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Abstract: This paper is devoted to propose cosine, Dice and 
Jaccard similarity measures of interval rough neutrosophic set 
and interval neutrosophic mean operator. Some of the properties 
of the proposed similarity measures have been established. We 
have proposed multi attribute decision making approaches based 

on proposed simlarity measures. To demonstrate the applicability 
and efficiency  of the proposed approaches, a numerical example 
is solved and comparision has been done among the proposed the 
apprqaches. 
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1 Introduction 

The concept of neutrosophic set was grounded by one of 
the greatest   mathematician and philosopher Smarandache 
[1, 2, 3, 4, 5]. The root of neutrosophic set is the 
neutrosophy, a new branch of philosophy initiated by 
Smarandache [1].  Neutrosophy studies the ideas and 
notions that are neutral, indeterminate, unclear, vague, 
ambiguous, incomplete, contradictory, etc. Inherently, 
neutrosophic set is capable of dealing with uncertainty, 
indeterminate and inconsistent information. Smarandache 
endeavored to propagate the concept of neutrosophic set in 
all branches of sciences, social sciences and humanities. 
To use neutrosophic sets in practical fields such as real 
scientific and engineering applications,  Wang et al.[6] 
extended the concept of neutrosophic set to single valued 
neutrosophic sets (SVNSs) and studied the set theoretic 
operators and various properties of SVNSs. Recently, sin-
gle valued neutrosophic set has caught much attention to 
the researcher on various topics such as artificial intelli-
gence [7], conflict resolution [8], education [9, 10], deci-
sion making [11-27] medical diagnosis [28], social prob-
lems [29, 30], etc. Smarandache’s original ideas blossomed 
into a comprehensive corpus of methods and tools for 
dealing with membership degrees of truth, falsity, 
indeterminacy and non-probabilistic uncertainty. In 
essence, the basic concept of neutrosophic set is a 
generalization of classical set or crisp set [31, 32], fuzzy 
set [33], intuitionistic fuzzy set [34]. The field has 
experienced an enormous development, and 
Smarandache’s seminal concept of neutrosophic set [1] has 
naturally evolved in different directions. Different sets 
were quickly proposed in the literature such as 

neutrosophic soft set [35], weighted neutrosophic soft sets 
[36], generalized neutrosophic soft set [37],  Neutrosophic 
parametrized soft set [38], Neutrosophic soft expert sets 
[39, 40], neutrosophic refined sets [41, 42].  Neutrosophic 
soft multi-set [43], neutrosophic bipolar set (44), 
neutrosophic cubic set (45, 46), neutrosophic complex set 
(47),   rough neutrosophic set (48, 49), interval rough 
neutrosophic set [50],   Interval-valued neutrosophic soft 
rough sets [51, 52], etc. 
Broumi et al. [48, 49] recently proposed new hybrid 
intelligent structure namely, rough neutrosophic set comb-
ing the concept of rough set theory [53] and the concept of 
neutrosophic set theory to deal with uncertainty and in-
complete information. Rough neutrosophic set [48, 49] is 
the generalization of rough fuzzy sets [54], [55] and rough 
intuitionistic fuzzy sets [56]. Several studies of rough neu-
trosophic sets have been reported in the literature.  Mondal 
and Pramanik [57] applied the concept of rough 
neutrosophic set in multi-attribute decision making based 
on grey relational analysis. Pramanik and Mondal [58] 
presented cosine similarity measure of rough neutrosophic 
sets and its application in medical diagnosis. Pramanik and 
Mondal [59] also proposed some rough neutrosophic 
similarity measures namely Dice and Jaccard similarity 
measures of rough neutrosophic environment. Mondal and 
Pramanik [60] proposed rough neutrosophic multi attribute 
decision making based on rough score accuracy function. 
Pramanik and Mondal [61] presented cotangent similarity 
measure of rough neutrosophic sets and its application to 
medical diagnosis. 
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 In 2015, Broumi and Smarandache [50] combined the 
concept of rough set theory [53] and interval neutrosophic 
set theory [62] and defined interval rough neutrosophic set.  

