3,0.7,1.1) 

𝒩(𝑣4)=(𝒩𝑇(𝑣4), 𝒩𝐼(𝑣4),𝒩𝐹(𝑣4)) 

𝒩𝑇(𝑣4) = {𝑣3}; 𝒩𝐼(𝑣4) =  {𝑣3};𝒩𝐹(𝑣4) = {𝑣3} 

 d𝒩(𝑣4) = (0.8,0.3,0.7) 
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d𝒩𝐹[𝑢] ∑ 𝐹𝒫(𝑣) + 𝐹𝒫(𝑢)𝑣∈𝒩(𝑝) , 

 

Definition 4.18. The minimum closed neighborhood degree of 𝔾=(𝒫, 𝒬)in a 𝔽ℕ𝔾 is designated as 

δ𝒩[𝔾]=(δ𝒩𝑇[𝔾], δ𝒩𝐼[𝔾], δ𝒩𝐹[𝔾]) where, 

δ𝒩𝑇[𝔾]=⋀{𝑑𝒩𝑇(𝑢)|𝑢 ∈ 𝒫} ; 

δ𝒩𝐼[𝔾]=⋀{𝑑𝒩𝐼(𝑢)|𝑢 ∈ 𝒫} ; 

δ𝒩𝐹[𝔾] =⋀{𝑑𝒩𝐹(𝑢)|𝑢 ∈ 𝒫} ; 

 

Definition 4.19. The maximum closed neighborhood degree of 𝔾=(𝒫, 𝒬)in a 𝔽ℕ𝔾 is designated as 

Δ𝒩[𝔾]=(Δ𝒩𝑇[𝔾], Δ𝒩𝐼[𝔾], Δ𝒩𝐹[𝔾]) where, 

Δ𝒩𝑇[𝔾]=⋀{𝑑𝒩𝑇(𝑢)|𝑢 ∈ 𝒫} ; 

Δ𝒩𝐼[𝔾]=⋀{𝑑𝒩𝐼(𝑢)|𝑢 ∈ 𝒫} ; 

Δ𝒩𝐹[𝔾] =⋀{𝑑𝒩𝐹(𝑢)|𝑢 ∈ 𝒫} ; 

Example 4.8.  

From Fig. 5,  

 

𝛿𝒩[𝔾] = = (0.9,0.5,1.2); Δ𝒩[𝔾] = (2.1,1.5,1.8) 

 

5. Types of Fermatean neutrosophic graphs 

In this section, we introduce different types of Fermatean Neutrosophic graphs based on the 

degree of each node in FNG such as regular, totally regular and uniform FNGs with suitable 

examples.  

 

Definition 5.1 Let 𝔾=(𝒫, 𝒬) be A Fermatean Neutrosophic graph 𝔽ℕ𝔾 defined on G = (V, E). If each 

vertex of 𝔾 has same degree, that is  

𝑑𝔾(𝑢)=( 𝑙1, 𝑙2, 𝑙3)  ∀  𝑢 ∈ 𝑉 

Then 𝔾 is called ( 𝑙1, 𝑙2, 𝑙3) - regular 𝔽ℕ𝔾.   

Example 5.2 Consider a Fermatean Neutrosophic graph 𝔾=(𝒫, 𝒬) defined on G = (V, E), where 𝒫 be 

a Fermatean Neutrosophic set on V and 𝒬 be a Fermatean Neutrosophic relation on V, defined by  

𝒫={ 〈𝑣1, (0.6, 1,0.7)〉, 〈𝑣2, (0.5, 0.8,0.4)〉, 〈𝑣3, (0.7, 0.5,0.3)〉 } 

𝒩[𝑣1]=(𝒩𝑇[𝑣1], 𝒩𝐼[𝑣1],𝒩𝐹[𝑣1]) 

𝒩𝑇[𝑣1] = {𝑣1, 𝑣2}; 𝒩𝐼[𝑣1] =  {𝑣1, 𝑣2};  ;𝒩𝐹[𝑣1] = {𝑣1, 𝑣2} 

d𝒩[𝑣1] = (0.9, 1.2, 1.2) 

 

𝒩[𝑣2]=(𝒩𝑇[𝑣2], 𝒩𝐼[𝑣2],𝒩𝐹[𝑣2]) 

𝒩𝑇[𝑣2] = {𝑣1, 𝑣2, 𝑣3 }; 𝒩𝐼[𝑣2] =  {𝑣1, 𝑣2, 𝑣3 }; 𝒩𝐹[𝑣2] =

{𝑣1, 𝑣2, 𝑣3 } 

d𝒩(𝑣2) = (1.7,1.5,1.9) 

𝒩[𝑣3]=(𝒩𝑇[𝑣3], 𝒩𝐼[𝑣3],𝒩𝐹[𝑣3]) 

𝒩𝑇[𝑣3] = {𝑣2, 𝑣3, 𝑣4}; 𝒩𝐼[𝑣3] =  {𝑣2, 𝑣3, 𝑣4}; 𝒩𝐹[𝑣3] = {𝑣2, 𝑣3, 𝑣4} 

d𝒩(𝑣3) = (2.1,1.0,1.8) 

𝒩[𝑣4]=(𝒩𝑇[𝑣4], 𝒩𝐼[𝑣4],𝒩𝐹[𝑣4]) 

𝒩𝑇[𝑣4] = {𝑣3, 𝑣4}; 𝒩𝐼[𝑣4] =  {𝑣3, 𝑣4}; 𝒩𝐹[𝑣4] = {𝑣3, 𝑣4} 

 d𝒩(𝑣4) = (1.5,0.5,1.1) 
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And  𝒬={ 〈𝑣1𝑣2, (0.4, 1,0.8)〉, 〈𝑣2𝑣3, (0.4, 1,0.8)〉, 〈𝑣1𝑣3, (0.4, 1,0.8)〉 } 

 

 

 

Figure 6. Regular Fermatean Neutrosophic graph 

We see that the degree of each vertex in 𝔾 is 𝑑𝔾(𝑣1) = 𝑑𝔾(𝑣2) = 𝑑𝔾(𝑣3)  = (1.2, 2,1.4). Hence the 

Fermatean Neutrosophic graph, displayed in Fig. 6, is (1.2, 2,1.4) – regular. 

 

Definition 5.3. A Fermatean Neutrosophic graph 𝔽ℕ𝔾 𝔾=(𝒫, 𝒬) is called Strong Fermatean 

Neutrosophic graph if the following conditions are satisfied: 

𝑇𝒬(𝑢, 𝑣)= min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)} 

𝐼𝒬(𝑢, 𝑣)= max{𝐼𝒫(𝑢), 𝐼𝒫(𝑣)} 

                       𝐹𝒬(𝑢, 𝑣)= max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)}  for all  𝑢, 𝑣 ∈ 𝐸 

That is , all the edges in a Fermatean Neutrosophic graph are effective edges.  

An example of a Strong Fermatean neutrosophic graph is shown in Figure 7. 

