
                                    Neutrosophic Sets and Systems, Vol.50, 2022 
University of New Mexico  

 

Sivasankar S, Said Broumi. Balanced Neutrosophic Graphs     

 

 

Balanced Neutrosophic Graphs 

Sivasankar S 1*, 2 Said Broumi 

1 Department of Mathematics, RV Institute of Technology and Management, Bangalore; sivshankar@gmail.com 
2  “Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, Casablanca, Morocco; 

broumisaid78@gmail.com” 
 

* Correspondence: sivshankar@gmail.com 

 

Abstract: In this paper, we introduce the concept of balanced neutrosophic graphs based on 

density functions and investigate some of their properties. The necessary conditions for a 

neutrosophic graph to be a balanced neutrosophic graph are identified if graph G is a self-

complementary, regular, complete, and strong neutrosophic graph. Some properties of complement 

neutrosophic graphs are presented here. 
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1. Introduction  

Euler was the first to establish the concept of graph theory in 1736. In mathematical history, Euler's 

approach to the well-known Konigsberg bridge problem is considered as the first theorem of graph 

theory. This is now widely accepted as a branch of combinatorial mathematics. In many domains, 

such as geometry, combinatorics, elliptic curves, topography, decision theory, optimization, and data 

science, the theory of graphs provides a strong tool for determining combinatorial challenges. 

The density of a graph G (D(G)) is associated with the network's connectivity patterns. Because of the 

rapid growth in network size, graph problems become ambiguous, which we address using the fuzzy 

logic method. The density D(H) ≤ D(G) for all subgraphs H of G in balanced graphs. Balanced graphs 

[10] first appeared in the work of random graphs, and the term Balanced neutrosophic graph is 

represented here based on the density functions given in [5]. A complete graph has the highest 

density, while a null graph has the lowest density. Several papers on balanced graph extension 

[25][32][14] have been published, and it has numerous applications in computer networks, image 

analysis, robotic systems, artificial intelligence , and decision making. Lotfi A Zadeh [29][30][31] 

developed a fuzzy set theory in 1965, and the idea of a fuzzy set is welcomed because it addresses 

uncertainty and vagueness that crisp set cannot, and it provides a meaningful and powerful 

recognition of quantification of ambiguity. Rosenfeld [24] developed the theory of fuzzy graphs in 

1975 after studying fuzzy relations on fuzzy sets. Atanassov's [6][7] intuitionistic fuzzy graphs (IFGs) 

provide a way to incorporate uncertainty with an additional degree. A bipolar fuzzy graph is a fuzzy 

graph extension with a membership degree range of [-1, 1]. Akram [1][2] introduced the concept of 

bipolar fuzzy graphs and defined various operations on them. Talal Al Hawary [4] investigated some 

fuzzy graph operations and defined balanced fuzzy graphs. Balanced fuzzy graphs are increasingly 
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being used to represent complex systems in which the amount of data and information varies with 

different levels of precision. 

A neutrosophic graph can comply with the uncertainty of any real-world problem's inconsistent and 

indeterminate information, whereas fuzzy graphs may lack sufficient satisfactory results. Florentin 

Smarandache et al [12][26-28] defined neutrosophic graphs and single valued neutrosophic graphs 

(SVNS) as a new dimension of graph theory as a generalisation of the fuzzy graph and the 

intuitionistic fuzzy graph. Said Broumi et al [8][9] developed the concept of SVNG and investigated 

its components. Motivated by the concept of a balanced graph and its extensions [3] [13] [15-20] 

[22][23] [27], we focused on introducing balanced and strictly balanced, in single valued neutrosophic 

graphs. The important properties of a balanced neutrosophic graph are discussed in this paper. 

Section 2 discusses the fundamental definitions and theorems required. Section 3 discusses the 

necessary conditions for a neutrosophic graph to be a balanced neutrosophic graph if graph G is a 

self-complementary, regular, complete, and strong neutrosophic graph. We also discussed some of 

the properties of complementary and a self-complementary balanced neutrosophic graphs. The paper 

is concluded in Section 4. 

2. Preliminaries  

Definition 2.1 [12]“A single valued neutrosophic graph (SVN-graph) with underlying set 𝑉  is 

defined to be a pair 𝐺 = (𝐴, 𝐵) where 

 1. The functions 𝑇𝐴: 𝑉 →  [0, 1],  𝐼𝐴: 𝑉 →  [0, 1],  and 𝐹𝐴: 𝑉 →  [0, 1],  denote the degree of truth-

membership, degree of indeterminacy-membership and falsity-membership of the element 𝑣𝑖 ∈ 𝑉, 

respectively, and 0 ≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) + 𝐹𝐴(𝑣𝑖) ≤ 3 for all 𝑣𝑖 ∈ 𝑉. 