In this paper, we develop some similarity measures namely, 
cCosine, Dice, Jaccard similarity measures based on 
interval rough neutrosophic sets [50]. 
Rest of the paper is organized in the following way. 
Section 2 describes preliminaries of neutrosophic sets and 
rough neutrosophic sets and interval rough neutrosophic 
sets. Section 3 presents definitions and propositions of the 
proposed functions. Section 4 is devoted to present multi 
attribute decision-making method based on similarity 
functions. In Section 5, we provide a numerical example of 
the proposed approaches. Section 6 presents the 
comparision of results of the three proposed approaches. 
Finally section 7 presents concluding remarks and future 
scopes of research. 

2 Mathematical preliminaries 
2.1 Neutrosophic set 

Definition 2.1[1]  
Let U be an universe of discourse. Then the neutrosophic 
set A can be presented of the form: 
A = {< x:TA(x ), IA(x ), FA(x)>, x ∈ U},  where  the 
functions T, I, F: U→ ]−0,1+[ define  respectively the 
degree of  membership, the degree of indeterminacy, and 
the degree of non-membership of the element x∈U to the 
set A satisfying the following the condition.  
−0≤ supTA(x)+ supIA( x)+ supFA(x) ≤ 3+     (1) 
For two netrosophic sets (NSs), ANS = {<x: TA (x ), IA( x), 
FA(x) > | x ∈X} and BNS ={< x, TB(x ), IB(x ), FB(x) > | x 
∈X } the two relations are defined as follows:  

(1) ANS ⊆ BNS if and only if TA(x ) ≤ TB(x ), IA(x ) 
≥ IB(x ), FA(x ) ≥ FB(x) 

(2)  ANS = BNS if and only if TA(x) = TB(x), IA(x) = 
IB(x), FA(x ) = FB(x)   

2.2 Single valued neutrosophic set (SVNS) 

Definition 2.2 [6] 
From philosophical point of view, the neutrosophic set 
assumes the value from real standard or non-standard 
subsets of ]−0, 1+[. So instead of ]−0, 1+[  one needs to take 
the interval  [0, 1] for technical applications, because  ]−0, 
1+[ will be difficult to apply in the real applications such as 
scientific and engineering problems. Wang et. al [6] 
introduced single valued neutrosophic set (SVNS). 
Let X be a space of points with generic element x∈X. A 
SVNS A in X is characterized by a truth-membership 
function TA(x), an indeterminacy-membership function 

IA(x), and a falsity membership function FA(x), for each 
point x ∈ X, TA(x),  IA(x), FA(x) ∈ [0, 1]. When X is 
continuous, a SVNS A can be written as follows: 

Xx:
x

)x(F),x(I),x(TA X
AAA ∈∫

><
=

 When X is discrete, a SVNS A can be written as 
follows: 

 Xx:
x

)x(F),x(I),x(TA i
n

1i
i

iAiAiA ∈∑
><

= =

For two SVNSs , ASVNS = {<x: TA(x), IA(x), FA(x)> | x 
∈X} and BSVNS = {<x, TB(x), IB(x), FB(x)> | x∈X } the 
two relations are defined as follows: 

1. ASVNS ⊆ BSVNS if and only if TA(x) ≤ TB(x),
IA(x) ≥ IB(x), FA(x) ≥ FB(x) 

2. ASVNS = BSVNS if and only if TA(x) = TB(x), IA(x) =
IB(x), FA(x) = FB(x) for any x∈X  

2.3 Interval neutrosophic sets 

Definition  2.3.1 [62] 
Let X be a space of points (bjects) with generic 

element x∈  X. An interval neutrosophic set (INS) A in X 
is characterized by truth-membership function TA(x), 
indeterminacy-membership function IA(x), and  falsity-
membership  function FA(x).  For each point x∈  X., we 
have, TA(x), IA(x), FA(x) ∈ [0, 1].  