 

Example 5.4 

Consider a graph G=(V, E) where the vertex set V={𝑣1, 𝑣2, 𝑣3, 𝑣4} and the edge se 

E={𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣1𝑣4}. Let 𝔾=(𝒫, 𝒬)be  a Fermatean Neutrosophic graph on V as shown in Figure 

7, defined by 𝒫={ 〈𝑣1, (0.3, 0.7,0.5)〉, 〈𝑣2, (0.4, 0.6,0.7)〉, 〈𝑣3, (0.8, 0.3,0.7)〉, 〈𝑣4, (0.7, 0.2,0.4)〉 } and  

𝒬={ 〈𝑣1𝑣2, (0.3, 0.7,0.7)〉, 〈𝑣2𝑣3, (0.6, 0.5,0.7)〉, 〈𝑣3𝑣4, (0.7, 0.3,0.7)〉, 〈𝑣1𝑣4, (0.3, 0.7,0.5)〉}. 

 

Figure 7. Strong Fermatean Neutrosophic graph 
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Following and extending the idea of uniform single valued neutrosophic graphs by Broumi et al. [32], 

we describe the concept of regularity of uniform single valued neutrosophic graphs under Fermatean 

neutrosophic environment. 

Definition 5.5 Let  𝔾=(𝒫, 𝒬) be a Fermatean Neutrosophic graph  𝔽ℕ𝔾 defined on G= (V, E), where 

𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) is a Fermatean Neutrosophic sets on V and 𝒬 = (𝑇𝒬 , 𝐼𝒬 , 𝐹𝒬) is a Fermatean 

Neutrosophic relation  on V. 𝔾 is called  uniform Fermtean Neutrosophic of level (𝑘1, 𝑘2, 𝑘3) if 

𝑇𝒬(𝑢, 𝑣)= 𝑘1, 𝐼𝒬(𝑢, 𝑣)= 𝑘2 and 𝐹𝒬(𝑢, 𝑣)= 𝑘3, ∀ (𝑢, 𝑣) ∈ V × V and 𝑇𝒫(𝑢)= 𝑘1, 𝐼𝒫(𝑢)= 𝑘2 and 𝐹𝒫(𝑢)= 𝑘3 ∀ 

𝑢 ∈ V, where, 0< 𝑘1, 𝑘2, 𝑘3 ≤ 1. 

 

Example 5.5 : The following figure is an uniform Fermatean Neutrosophic graph 𝔾=(𝒫, 𝒬). 

 

Figure 8. Uniform Fermatean Neutrosophic graph 

Theorem 5.6 Every uniform Fermatean Neutrosophic graph is perfectly regular Fermatean 

Neutrosophic. 

Proof. Let  𝔾=(𝒫, 𝒬) be a Fermatean Neutrosophic graph  𝔽ℕ𝔾 defined on G= (V, E) with 

V={𝑢1, 𝑢2, … , 𝑢𝑛}, then 𝑇𝒬(𝑢, 𝑣)= 𝑘1, 𝐼𝒬(𝑢, 𝑣)= 𝑘2 and 𝐹𝒬(𝑢, 𝑣)= 𝑘3, ∀ (𝑢, 𝑣) ∈ V × V and 𝑇𝒫(𝑢)= 𝑘1, 𝐼𝒫(𝑢)= 

𝑘2 and 𝐹𝒫(𝑢)= 𝑘3 ∀ (𝑢, 𝑣) ∈ V × V, where 0 < 𝑘1, 𝑘2, 𝑘3 ≤ 1. 

Then for each  𝑢 in V, 

  𝑑𝔾(𝑢)= (dT(𝑢), dI(𝑢), dF(𝑢)) 

                   =(∑ 𝑇𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 , ∑ 𝐼𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 , ∑ 𝐹𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 )  

                     =((𝑛 − 1)𝑘1, (𝑛 − 1)𝑘2, (𝑛 − 1)𝑘3) 

This shows that 𝔾 is ((𝑛 − 1)𝑘1, (𝑛 − 1)𝑘2, (𝑛 − 1)𝑘3) regular 𝔽ℕ𝔾. Moreover for each vertex 𝑢 in V, 

𝑡𝑑𝔾(𝑢)= (tdT(𝑢), tdI(𝑢), tdF(𝑢)) 

                   = (∑ 𝑇𝒬(𝑢𝑣) +𝑢𝑣∈ 𝐸 𝑇𝒫(𝑢), ∑ 𝐼𝒬(𝑢𝑣) +𝑢𝑣∈ 𝐸 𝐼𝒫(𝑢), ∑ 𝐹𝒬(𝑢𝑣) +𝑢𝑣∈ 𝐸 𝐹𝒫(𝑢)) 

                  =((𝑛 − 1)𝑘1 + 𝑘1, (𝑛 − 1)𝑘2 + 𝑘2, (𝑛 − 1)𝑘3 + 𝑘3) 

                   = (𝑛𝑘1, 𝑛𝑘2, 𝑛𝑘3) 

This shows that 𝔾 is (𝑛𝑘1, 𝑛𝑘2, 𝑛𝑘3) totally regular 𝔽ℕ𝔾 .  

 

Theorem 5.7 If 𝔾 is 𝑎 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝔽ℕ𝔾 of level (𝑘1, 𝑘2, 𝑘3) on G= (V, E), then 

a) O(𝔾)= (𝑛𝑘1, 𝑛𝑘2, 𝑛𝑘3)  where n=|𝑉|. 
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b) S(𝔾)= (𝑚𝑘1, 𝑚𝑘2, 𝑚𝑘3) where m=|𝐸|. 

Proof. Let  𝔾=(𝒫, 𝒬) be a uniform Fermatean Neutrosophic graph  𝔽ℕ𝔾 defined on G= (V, E) with 

V={𝑢1, 𝑢2, … , 𝑢𝑛}, then 𝑇𝒬(𝑢, 𝑣)= 𝑘1, 𝐼𝒬(𝑢, 𝑣)= 𝑘2 and 𝐹𝒬(𝑢, 𝑣)= 𝑘3, ∀ (𝑢, 𝑣) ∈ V × V and 𝑇𝒫(𝑢)= 𝑘1, 

𝐼𝒫(𝑢)= 𝑘2 and 𝐹𝒫(𝑢)= 𝑘3 ∀ (𝑢, 𝑣) ∈ V × V, where 0 < 𝑘1, 𝑘2, 𝑘3 ≤ 1. 

 

a) for each vertex 𝑢 in V 

                     O(𝔾)= (∑ 𝑇𝒫(𝑢)𝑢∈ 𝑉 , ∑ 𝐼𝒫(𝑢)𝑢∈ 𝑉 , ∑ 𝐹𝒫(𝑢)𝑢∈ 𝑉 )  

                               =(∑ 𝑘1𝑢∈ 𝑉 , ∑ 𝑘2𝑢∈ 𝑉 , ∑ 𝑘3𝑢∈ 𝑉 )  

                               = (𝑛𝑘1, 𝑛𝑘2, 𝑛𝑘3)   where n=|𝑉|. 