For two IVNS, 
AINS = 
{< x, ( ))]x(F),x(F[)],x(I),x(I[)],x(T),x(T[ U

A
L
A

U
A

L
A

U
A

L
A > | x 

∈X} and  
BINS= 
{<x, ( ))]x(F),x(F[)],x(I),x(I[)],x(T),x(T[ U

B
L
B

U
B

L
B

U
B

L
B > | x 

∈X} the two relations are defined as follows: 
1. AINS ⊆  BINS if and only if TT L

B
L
A ≤ , TT U

B
U
A ≤ ; 

I≥I L
B

L
A , I≥I U

B
U
A ; F≥F L

B
L
A , F≥F U
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2. AINS =  BINS if and only if TT L
B

L
A = , TT U

B
U
A = ; 

II L
B

L
A = , II U

B
U
A = ; FF L

B
L
A = , FF U

B
U
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for all x ∈X  

2.4 Rough neutrosophic set  

Definition 2.4.1 [48, 49]: Let Z be a non-zero set and 
R be an equivalence relation on Z. Let P be neutrosophic 
set in Z with the membership function ,TP indeterminacy 
function PI  and non-membership function PF . The lower 
and the upper approximations of P in the approximation (Z, 
R) denoted by ( )PN  and ( )PN   are respectively defined as
follows: 

( ) [ ] Zx,xz

/)x(F),x(I),x(T,x
PN

R

)P(N)P(N)P(N

∈∈

><
= )2(
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( )
[ ] Z∈x,x∈z

/)x(F),x(I),x(T,x
PN

R

)P(N)P(N)P(N ><
= )3(

Where, [ ] ( )zTx)x(T PRz)P(N ∈=∧ ,  

[ ] ( )zIx)x(I PRz)P(N ∈=∧ , [ ] ( )zFx)x(F PRz)P(N ∈=∧ ,  

[ ] ( )zTx)x(T PRz)P(N
∈=∨ , [ ] ( )zTx)x(I PRz)P(N

∈=∨ , 

[ ] ( )zIx)x(F PRz)P(N ∈=∨

So, 3)x(F)x(I)x(T0 )P(N)P(N)P(N ≤++≤  

3)x(F)x(I)x(T0
)P(N)P(N)P(N

≤++≤  

The symbols ∨ and ∧  denote “max” and “min’’ operators 
respectively. ( )zTP , ( )zIP  and ( )zFP are the membership,
indeterminacy and non-membership of z  with respect to P. 
It is easy to see that ( )PN and  ( )PN are two neutrosophic 
sets in Z. 

Thus NS mapping ,N N : N(Z)→  N(Z) are, respectively, 
referred to as the lower  and  upper  rough  NS  
approximation  operators,  and the pair ))P(N),P(N( is 
called the rough neutrosophic set in (Z, R). 

From the above definition, it is seen that )P(N and )P(N  
have constant membership on the equivalence clases of R 
if );P(N)P(N =  .e. ),x(T)x(T )P(N)P(N =

),x(I)x(I )P(N)P(N =   )x(F )P(N = x(F )P(N )

for any x belongs to Z.  
P is said to be  a definable neutrosophic set in the 
approximation (Z, R). It can be easily proved that zero 
neutrosophic set (0N) and unit neutrosophic sets (1N) are 
definable neutrosophic sets.

2.5 Interval neutrosophic rough sets [50] 

Interval neutrosophic rough set [50] is the hybrid structure 
of rough sets and interval neutrosophic sets. According to 
Broumi and Smarandache [50] interval neutrosophic rough 
set is the generalizations of interval valued intuitionistic 
fuzzy rough set [63]. 
Definition 2.5.1 [53]  
Let R be an equivalence relation on the universal set U. 
Then the pair (U, R) is called a Pawlak approximation 
space [5, 6]. An equivalence class of R containing x will be 
denoted by [x]R for X  U, the lower and upper approxi-
mation of X with respect to (U, R) are denoted by respec-
tively R*X and R*X and are defined by 
R* X = {x U: [x]R  X}, 
R *X = {x U: [x]RIX ≠ Ø}. 
Now if R*X = R*X, then X is called definable; otherwise X 
is called a rough set. 
Definition 2.5.2 [50] 

Let U be a universe and X, a rough set in U. An intuitionis-
tic fuzzy rough set A in U is characterized by a member-
ship function µA:U→ [0, 1] and non-membership function 
νA: U→ [0, 1] such that ( ) 1XRA =μ and ( ) 0XRA =ν
ie, ]0,1[)]x(),x([ AA =νμ  if ( )XRx∈  and ( ) 0XRUA =−μ

( ) 1XRUA =−ν
ie, 1)]XRXR()XRXR([0 AA ≤−ν+−μ≤

2.5.1 Basic concept of rough approximations of 
an interval valued neutrosophic set and their 
properties 

Definition 2.5.3 [50] 
Assume that, (U, R) be a Pawlak approximation space, for 
an interval neutrosophic set   

}Ux|
)]x(F),x(F[)],x(I),x(I[)],x(T),x(T[,x{A U

A
L
A

U
A

L
A

U
A

L
A

∈

><= . 

The lower approximation RA and the upper approximation 

RA  of A in the Pawlak approximation space (U, R) are 
expressed as follows: 

}Ux|)}]y(F{)},y(F{[

)}],y(I{)},y(I{[

)}],y(T{)},y(T{[,x{A

U
AR]x[y

L
AR]x[y

U
AR]x[y

L
AR]x[y

U
AR]x[y

L
AR]x[yR

∈>∨∨

∨∨

∧∧<=

∈∈

∈∈

∈∈

}Ux|)}]y(F{)},y(F{[

)}],y(I{)},y(I{[

)}],y(T{)},y(T{[,x{A

U
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L
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U
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L
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U
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L
AR]x[yR

∈>∧∧

∧∧

∨∨<=

∈∈

∈∈

∈∈

The symbols  and  indicate  “min” and “max” operators 
respectively. R denotes an equivalence relation for interval 
neutrosophic set A. Here [x]  is the equivalence class of 
the element x. It is obvious that 

]1,0[)}]y(T{)},y(T{[ U
AR]x[y

L
AR]x[y ⊂∧∧ ∈∈

]1,0[)}]y(I{)},y(I{[ U
AR]x[y

L
AR]x[y ⊂∨∨ ∈∈

]1,0[)}]y(F{)},y(F{[ U
AR]x[y

L
AR]x[y ⊂∨∨ ∈∈

and  

3)}]y(F{

)}]y(I{)}]y(T{0
U
AR]x[y

U
AR]x[y

U
AR]x[y

≤∨

+∨+∧≤

∈

∈∈

Then RA is an interval neutrosophic set (INS) 
Similarly, we have 

]1,0[)}]y(T{)},y(T{[ U
AR]x[y

L
AR]x[y ⊂∨∨ ∈∈

]1,0[)}]y(I{)},y(I{[ U
AR]x[y

L
AR]x[y ⊂∧∧ ∈∈

]1,0[)}]y(F{)},y(F{[ U
AR]x[y

L
AR]x[y ⊂∧∧ ∈∈
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and  

3)}]y(F{

)}]y(I{)}]y(T{0
U
AR]x[y

U
AR]x[y

U
AR]x[y

≤∧

+∧+∨≤

∈

∈∈

Then RA is an interval neutrosophic set. 

If 
RA =

RA then A is a definable set, otherwise A is an in-

terval valued neutrosophic rough set. Here, 
RA and 

RA  
are called the lower and upper approximations of interval 
neutrosophic set with respect to approximation space (U, 
R) respectively. RA and RA  are simply denoted by A and

A respectively. 
Proposition1 [50]:  Let A and B be two interval neutro-
sophic sets and A  and A the lower and upper approxima-
tion of interval neutrosophic set A with respect to approx-
imation space (U, R) respectively. B and B are the lower 
and upper approximation of interval neutrosophic set B 
with respect to approximation space (U, R), respectively. 
Then the following relations hold good. 

AAA.1 ⊆⊆

BABAandBABA.2 ∩=∩∪=∪

BABAandBABA.3 ∪=∪∩=∩

AAAandAAA.4 ====

φ=φ= andUU.5
6. If BA⊆ then, BAandBA ⊆⊆

cccc AAandAA.7 ==

Definition2.5.4 [50]  
Assume that, (U, R) be a Pawlak approximation space and 
A and B are two interval neutrosophic sets over U.  
If BA =  then A and B are called interval neutrosophic 

lower rough equal. If BA= , then A and B are called in-
terval neutrosophic upper rough equal.  