 

b) for each edge 𝑢𝑣 in E 

                                S(𝔾)= (∑ 𝑇𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 , ∑ 𝐼𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 , ∑ 𝐹𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 ) 

                               =(∑ 𝑘1𝑢𝑣∈ 𝐸 , ∑ 𝑘2𝑢𝑣∈ 𝐸 , ∑ 𝑘3𝑢𝑣∈ 𝐸 )  

                               = (𝑚𝑘1, 𝑚𝑘2, 𝑚𝑘3) where m=|𝐸|. 

Hence proved. 

 

Remark 5.8 The underlying crisp graph of complement of a Fermatean Neutrosophic graph is always 

an empty graph. 

 

6. Operations on Fermatean Neutrosophic Graphs 

In this section, we propose some important graph-theoretic operations over Fermatean Neutrosophic 

graphs along with various important results and illustrative examples. 

Let 𝔾1=(𝒫1, 𝒬1) and 𝔾2=(𝒫2, 𝒬2) be two Fermatean Neutrosophic graphs with references to the graphs 

𝐺1=(𝑉1, 𝐸1) and 𝐺2=(𝑉2, 𝐸2), correspondingly, where 𝒫1& 𝒫2 are the Fermatean Neutrosophic vertex 

sets in 𝑉1& 𝑉2 corespondingly, and 𝒬1& 𝒬2 are the the Fermatean Neutrosophic edge sets in 𝐸1& 𝐸2, 

correspondingly. 

There are many operations on two graphs 𝐺1=(𝑉1, 𝐸1) and 𝐺2=(𝑉2, 𝐸2),which result in a graph whose 

vertex set is the Cartesian product 𝑉1& 𝑉2. 

In the following section, we discuss a few operations on two graphs in the structure of Fermatean 

Neutrosophic sets theory and investigate their properties. 

 

6.1 Cartesian Product of Fermatean Neutrosophic Graphs 

Definition 6.1.1 The Cartesian product of two Fermatean Neutrosophic graphs 𝔾1and 𝔾2, denoted 

by 𝔾1𝐂𝐚𝐫𝐭𝐞𝐬𝐢𝐚𝐧 𝐏𝐫𝐨𝐝𝐮𝐜𝐭  𝔾2, is defined as follows: 

𝔾1 × 𝔾2=(𝒫1 × 𝒫2, 𝒬1 × 𝒬2) 

where 
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 

𝑇𝒫1×𝒫2(𝑢1, 𝑢2) = min (𝑇𝒫1(𝑢1), 𝑇𝒫2(𝑢2))

𝐼𝒫1×𝒫2(𝑢1, 𝑢2) = max (𝐼𝒫1(𝑢1), 𝐼𝒫2(𝑢2))

𝐹𝒫1×𝒫2(𝑢1, 𝑢2) = max (𝐹𝒫1(𝑢1), 𝐹𝒫2(𝑢2)) ∀(𝑢1, 𝑢2) ∈ 𝑉1 × 𝑉2

 

The membership value of the edges in 𝔾1 × 𝔾2 can be computed  as 

 

 

𝑇𝒬1×𝒬2((𝑢, 𝑢2), (𝑢, 𝑣2)) = min (𝑇𝒫1(𝑢), 𝑇𝒬2(𝑢2, 𝑣2))

𝐼𝒬1×𝒬2((𝑢, 𝑢2), (𝑢, 𝑣2)) = max (𝐼𝒫1(𝑢), 𝐼𝒬2(𝑢2, 𝑣2))

𝐹𝒬1×𝒬2((𝑢, 𝑢2), (𝑢, 𝑣2)) = max (𝐹𝒫1(𝑢), 𝐹𝒬2(𝑢2, 𝑣2)) ∀ 𝑢 ∈ 𝑉1, (𝑢2, 𝑣2) ∈ 𝐸2

 

 

𝑇𝒬1×𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = min (𝑇𝒬1(𝑢1, 𝑣1), 𝑇𝒫2(𝛾)) ,

𝐼𝒬1×𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = max (𝐼𝒬1(𝑢1, 𝑣1), 𝐼𝒫2(𝛾))

𝐹𝒬1×𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = max (𝐹𝒬1(𝑢1, 𝑣1), 𝐹𝒫2(𝛾)) ∀ 𝛾 ∈ 𝑉2, (𝑢1, 𝑣1) ∈ 𝐸1

 

 

Theorem 6.1.2 The Cartesian Product of two Fermatean Neutrosophic graphs is a Fermatean 

Neutrosophic graph. 

Proof suppose  𝑢 ∈ 𝑉1, (𝑢2, 𝑣2) ∈ 𝐸2. Then, 

𝑇𝒬1×𝒬2((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒫1(𝑢), 𝑇𝒬2(𝑢2, 𝑣2)), 

                  ≤ 𝑚𝑖𝑛 (𝑇𝒫1(𝑢),min (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2))),  

                  = 𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝑢), 𝑇𝒫2(𝑢2)) ,min (𝑇𝒫2(𝑢), 𝑇𝒫2(𝑣2))), 

         = 𝑚𝑖𝑛(𝑇𝒫1×𝒫2(𝑢, 𝑢2), 𝑇𝒫1×𝒫2(𝑢, 𝑣2)) 

𝐼𝒬1×𝒬2((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒫1(𝑢), 𝐼𝒬2(𝑢2, 𝑣2)), 

           ≥  𝑚𝑎𝑥 (𝐼𝒫1(𝑢),max (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2))),  

            = 𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝑢), 𝐼𝒫2(𝑢2)) ,max (𝐼𝒫2(𝑢), 𝐼𝒫2(𝑣2))), 

=  𝑚𝑎𝑥(𝐼𝒫1×𝒫2(𝑢, 𝑢2), 𝐼𝒫1×𝒫2(𝑢, 𝑣2)) 

and 

𝐹𝒬1×𝒬2((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒫1(𝑢), 𝐹𝒬2(𝑢2, 𝑣2)), 

           ≥  𝑚𝑎𝑥 (𝐹𝒫1(𝑢),max (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2))),  

               = 𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝑢), 𝐹𝒫2(𝑢2)) ,max (𝐹𝒫2(𝑢), 𝐹𝒫2(𝑣2))), 

     = 𝑚𝑎𝑥 (𝐹𝒫1×𝒫2(𝑢, 𝑢2), 𝐹𝒫1×𝒫2(𝑢, 𝑣2)) 
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Again, let  ∀ 𝛾 ∈ 𝑉2, (𝑢1, 𝑣1) ∈ 𝐸1, then we have 

𝑇𝒬1×𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = 𝑚𝑖𝑛 (𝑇𝒬1(𝑢1, 𝑣1), 𝑇𝒫2(𝛾)), 

 ≤  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫1(𝑣1), 𝑇𝒫2(𝛾))),  

          =  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫2(𝛾)) ,𝑚𝑖𝑛 (𝑇𝒫1(𝑣1), 𝑇𝒫2(𝛾))), 

            = 𝑚𝑖𝑛(𝑇𝒫1×𝒫2(𝑢1, 𝛾), 𝑇𝒫1×𝒫2(𝑣1, 𝛾)) . 