If BA = , BA = , then A and B are called interval 
neutrosophic rough equal. 

Proposition2 [50] 
Assume that (U, R) be a Pawlak approximation space and 
A and B two interval neutrosophic sets over U. then 

BBAandABABA.1 =∩=∩⇒=

BBAandABABA.2 =∪=∪⇒=
cccc B ∪A=B∪A⇒B=BandA=A.3
cccc B∩A=B∩A⇒B=BandA=A.4

φ=φ=⊆ AthenBandBA.5

UAthenUBandBA.6 ==⊆
φ=∩φ=φ= BAthenAandB.7

UBAUBandUA.8 =∪⇒==

BAUA.9 =⇒=

φ=⇒φ= AA.10

3. Cosine, Dice, Jaccard similarity measures of
interval rough neutrosophic environment 
Cosine, Dice and Jaccard similarity measure are proposed 
in interval rough neutrosophic environment in the follow-
ing subsections.  

3.1 Cosine similarity measure of interval rough 
neutrosophic environment 

Definition 3.1.1: Assume that there are two interval rough 
neutrosophic sets  
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in X = {x1, x2, …, xn}.  
A cosine similarity measure between interval rough 
neutrosophic sets A and B is defined as follows: 
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Proposition 3  

Let A and B be interval rough neutrosophic sets then  
1)B,A(C0.1 IRNS ≤≤

)A,B(C)B,A(C.2 IRNSIRNS =
3. CIRNS(A, B) = 1, iff A = B

Proofs : 
1. It is obvious because all positive values of cosine

function are within 0 and 1. 
2. It is obvious that the proposition is true.
3. When A = B, then obviously CIRNS(A, B) = 1. On

the other hand if CIRNS(A, B) =1 then,  
=Δ )x(T iA )x(T iBΔ , 
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This implies that A = B. 
If we consider the weight wi of each element xi, a weighted 
interval rough cosine similarity measure between interval 
rough neutrosophic sets A and B can be defined as follows: 
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i = 1, 2,…, n, then CWIRNS(A, B) = CIRNS(A, B). 
The weighted interval rough cosine similarity measure 
between two interval rough neutrosophic sets A and B also 
satisfies the following properties: 

Proposition4 

1)B,A(C0.1 WIRNS ≤≤
)A,B(C)B,A(C.2 WIRNSWIRNS =

3. CWIRNS(A, B) = 1, iff A = B
Proof : 
The proofs of above properties are similar to the profs 

of the propertyies  of the proposition (3). 

3.2 Dice similarity measure of interval rough neu-
trosophic environment 

Definition 3.2.2  
A Dice similarity measure between interval rough 
neutrosophic sets A and B  (defined in 3.1.1)  is defined  as 
follows: 
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Proposition 5  

Let A and B be interval rough neutrosophic sets then  
1)B,A(DIC0.1 IRNS ≤≤

)A,B(DIC)B,A(DIC.2 IRNSIRNS =
3. DICIRNS(A, B) = 1, iff A = B

Proofs : 
1. It is obvious because all positive values of Dice

function are within 0 and 1. 
2. It is obvious that the proposition is true.
3. When A = B, then obviously DICIRNS(A, B) = 1. On

the other hand if DICIRNS(A, B) =1 then, 
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This implies that A = B. 
If we consider the weight wi of each element xi, a weighted 
interval rough Dice similarity measure between interval 
rough neutrosophic sets A and B is defined as follows: 
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1w i= , i = 1, 2,…, n, then DICWIRNS(A, B) = 

DICIRNS(A, B). 
The weighted interval rough Dice similarity measure 
between two interval rough neutrosophic sets A and B also 
satisfies the following properties: 

Proposition6 

1)B,A(DIC0.1 WIRNS ≤≤
)A,B(DIC)B,A(DIC.2 WIRNSWIRNS =

3. DICWIRNS(A, B) = 1, iff A = B
Proof :  
The proofs of above properties are similar to the proofs of 
the properties of the proposition (5). 

3.3 Jaccard similarity measure of interval rough 
neutrosophic environment 

Definition 3.3.1 A Jaccard similarity measure between 
interval rough neutrosophic sets A and B (defined in 3.1.1) 
is defined as follows: 
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Proposition 7  

Let A and B be interval rough neutrosophic sets then  
1)B,A(JAC0.1 IRNS ≤≤

)A,B(JAC)B,A(JAC.2 IRNSIRNS =
3. JACIRNS(A, B) = 1, iff A = B

Proofs : 
1. It is obvious because all positive values of Jaccard
function are within 0 and 1. 
2. It is obvious that the proposition is true.
3. When A = B, then obviously JACIRNS(A, B) = 1. On the
other hand if JACIRNS(A, B)  =1 then,  
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This implies that A = B. 
If we consider the weight wi of each element xi, a weighted 
interval rough Jaccard similarity measure between interval 
rough neutrosophic sets A and B can be defined as follows: 
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i = 1, 2,…, n, then JACWIRNS(A, B) = JACIRNS(A, B) 
The weighted interval rough Jaccard similarity measure 
between two interval rough neutrosophic sets A and B also 
satisfies the following properties: 

Proposition 8 

1)B,A(JAC0.1 WIRNS ≤≤
)A,B(JAC)B,A(JAC.2 WIRNSWIRNS =

3. JACWIRNS(A, B) = 1, iff A = B
Proof :  
The proofs of above properties are similar to the proofs of 
the properties of proposition (7).  

4. Decision making based on cosine, Dice and
Jaccard hamming similarity operator under inter-
val rough neutrosophic environment 
In this section, we apply interval rough similarity measures 
between IRNSs to the multi-criteria decision making 
problem. Assume that, A ={ A1, A2,..., Am }be a set of 
alternatives and C = {C1, C2, ..., Cn   be  the  set  of 
attributes. 
The proposed decision making approach is described using 
the following steps.. 
Step 1: Construct of the decision matrix with interval 
rough neutrosophic number  
The decision maker fomrs a decision matrix with respect to 
m alternatives and n attributes in terms of interval rough 
neutrosophic numbers (see the Table 1). 
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Table1: Interval rough neutrosophic decision matrix 
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Here U
ij

L
ij d,d is the interval rough neutrosophic 

number according to the i-th alternative and the j-th 
attribute.  
Step 2: Determine interval rough neutrosophic mean 
operator (IRNMO) 
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i= 1, 2, ..., n.
Step 3: Determine the weights of the attributes  
Assume that the weight of the attributes Cj  j= 1, 2, ..., n  
considered by the decision-maker is wj (  = 1, 2, … , ). 
Where, all wj ∈ belongs to [0, 1] 

And 1wn
1j j =∑ = .  

Step 4: Determine the benefit type attributes and cost 
type attributes  
The evaluation attribute can be categorized into two types: 
benefit attribute and cost attribute. In the proposed 
decision-making method, an ideal alternative can be 
identified by using a maximum operator for the benefit 
attribute and a minimum operator for the cost attribute to 
determine the best value of each criterion among all the 

alternatives. Therefore, we define an ideal alternative as 
follows. 

* = {C1
*, C2

*, … , Cm
*}.  

Where benefit attribute  

⎥⎦
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⎡= )Ai(

C ji
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C ji

)Ai(
C ji

*
j Fmax,Imax,TminC (13)

Step 5: Determine the weighted interval rough 
neutrosophic similarity measure of the alternatives 
Using the equations (5), (7), and (9), the weighted interval 
rough neutrosophic similarity functions can be written as 
follows. 