𝐼𝒬1×𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = 𝑚𝑎𝑥 (𝐼𝒬1(𝑢1, 𝑣1), 𝐼𝒫2(𝛾)), 

           ≥  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫1(𝑣1), 𝐼𝒫2(𝛾))),  

            =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫2(𝛾)) ,𝑚𝑎𝑥 (𝐼𝒫1(𝑣1), 𝐼𝒫2(𝛾))), 

           =  𝑚𝑎𝑥(𝐼𝒫1×𝒫2(𝑢1, 𝛾), 𝐼𝒫1×𝒫2(𝑣1, 𝛾)). 

and 

𝐹𝒬1×𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = 𝑚𝑎𝑥 (𝐹𝒬1(𝑢1, 𝑣1), 𝐹𝒫2(𝛾)), 

≥  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫1(𝑣1), 𝐹𝒫2(𝛾))),  

        =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫2(𝛾)) ,𝑚𝑎𝑥 (𝐹𝒫1(𝑣1), 𝐹𝒫2(𝛾))), 

           =  𝑚𝑎𝑥(𝐹𝒫1×𝒫2(𝑢1, 𝛾), 𝐹𝒫1×𝒫2(𝑣1, 𝛾)). 

Thus, in view of the definition of the Fermatean Neutrosophic, the result follows. The following 

example illustrates the above defined graph-theoretic operation. 

 

Example 6.3 Consider two Fermatean Neutrosophic 𝔾1𝑎𝑛𝑑 𝔾2 as shown in the below Figure 9.  

              

Figure 9. Fermatean Neutrosophic graphs 𝔾1𝑎𝑛𝑑 𝔾2 
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Figure 10. Composition graph 𝔾1 × 𝔾2 

Then, the graphs 𝔾1, 𝔾2 and their composition graph 𝔾1 × 𝔾2 are being graphically presented in the 

above Figure 10. 

 

6.2 Composition of Fermatean Neutrosophic Graphs 

Definition 6.2.1 The composition of two Fermatean Neutrosophic graphs 𝔾1and 𝔾2, denoted by 𝔾1 ∘ 

𝔾2, is defined as follows: 

𝔾1 ∘ 𝔾2=(𝒫1 ∘ 𝒫2, 𝒬1 ∘ 𝒬2) 

where 

 

𝑇𝒫1×𝒫2(𝑢1, 𝑢2) = min (𝑇𝒫1(𝑢1), 𝑇𝒫2(𝑢2))

𝐼𝒫1×𝒫2(𝑢1, 𝑢2) = max (𝐼𝒫1(𝑢1), 𝐼𝒫2(𝑢2))

𝐹𝒫1×𝒫2(𝑢1, 𝑢2) = max (𝐹𝒫1(𝑢1), 𝐹𝒫2(𝑢2)) ∀(𝑢1, 𝑢2) ∈ 𝑉1 × 𝑉2

 

 

 

𝑇𝒬1∘𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = min (𝑇𝒫1(𝛽), 𝑇𝒬2(𝑢2, 𝑣2))

𝐼𝒬1∘𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = max (𝐼𝒫1(𝛽), 𝐼𝒬2(𝑢2, 𝑣2))

𝐹𝒬1∘𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = max (𝐹𝒫1(𝛽), 𝐹𝒬2(𝑢2, 𝑣2)) ∀ 𝛽 ∈ 𝑉1, (𝑢2, 𝑣2) ∈ 𝐸2

  

 

 

𝑇𝒬1∘𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = min (𝑇𝒬1(𝑢1, 𝑣1), 𝑇𝒫2(𝛾)) ,

𝐼𝒬1∘𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = max (𝐼𝒬1(𝑢1, 𝑣1), 𝐼𝒫2(𝛾))

𝐹𝒬1∘𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = max (𝐹𝒬1(𝑢1, 𝑣1), 𝐹𝒫2(𝛾)) ∀ 𝛾 ∈ 𝑉2, (𝑢1, 𝑣1) ∈ 𝐸1
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 

𝑇𝒬1∘𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = min (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2), 𝑇𝒬1(𝑢1, 𝑣1)) ,

𝐼𝒬1∘𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = max (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2), 𝐼𝒬1(𝑢1, 𝑣1))

𝐹𝒬1∘𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = max (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2), 𝐹𝒬1(𝑢1, 𝑣1)) 

∀((𝑢1, 𝑢2), (𝑣1, 𝑣2)) ∈ 𝐸
∘, 𝑤ℎ𝑒𝑟𝑒

𝐸∘ = {(𝑢1, 𝑢2), (𝑣1, 𝑣2)|(𝑢1, 𝑣1) ∈ 𝐸1 𝑎𝑛𝑑 𝑢2 ≠ 𝑣2}

 

Theorem 6.2.2 The composition of two Fermatean Neutrosophic graphs is a Fermatean Neutrosophic 

graph. 

Proof: Suppose  𝛽 ∈ 𝑉1, (𝑢2, 𝑣2) ∈ 𝐸2. Then, 

𝑇𝒬1∘𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒫1(𝛽), 𝑇𝒬2(𝑢2, 𝑣2)), 

              ≤  𝑚𝑖𝑛 (𝑇𝒫1(𝛽),min (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2))),  

                  = 𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝛽), 𝑇𝒫2(𝑢2)) ,min (𝑇𝒫2(𝛽), 𝑇𝒫2(𝑣2))), 

                   = 𝑚𝑖𝑛(𝑇𝒫1∘𝒫2(𝛽, 𝑢2), 𝑇𝒫1∘𝒫2(𝛽, 𝑣2)) . 

 

𝐼𝒬1∘𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒫1(𝛽), 𝐼𝒬2(𝑢2, 𝑣2)), 

              ≥  𝑚𝑎𝑥 (𝐼𝒫1(𝛽),max (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2))),  

                  =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝛽), 𝐼𝒫2(𝑢2)) ,𝑚𝑎𝑥 (𝐼𝒫2(𝛽), 𝐼𝒫2(𝑣2))), 

                    = 𝑚𝑎𝑥(𝐼𝒫1∘𝒫2(𝛽, 𝑢2), 𝐼𝒫1∘𝒫2(𝛽, 𝑣2)). 

and 

𝐹𝒬1∘𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒫1(𝛽), 𝐹𝒬2(𝑢2, 𝑣2)), 

              ≥  𝑚𝑎𝑥 (𝐹𝒫1(𝛽),max (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2))),  

                  =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝛽), 𝐹𝒫2(𝑢2)) ,max (𝐹𝒫2(𝛽), 𝐹𝒫2(𝑣2))), 

                   =  𝑚𝑎𝑥(𝐹𝒫1∘𝒫2(𝛽, 𝑢2), 𝐹𝒫1∘𝒫2(𝛽, 𝑣2)). 