)B,A(Cw)B,A(C IRNS
n

1j jWIRNS ∑= =  (14) 

)B,A(DICw)B,A(DIC IRNS
n

1j jWIRNS ∑= =    (15) 

)B,A(JACw)B,A(JAC IRNS
n

1j jWIRNS ∑= =    (16) 
Step 6: Rank the alternatives 
Through the weighted interval rough neutrosophic 
similarity measure between each alternative and the ideal 
alternative, the ranking order of all alternatives can be 
determined based on the descending order of similarity 
measures. 
Step 7: End 

5. Numerical Example

Assume that a decision maker intends to select the most 
suitable laptop for random use from the four initially 
chosen laptops (S1, S2, S3) by considering four attributes 
namely: features C1, reasonable Price C2, Customer care 
C3, risk factor C4. Based on the proposed approach 
discussed in section 4, the considered problem is solved by 
the following steps: 
Step 1: Construct the decision matrix with interval 
rough neutrosophic number  
The decision maker forms a decision matrix with respect to 
three alternatives and four attributes in terms of interval 
rough neutrosophic numbers as follows. 
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Table2. Decision matrix with interval rough neutrosophic number 
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Step 2: Determine the interval rough neutrosophic 
mean operator (IRNMO) 

Using IRNMO, the transferred decision matrix is as 
follows. 

Table 3: Transformed decision matrix 

275.0,325.0,600.0375.0,325.0,700.0225.0,250.0,650.0150.0,250.0,700.0A
225.0,475.0,675.0225.0,350.0,675.0150.0,175.0,650.0125.0,200.0,775.0A
475.0,375.0,800.0425.0,375.0,650.0250.0,375.0,700.0250.0,300.0,750.0A

CCCC
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1

4321

)18(

Step 3: Determine the weights of attributes  
The weight vectors considered by the decision maker are 
0.35, 0.25, 0.25 and 0.15 respectively.  
Step 4: Determine the benefit type attribute and cost 
type attribute  
Here three benefit type attributes C1, C2, C3 and one cost 
type attribute C4. Using equation (12), (13) and (18) we 
calculate the ideal alternative as follows. 
A* = [(0.775, 0.200, 0.125), (0.700, 0.175, 0.150), (0.700, 
0.325, 0.225),(0.600, 0.475, 0.475)] 
Step 5: Calculate the weighted interval rough 
neutrosophic similarity scores of the alternatives 
Calculated values of weighted interval rough neutrosophic 
similarity values presented as follows. 

9754.0)A,A(C 1
*

WIRNS =  

9979.0)A,A(C 2
*

WIRNS =  

9878.0)A,A(C 3
*

WIRNS =

9716.0)A,A(DIC 1
*

WIRNS =  

9971.0)A,A(DIC 2
*

WIRNS =  

9835.0)A,A(DIC 3
*

WIRNS =  

9448.0)A,A(JAC 1
*

WIRNS =  

9943.0)A,A(JAC 2
*

WIRNS =  

9678.0)A,A(JAC 3
*

WIRNS =
Step 6: Rank the alternatives 
Ranking the alternatives is prepared based on the descend-
ing order of similarity measures (see the table 6). Highest 
value reflects the best alternative. 
Hence, the laptop A2 is the best alternative for random use. 

6. Comparision between three proposed
approaches 

Weighted 
interval 
rough 
similarity 
measures 

Measured value Ranking 
order 

Weighted 
interval 
rough co-
sine simi-
larity 

CWIRNS(A1, A*) = 0.9754 
CWIRNS(A2, A*) = 0.9979 
CWIRNS(A3, A*) = 0.9878 

A2 fA3 fA1 
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measure 
Weighted 
interval 
rough 
Dice simi-
larity 
measure 

DWIRNS(A1, A*) = 0.9716 
DWIRNS(A2, A*) = 0.9971 
DWIRNS(A3, A*) = 0.9835 

A2 fA3 fA1 

Weighted 
interval 
rough 
Jaccard 
similarity 
measure 

JWIRNS(A1, A*) = 0.9448 
JWIRNS(A2, A*) = 0.9943 
JWIRNS(A3, A*) = 0.9678 

A2 fA3 fA1 

Conclusion 

In this paper, we have proposed cosine, Dice and 
Jaccard similarity measures of interval rough neutrosophic 
set and proved some of their basic properties. We have 
presented an application, namely selection of best laptop 
for random use. The thrust of the concept presented in the 
paper will be in pattern recognition, medical diagnosis, 
personnel selection, etc. in interval neutrosophic 
environment..  
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