Again, let  ∀ 𝛾 ∈ 𝑉2, (𝑢1, 𝑣1) ∈ 𝐸1, then we have 

𝑇𝒬1∘𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = 𝑚𝑖𝑛 (𝑇𝒬1(𝑢1, 𝑣1), 𝑇𝒫2(𝛾)), 

            ≤  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫1(𝑣1), 𝑇𝒫2(𝛾))),  

            =  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫2(𝛾)) ,𝑚𝑖𝑛 (𝑇𝒫1(𝑣1), 𝑇𝒫2(𝛾))), 

             =  𝑚𝑖𝑛(𝑇𝒫1∘𝒫2(𝑢1, 𝛾), 𝑇𝒫1∘𝒫2(𝑣1, 𝛾)) . 
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𝐼𝒬1∘𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = 𝑚𝑎𝑥 (𝐼𝒬1(𝑢1, 𝑣1), 𝐼𝒫2(𝛾)), 

           ≥  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫1(𝑣1), 𝐼𝒫2(𝛾))),  

             =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫2(𝛾)) ,𝑚𝑎𝑥 (𝐼𝒫1(𝑣1), 𝐼𝒫2(𝛾))), 

            =  𝑚𝑎𝑥(𝐼𝒫1∘𝒫2(𝑢1, 𝛾), 𝐼𝒫1∘𝒫2(𝑣1, 𝛾)). 

and 

𝐹𝒬1∘𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = 𝑚𝑎𝑥 (𝐹𝒬1(𝑢1, 𝑣1), 𝐹𝒫2(𝛾)), 

           ≥  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫1(𝑣1), 𝐹𝒫2(𝛾))),  

            =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫2(𝛾)) ,𝑚𝑎𝑥 (𝐹𝒫1(𝑣1), 𝐹𝒫2(𝛾))), 

             =  𝑚𝑎𝑥(𝐹𝒫1∘𝒫2(𝑢1, 𝛾), 𝐹𝒫1∘𝒫2(𝑣1, 𝛾)). 

Further, if ((𝑢1, 𝑢2), (𝑣1, 𝑣2)) ∈ 𝐸
∘, (𝑢1, 𝑣1) ∈ 𝐸1 𝑎𝑛𝑑 𝑢2 ≠ 𝑣2, then we have 

 𝑇𝒬1∘𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2), 𝑇𝒬1(𝑢1, 𝑣1))                       

                         ≤  𝑚𝑖𝑛 (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2),𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫1(𝑣1))) 

                          =  𝑚𝑖𝑛 (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2),𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫1(𝑣1))) 

                           =  𝑚𝑖𝑛(𝑇𝒫1∘𝒫2(𝑢1, 𝑢2), 𝑇𝒫1∘𝒫2(𝑣1, 𝑣2) 

𝐼𝒬1∘𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2), 𝐼𝒬1(𝑢1, 𝑣1)) 

                                             ≥  𝑚𝑎𝑥 (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2),𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫1(𝑣1))) 

                        =  𝑚𝑎𝑥 (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2),𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫1(𝑣1))) 

                           =  𝑚𝑎𝑥(𝐼𝒫1∘𝒫2(𝑢1, 𝑢2), 𝐼𝒫1∘𝒫2(𝑣1, 𝑣2) 

and 

   𝐹𝒬1∘𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2), 𝐹𝒬1(𝑢1, 𝑣1)) 

                                              ≥  𝑚𝑎𝑥 (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2),𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫1(𝑣1))) 

                          =  𝑚𝑎𝑥 (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2),𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫1(𝑣1))) 

                           =  𝑚𝑎𝑥(𝐹𝒫1∘𝒫2(𝑢1, 𝑢2), 𝐹𝒫1∘𝒫2(𝑣1, 𝑣2) 

Thus, in view of the definition of the Fermatean Neutrosophic, the result follows. The following 

example illustrates the above defined graph-theoretic operation. 
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Example 6.2.3 

Consider two Fermatean Neutrosophic 𝔾1𝑎𝑛𝑑 𝔾2 as shown in the below Figure 11. 

Then, the graphs 𝔾1, 𝔾2 and their composition graph 𝔾1 ∘ 𝔾2 are being graphically presented in the 

below Figure 12. 

 

Figure 11. Fermatean Neutrosophic graphs 𝔾1𝑎𝑛𝑑 𝔾2 

 

Figure 11. Composition graph 𝔾1 ∘ 𝔾2 

6.3 The lexicographic product 

Definition 6.3.1 The lexicographic product of two Fermatean Neutrosophic graphs 𝔾1and 𝔾2, 

denoted by 𝔾1 ⋅ 𝔾2, is defined as follows: 

𝔾1 ∙ 𝔾2=(𝒫1 ∙ 𝒫2, 𝒬1 ∙ 𝒬2) 

 

 

𝑇𝒫1∙𝒫2(𝑢1, 𝑢2) = 𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫2(𝑢2))

𝐼𝒫1∙𝒫2(𝑢1, 𝑢2) = 𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫2(𝑢2))

𝐹𝒫1∙𝒫2(𝑢1, 𝑢2) = 𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫2(𝑢2)) ∀(𝑢1, 𝑢2) ∈ 𝒫1 ∙ 𝒫2

 

 

 

𝑇𝒬1∙𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒫1(𝛽), 𝑇𝒬2(𝑢2, 𝑣2))

𝐼𝒬1∙𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒫1(𝛽), 𝐼𝒬2(𝑢2, 𝑣2))

𝐹𝒬1∙𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒫1(𝛽), 𝐹𝒬2(𝑢2, 𝑣2)) ∀ 𝛽 ∈ 𝑉1, (𝑢2, 𝑣2) ∈ 𝐸2

  

 

𝑇𝒬1∙𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒬1(𝑢1, 𝑣1), 𝑇𝒬2(𝑢2, 𝑣2)) ,

𝐼𝒬1∙𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒬1(𝑢1, 𝑣1), 𝐼𝒬2(𝑢2, 𝑣2))

𝐹𝒬1∙𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒬1(𝑢1, 𝑣1), 𝐹𝒬2(𝑢2, 𝑣2)) ∀ (𝑢1, 𝑣1) ∈ 𝐸1, (𝑢2, 𝑣2) ∈ 𝐸2

 

Theorem 6.3.2 The lexicographic product of two Fermatean Neutrosophic graphs is also the 

Fermatean Neutrosophic graph. 

Proof: We have two cases. 

Case 1: ∀ 𝛽 ∈ 𝑉1, (𝑢2, 𝑣2) ∈ 𝐸2. Then, 
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𝑇𝒬1∙𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒫1(𝛽), 𝑇𝒬2(𝑢2, 𝑣2)), 

              ≤  𝑚𝑖𝑛 (𝑇𝒫1(𝛽),min (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2))),  

                 =  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝛽), 𝑇𝒫2(𝑢2)) ,min (𝑇𝒫2(𝛽), 𝑇𝒫2(𝑣2))), 

                  =  𝑚𝑖𝑛(𝑇𝒫1∘𝒫2(𝛽, 𝑢2), 𝑇𝒫1∘𝒫2(𝛽, 𝑣2)) . 

𝐼𝒬1∙𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒫1(𝛽), 𝐼𝒬2(𝑢2, 𝑣2)), 

              ≥  𝑚𝑎𝑥 (𝐼𝒫1(𝛽),max (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2))),  

                  =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝛽), 𝐼𝒫2(𝑢2)) ,max (𝐼𝒫2(𝛽), 𝐼𝒫2(𝑣2))), 

                   =  𝑚𝑎𝑥(𝐼𝒫1∘𝒫2(𝛽, 𝑢2), 𝐼𝒫1∘𝒫2(𝛽, 𝑣2)). 

and 

𝐹𝒬1∙𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒫1(𝛽), 𝐹𝒬2(𝑢2, 𝑣2)), 

              ≥  𝑚𝑎𝑥 (𝐹𝒫1(𝛽),max (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2))),  

                 =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝛽), 𝐹𝒫2(𝑢2)) ,max (𝐹𝒫2(𝛽), 𝐹𝒫2(𝑣2))), 

                =  𝑚𝑎𝑥(𝐹𝒫1∘𝒫2(𝛽, 𝑢2), 𝐹𝒫1∘𝒫2(𝛽, 𝑣2)). 

Case 2 : ∀ (𝑢1, 𝑣1) ∈ 𝐸1, (𝑢2, 𝑣2) ∈ 𝐸2        

𝑇𝒬1∙𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒬1(𝑢1, 𝑣1), 𝑇𝒬2(𝑢2, 𝑣2)) 

           ≤  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒬1(𝑢1), 𝑇𝒬1(𝑣1)) ,𝑚𝑖𝑛 (𝑇𝒬2(𝑢2), 𝑇𝒬2(𝑣2))),  

            =  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒬1(𝑢1), 𝑇𝒬2(𝑢2)) ,𝑚𝑖𝑛 (𝑇𝒬1(𝑣1), 𝑇𝒬2(𝑣2))), 

             =  𝑚𝑖𝑛(𝑇𝒫1∙𝒫2(𝑢1, 𝑢2), 𝑇𝒫1∙𝒫2(𝑣1, 𝑣2)) . 

𝐼𝒬1∙𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒬1(𝑢1, 𝑣1), 𝐼𝒬2(𝑢2, 𝑣2)) 

  ≥  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒬1(𝑢1), 𝐼𝒬1(𝑣1)) ,𝑚𝑎𝑥 (𝐼𝒬2(𝑢2), 𝐼𝒬2(𝑣2))),  

             =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒬1(𝑢1), 𝐼𝒬2(𝑢2)) ,𝑚𝑎𝑥 (𝐼𝒬1(𝑣1), 𝐼𝒬2(𝑣2))), 

             =  𝑚𝑎𝑥(𝐼𝒫1∙𝒫2(𝑢1, 𝑢2), 𝐼𝒫1∙𝒫2(𝑣1, 𝑣2)) . 

and 

𝐹𝒬1∙𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒬1(𝑢1, 𝑣1), 𝐹𝒬2(𝑢2, 𝑣2)) 



Neutrosophic Sets and Systems, Vol. 50, 2022     275  

 

 

Said Broumi, R. Sundareswaran, M. Shanmugapriya, Assia Bakali,Mohamed Talea, Theory and Applications of Fermatean 

Neutrosophic Graphs 

 

          ≥  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒬1(𝑢1), 𝐹𝒬1(𝑣1)) ,𝑚𝑎𝑥 (𝐹𝒬2(𝑢2), 𝐹𝒬2(𝑣2))),  

             =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒬1(𝑢1), 𝐹𝒬2(𝑢2)) ,𝑚𝑎𝑥 (𝐹𝒬1(𝑣1), 𝐹𝒬2(𝑣2))), 

             =  𝑚𝑎𝑥(𝐹𝒫1∙𝒫2(𝑢1, 𝑢2), 𝐹𝒫1∙𝒫2(𝑣1, 𝑣2)) . 

Example 6.3.3 

Consider two Fermatean neutrosophic 𝔾1𝑎𝑛𝑑 𝔾2 as shown in the below Figure 13. 

Then, lexicographic product the graphs 𝔾1, 𝔾2  ( 𝔾1 ∘ 𝔾2) is  graphically presented in the below Figure 14. 

 

Figure 13. Fermatean neutrosophic graphs 𝔾1𝑎𝑛𝑑 𝔾2 

 

Figure 14. Lexicographic product the graphs 𝔾1, 𝔾2  ( 𝔾1 ∘ 𝔾2) 

6.4 Union of Fermatean Neutrosophic Graphs 

Definition 6.4.1 The union of two Fermatean Neutrosophic graphs 𝔾1and 𝔾2, denoted by 𝔾1 ∪ 𝔾2, is 

defined as follows: 

𝔾1 ∪ 𝔾2=(𝒫1 ∪ 𝒫2, 𝒬1 ∪ 𝒬2) 

where 

 𝑇𝒫1∪𝒫2(𝑢)={

𝑇𝒫1(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2 

𝑇𝒫2(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1

𝑚𝑎𝑥 (𝑇𝒫1(𝑢), 𝑇𝒫2(𝑣))    𝑖𝑓 𝑢 ∈ 𝑉1 ∪ 𝑉2

 

𝐼𝒫1∪𝒫2(𝑢)={

𝐼𝒫1(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2 

𝐼𝒫2(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1

𝑚𝑖𝑛 (𝐼𝒫1(𝑢), 𝐼𝒫2(𝑣))    𝑖𝑓 𝑢 ∈ 𝑉1 ∪ 𝑉2

 

𝐹𝒫1∪𝒫2(𝑢)={

𝐹𝒫1(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2 

𝐹𝒫2(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1

𝑚𝑖𝑛 (𝐹𝒫1(𝑢), 𝐹𝒫2(𝑣))    𝑖𝑓 𝑢 ∈ 𝑉1 ∪ 𝑉2

 

 

 𝑇𝒬1∪𝒬2(𝑢, 𝑣)={

𝑇𝒬1(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 − 𝐸2 

𝑇𝒬2(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸2 − 𝐸1

𝑚𝑎𝑥 (𝑇𝒬1(𝑢, 𝑣), 𝑇𝒬2(𝑢, 𝑣))    𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 ∪ 𝐸2

 

𝐼𝒬1∪𝒬2(𝑢, 𝑣)={

𝐼𝒬1(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 − 𝐸2 

𝐼𝒬2(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸2 − 𝐸1

𝑚𝑖𝑛 (𝐼𝒬1(𝑢, 𝑣), 𝐼𝒬2(𝑢, 𝑣))    𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 ∪ 𝐸2

 



Neutrosophic Sets and Systems, Vol. 50, 2022     276  

 

 

Said Broumi, R. Sundareswaran, M. Shanmugapriya, Assia Bakali,Mohamed Talea, Theory and Applications of Fermatean 

Neutrosophic Graphs 

 

𝐹𝒬1∪𝒬2(𝑢, 𝑣)={

𝐹𝒬1(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 − 𝐸2 

𝐹𝒬2(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸2 − 𝐸1

𝑚𝑖𝑛 (𝐹𝒬1(𝑢, 𝑣), 𝐹𝒬2(𝑢, 𝑣))    𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 ∪ 𝐸2

 

 

6.5 Join of Fermatean Neutrosophic Graphs 

Definition 6.5.1 The join of two Fermatean Neutrosophic graphs 𝔾1and 𝔾2, denoted by 𝔾1+ 𝔾2, is 

defined as follows: 

𝔾1+ 𝔾2=(𝒫1 + 𝒫2, 𝒬1 + 𝒬2) 

where 

 𝑇𝒫1+𝒫2(𝑢)={

𝑇𝒫1(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2 

𝑇𝒫2(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1
𝑇𝒫1∪𝒫2(𝑢)   𝑖𝑓 𝑢 ∈ 𝑉1 ∪ 𝑉2

 

𝐼𝒫1+𝒫2(𝑢)={

𝐼𝒫1(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2 

𝐼𝒫2(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1
𝐼𝒫1∪𝒫2(𝑢)   𝑖𝑓 𝑢 ∈ 𝑉1 ∪ 𝑉2

 

𝐹𝒫1+𝒫2(𝑢)={

𝐹𝒫1(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2 

𝐹𝒫2(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1
𝐹𝒫1∪𝒫2(𝑢)   𝑖𝑓 𝑢 ∈ 𝑉1 ∪ 𝑉2

 

 𝑇𝒬1+𝒬2(𝑢, 𝑣)={

𝑇𝒬1(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 − 𝐸2 

𝑇𝒬2(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸2 − 𝐸1
𝑇𝒬1∪𝒬2(𝑢, 𝑣)   𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 ∪ 𝐸2

 

𝐼𝒬1+𝒬2(𝑢, 𝑣)={

𝐼𝒬1(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 − 𝐸2 

𝐼𝒬2(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸2 − 𝐸1
𝐼𝒬1∪𝒬2(𝑢, 𝑣)   𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 ∪ 𝐸2

 

𝐹𝒬1+𝒬2(𝑢, 𝑣)={

𝐹𝒬1(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 − 𝐸2 

𝐹𝒬2(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸2 − 𝐸1
𝐹𝒬1∪𝒬2(𝑢, 𝑣)   𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 ∪ 𝐸2

 

 

𝑇𝒬1+𝒬2(𝑢, 𝑣) =  min (𝑇𝒫1(𝑢), 𝑇𝒫2(𝑣))  if (𝑢, 𝑣) ∈ 𝐸
′ 

𝐼𝒬1+𝒬2(𝑢, 𝑣) =  max (𝐼𝒫1(𝑢), 𝐼𝒫2(𝑣)) if (𝑢, 𝑣) ∈ 𝐸
′

𝐹𝒬1+𝒬2(𝑢, 𝑣) =  max (𝐹𝒫1(𝑢), 𝐹𝒫2(𝑣)) if (𝑢, 𝑣) ∈ 𝐸
′

 

where 𝐸′denotes the set of all the edge joining the nodes of 𝑉1and 𝑉2. 

Example 6.5.2 

Consider two Fermatean Neutrosophic 𝔾1𝑎𝑛𝑑 𝔾2 as shown in the below Figure 13. 

Then, the join of two Fermatean Neutrosophic graphs 𝔾1and 𝔾2, denoted by 𝔾1+ 𝔾2, is  graphically 

presented in the below Figure 14. 
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Theorem 6.5.3 The union and join of two Fermatean Neutrosophic graphs are also Fermatean 

Neutrosophic graphs. 

Proof The proof can be outlined similarly as the proof of Theorem 6.3.2. 

 

7. Applications of FNG 

Recent days, many researchers who have studied the decision-making problems in different sectors 

like production, manufacturing, social networking, etc. by using fuzzy, neutrosophic tools [49 – 66].           

Sriganesh et. al. [48] investigated the selection of the best power plant among three of the major power 

plants like hydroelectric power plant, thermal power plant, and nuclear power plant using a graph-

theoretic approach.  They used digraph characteristic between the factors and cofactors in the 

selection of the power plant. The interdependency of the factors and their inheritances are identified 

and they have been represented by using numerical values in their work.  Among all these decision-

making problems, power plants play a prominent role in for all industry sectors that depend on 

exergy processes. This section reports the selection of the best power plant among six of the major 

power plants using Fermatean Neutrosophic graph-theoretic approach.  A power plant or power 

generating station where electric power is generated and distributed on a mass scale. It can be 

classified into different types based on the fuel used for the generation of electricity. There are many 

power plants depend on the availability of coal, fuel, wind, and water, etc. We have considered the 

following six power plants in this case study. 

Hydroelectric power plant (𝑷𝟏):  Electricity is produced in a hydroelectric power plant by the flow 

of water from a height that is used to drive the turbine. The fast-flowing water is converted into 

mechanical energy when the turbine rotates which is further converted into electric power by the 

generator.  

Thermal power plants (𝑷𝟐): It converts heat energy into electricity. The heat energy is used to convert 

fluid into gas which turns the turbine producing mechanical energy which is an intermediate in the 

process and is converted into electricity in the generators.  

A nuclear power plant (𝑷𝟑): It is similar to a thermal power plant but in nuclear power plants, a 

nuclear reactor acts as the heat source. In a nuclear reactor, controlled nuclear fission takes place 

which produces an enormous amount of heat. This heat is dissipated in the water, and it is converted 

into high-pressure steam which in turn runs the turbine. 
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Geothermal power plant (𝑷𝟒): The geothermal power plants are related to other steam turbine 

thermal power plants. In this heat from the fuel source is used to heat water or any other working 

fluid. The working fluid is then used to rotate on the turbine of a generator, for producing electricity. 

Tidal power plant (𝑷𝟓): Tidal power or tidal energy is a form of hydropower that converts energy 

derived from tides primarily into useful forms of electricity. Although not yet generally used, tidal 

energy has the potential to generate future electricity. 

Solar power plant (𝑷𝟔): A solar power plant is based on the conversion of sunlight into electricity 

either directly photovoltaics or indirectly using concentrated solar power. Concentrated solar power 

systems use lenses, mirrors and tracking systems to focus a large area of sunlight into a small beam. 

 

 

Figure 16. Different power plants  

 

 

The identification of a site for a power plant selection depends on various factors like land, space, 

water, cost, transport, fuel, availability of cooling water, nature of the load, etc. Apart from these 

factors, there are a few sub-factors involving in this process (Figure. 17).   

 

Figure 17. Fishbone diagram representing the necessities for setting up a power plant 
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In the process of applying FNG in finding the best power plant. FNG can be represented as a matrix 

whose rows and columns are the sub-factors. Let 𝑉 = { 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6} be the six different power 

plants under the selection on the basis of wishing parameters or attributes set 𝐴 = {𝐿 ,𝑊, 𝐶 , 𝐹}. The 

following figures represents the Fermatean Neutrosophic graphs of location, water, cost, and fuel. 

 

Figure 18. Location based Fermatean Neutrosophic graphs 

 

 

Figure 19. Water based Fermatean Neutrosophic graphs 

 

 

 

Figure 20. Cost based Fermatean Neutrosophic graphs 
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Figure 21. Fuel based Fermatean Neutrosophic graphs 

 

 

We construct the incidence matrix  for  𝑃(𝐿), 𝑃(𝐶), 𝑃(𝑊), 𝑃(𝐹)  listed below: 

𝑷(𝑳)

=  

(

 
 
 

(0,0,0) (0.95,0.85,0.80) (0,0,0) (0.95,0.82,0.83) (0,0,0) (0,0,0)

(0.95,0.85,0.80) (0,0,0) (0.90,0.85,0.80) (0,0,0) (0.87,0.85,0.88) (0, 0 ,0)

(0,0,0) (0.90,0.85,0.80) (0,0,0) (0,0,0) (0,0,0) (0.90,0.85,0.85)
(0.95,0.82,0.83) (0,0,0) (0,0,0) (0,0,0) (0.87,0.85,0.8) (0,0,0)

(0,0,0) (0.87,0.85,0.88) (0,0,0) (0.87,0.85,0.8) (0,0,0) (0.87,0.85,0.88)

(0,0,0) (0,0,0) (0.90,0.85,0.85) (0,0,0) (0.87,0.85,0.88) (0,0,0) )

 
 
 

 

 

𝑷(𝑾)

=  

(

 
 
 

(0,0,0) (0.75,0.85,0.80) (0,0,0) (0.75,0.85,0.83) (0.75,0.85,0.88) (0,0,0)

(0.91,0.82,0.80) (0,0,0) (0.91,0.82,0.80) (0.75,0.82,0.83) (0,0,0) (0.70,0.82,0.80)

(0,0,0) (0.91,0.82,0.80) (0,0,0) (0,0,0) (0,0,0) (0.70,0.82,0.80)
(0.75,0.85,0.83) (0.75,0.82,0.83) (0,0,0) (0,0,0) (0.95,0.85,0.80) (0,0,0)

(0.75,0.85,0.88) (0,0,0) (0,0,0) (0.77,0.85,0.88) (0,0,0) (0.70,0.85,0.88)

(0,0,0) (0.70,0.82,0.80) (0.95,0.85,0.80) (0,0,00) (0.70,0.85,0.88) (0,0,0) )

 
 
 

 

𝑷(𝑪)

=  

(

 
 
 

(0,0,0) (0.70,0.85,0.89) (0,0,0) (0.80,0.95,0.87) (0.95,0.85,0.80) (0,0,0)

(0.70,0.85,0.80) (0,0,0) (0.80,0.83,0.91) (0,0,0) (0.87,0.90,0.92) (0,0,0)

(0,0,0) (0.80,0.83,0.91) (0,0,0) (0,0,0) (0,0,0) (0.87,0.90,0.92)
(0.80,0.95,0.87) (0,0,0) (0,0,0) (0,0,0) (0.80,0.95,0.92) (0,0,0)

(0.82,0.90,0.92) (0.87,0.85,0.80) (0,0,0) (0.80,0.95,0.92) (0,0,0) (0.87,0.90,0.92)

(0,0,0) (0,0,0) (0.90,0.80,0.91) (0,0,0) (0.87,0.90,0.92) (0,0,0) )

 
 
 

 

𝑷(𝑭) =

 

(

 
 
 

(0,0,0) (0,0,0) (0,0,0) (0.95,0.85,0.80) (0,0,0) (0.85,0.78,0.80)

(0,0,0) (0,0,0) (0,0,0) (0,0,0) (0.87,0.85,0.88) (0.82,0.85,0.80)

(0.90,0.82,0.84) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
(0.95,0.82,0.84) (0,0,0) (0.90,0.82,0.84) (0,0,0) (0,0,0) (0,0,0)

(0,0,0) (0.87,0.85,0.88) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

(0.85,0.78,0.80) (0.82,0.85,0.80) (0,0,0) (0,0,0) (0,0,0) (0,0,0) )
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The incidence matrix of resultant FNG is obtained from the combination of all attributes for each 

power plant 

𝑷(𝒘𝒊𝒕𝒉 𝒓𝒆𝒔𝒑𝒆𝒄𝒕 𝒂𝒍𝒍 𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒔)

=  

(

 
 
 

(0,0,0) (0,0.85,0.89) (0,0,0) (0.75,0.95,0.87) (0,0.85,0.88) (0,0.78,0.80)

(0,0.85,0.80) (0,0,0) (0,0,0) (0,0.82,0.83) (0,0.90,0.92) (0,0.85,0.80)

(0,0.82,0.84) (0,0.85,0.91) (0,0,0) (0,0,0) (0,0,0) (0,0.90,0.92)
(0.75,0.95,0.87) (0,0,0) (0,0.82,0.84) (0,0,0) (0,0.95,0.92) (0,0,0)

(0,0.90,0.92) (0,0.85,0.88) (0,0,0) (0,0.95,0.92) (0,0,0) (0,0.90,0.92)

(0,0.78,0.80) (0,0.85,0.80) (0,0.85,0.91) (0,0,0) (0,0.90,0.92) (0,0,0) )

 
 
 

 

 

Tabular representation of score values of incidence  matrix of resultant FNG with average score 

function  𝑆 =  
𝑇+𝐼+1−𝐹

3
. 

 

Clearly, the maximum score value is 2.28, scored by the plant 𝑃4.  According the data Geothermal 

power plant is the beast choice. 

 

 

8. Conclusion  

Fuzzy theory plays a vital role in uncertainty situations. The extension of fuzzy sets are the popular 

Intuitionistic fuzzy sets and then Smarandache introduced the most general concept called the 

Neutrosophic sets. There are many variants of NS are available in the literature like Pythagorean 

Neutrosophic, Single Valued Neutrosophic, Bipolar Neutrosophic sets. In the list, we have 

introduced a new class of set namely, Fermatean Neutrosophic sets in this work. We have discussed 

various types of Fermatean Neutrosophic graphs and the properties of these graphs in this paper. We 

also apply this new type of graph in a decision making problem. We are extending our research on 

this new concept to introduce Fermatean Neutrosophic number and Fermatean triangle and 

trapezoidal Neutrosophic number and its applications in our future work.  

 

 

 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑷𝟓 𝑷𝟔 Overall 

𝑷𝟏 0.333333 0.32 0.333333 0.61 0.323333 0.326667 2.246667 

𝑷𝟐 0.35 0.333333 0.333333 0.33 0.326667 0.35 2.023333 

𝑷𝟑 
0.326667 0.313333 0.333333 0.333333 0.343333 0.326667 1.976667 

𝑷𝟒 0.61 0.333333 0.326667 0.333333 0.343333 0.333333 2.28 

𝑷𝟓 0.326667 0.323333 0.333333 0.343333 0.333333 0.326667 1.986667 

𝑷𝟔 0.326667 0.313333 0.313333 0.333333 0.326667 0.333333 1.946667 
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