 2. The functions 𝑇𝐵: E ⊆  V x V → [0, 1], 𝐼𝐵: E ⊆  V x V → [0, 1], and 𝐹𝐵: E ⊆  V x V → [0, 1]  are 

defined by 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤  𝑇𝐴(𝑣𝑖) ⋀ 𝑇𝐴(𝑣𝑗),   𝐼𝐵(𝑣𝑖 , 𝑣𝑗) ≥  𝐼𝐴(𝑣𝑖)  ∨   𝐼𝐴(𝑣𝑗)  and 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≥  𝐹𝐴(𝑣𝑖)  ∨

 F(𝑣𝑗) denotes the degree of truth-membership, indeterminacy-membership and falsity-membership 

of the edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸  respectively, where 0 ≤ 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) + 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) + 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≤ 3 for all 

(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸   (i, j =  1, 2, … , n). We call A the single valued neutrosophic vertex set of V, B the single 

valued neutrosophic edge set of E, respectively.” 

 

Definition 2.2 [8]” A partial SVN-subgraph of SVN-graph 𝐺 = (𝐴, 𝐵)  is a SVN-graph 𝐻 = (𝑉′,

𝐸′) such that  𝑉′ ⊆  V, where 𝑇′𝐴(𝑣𝑖) ≤  𝑇𝐴(𝑣𝑖), 𝐼′𝐴(𝑣𝑖) ≥  𝐼𝐴(𝑣𝑖), and 𝐹′𝐴(𝑣𝑖) ≥  𝐹𝐴(𝑣𝑖) for all 𝑣𝑖 ∈

𝑉 and 𝐸′ ⊆  E, where  𝑇′𝐵(𝑣𝑖 , 𝑣𝑗) ≤ 𝑇𝐵(𝑣𝑖 , 𝑣𝑗), 𝐼′𝐵(𝑣𝑖 , 𝑣𝑗) ≥ 𝐼𝐵(𝑣𝑖 , 𝑣𝑗), 𝐹′𝐵(𝑣𝑖 , 𝑣𝑗) ≥ 𝐹𝐵(𝑣𝑖 , 𝑣𝑗)  for all 

(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸.” 

 

Definition 2.3 [11]”Let 𝐺 = (𝐴, 𝐵)  be an SVNG. G is said to be a strong SVNG if 

𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣), 

𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) and 

𝐹B(𝑢, 𝑣) =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  for every (𝑢, 𝑣) ∈  𝐸.” 

 

Definition 2.4 [11] “Let 𝐺 = (𝐴, 𝐵)  be an SVNG. G is said to be a complete SVNG if 

𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣), 

𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) and 
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𝐹B(𝑢, 𝑣) =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  for every 𝑢, 𝑣 ∈  𝑉.” 

 

Definition 2.5 [11] “Let 𝐺 = (𝐴, 𝐵) be an SVNG. 𝐺̅ = (𝐴̅, 𝐵̅) is the complement of an SVNG if 

𝐴̅ = 𝐴  𝑎𝑛𝑑 𝐵̅  is computed as below. 

𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) − 𝑇B(𝑢, 𝑣),             

𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) − 𝐼B(𝑢, 𝑣)        

 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣) − 𝐹B(𝑢, 𝑣)  for every (𝑢, 𝑣) ∈  𝐸.   

Here, 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denote the true, intermediate, and false membership degree 

for edge (𝑢, 𝑣) of 𝐺̅.” 

 

Definition 2.6 [11] “Let 𝐺 = (𝐴, 𝐵) be an SVNG. G is a regular neutrosophic graph if it satisfies the 

following conditions. 

∑ 𝑇B(𝑢, 𝑣) = constant,     

𝑢≠𝑣

∑ 𝐼B(𝑢, 𝑣) = constant, and     

𝑢≠𝑣

∑ 𝐹B(𝑢, 𝑣) = constant.     

𝑢≠𝑣

 

“ 

Definition 2.7 [11] Let 𝐺 = (𝐴, 𝐵) be an SVNG.“G is a regular strong neutrosophic graph if it 

satisfies the following conditions.” 

𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀ 𝑇𝐴(𝑣)  and ∑ 𝑇B(𝑢, 𝑣) = constant,     𝑢≠𝑣  

𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) and ∑ 𝐼B(𝑢, 𝑣) = constant,       𝑢≠𝑣  

𝐹B(𝑢, 𝑣) =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  and ∑ 𝐹B(𝑢, 𝑣) = constant.    𝑢≠𝑣  

 

Definition 2.8 [4] “The density of the complete fuzzy graph 𝐺 = (𝑉, 𝐸) is 

𝐷(𝐺) =
2 ∑  (𝜇(𝑢,𝑣))𝑢,𝑣𝜖𝑉

∑  (𝜎(𝑢) ⋀  𝜎(𝑣))(𝑢,𝑣)𝜖𝑉
  , for all 𝑢, 𝑣 𝜖 𝑉. “ 

Definition 2.9[4]” A fuzzy graph 𝐺 = (𝑉, 𝐸)is balanced if 𝐷(𝐻) ≤ 𝐷(𝐺), for all sub graphs H of G.” 

Definition 2.10 [21] “A fuzzy graph 𝐺 = (𝑉, 𝐸)is a self-complementary if 𝜇(𝑢, 𝑣) =
1

2
(𝜎(𝑢) ⋀  𝜎(𝑣)) 

for all 𝑢, 𝑣 𝜖 𝑉.” 

Table 1: Some basic notations  

Notation  Meaning 

𝐺 = (𝑉, 𝐸) Fuzzy graph 

𝐺 = (𝐴, 𝐵)   Single Valued Neutrosophic Graph (SVNG) 

V Vertex Set 

E Edge set 

𝑇𝐴(𝑣) , 𝐼𝐴(𝑣), 𝐹𝐴(𝑣) True membership value, indeterminacy 

membership value, falsity membership 

value of the vertex 𝑣 of 𝐺 = (𝐴, 𝐵)   

𝑇𝐵(𝑢, 𝑣), 𝐼𝐵(𝑢, 𝑣), 𝐹𝐵(𝑢, 𝑣) True membership value, indeterminacy 

membership value, falsity membership 

value of the edge (𝑢, 𝑣) of 𝐺 = (𝐴, 𝐵)   

𝐺̅ = (𝐴̅, 𝐵̅) Complement of an SVNG 

𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  True membership value, indeterminacy 
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membership value, falsity membership 

value of the edge (𝑢, 𝑣) of 𝐺̅ = (𝐴̅, 𝐵̅) 

 

𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺) Density of true membership value, indeterminacy 

membership value, falsity membership 

value of 𝐺 = (𝐴, 𝐵)   

𝐷(𝐺) = (𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺)) Density of a SVNG 𝐺 = (𝐴, 𝐵) 

3. Balanced Neutrosophic Graphs 

Definition 3.1  

“The density of a single valued neutrosophic graph 𝐺 = (𝐴, 𝐵)  of  𝐺∗ = (𝑉, 𝐸) , is 𝐷(𝐺) =

(𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺)), where 

       𝐷𝑇(𝐺) is defined by 𝐷𝑇(𝐺) =
2 ∑ 𝑇B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
  , for 𝑢, 𝑣𝜖𝑉, 

  𝐷𝐼(𝐺) is defined by 𝐷𝐼(𝐺) =
2 ∑ 𝐼B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
   , for 𝑢, 𝑣𝜖𝑉 and  

  𝐷𝐹(𝐺) is defined by 𝐷𝐼(𝐺) =
2 ∑ 𝐹B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
   , for 𝑢, 𝑣𝜖𝑉. “ 

Definition 3.2  

“A single valued neutrosophic graph 𝐺 = (𝐴, 𝐵)  is balanced if 𝐷(𝐻) ≤ 𝐷(𝐺) , that is, 𝐷𝑇(𝐻) ≤

 𝐷𝑇(𝐺), 𝐷𝐼(𝐻) ≤  𝐷𝐼(𝐺) , 𝐷𝐹(𝐻) ≤  𝐷𝐹(𝐺)  for all sub graphs H of G.” 

 

 

Example 1. Consider a neutrosophic graph, 𝐺 = (𝑉, 𝐸) ,such that 𝑉 = {(𝑣1, 𝑣2, 𝑣3, 𝑣4 )}, 

 𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4 , 𝑣1 ), (𝑣1, 𝑣3)}. 

 

 

Fig.1 Balanced Neutrosophic Graph 

“ 

𝑇 −density 

𝐷𝑇(𝐺) =2(
0.18+0.18+0.24+0.3+0.24

0.3+0.3+0.4+0.5+0.4
) = 1.2 

𝐼 −density 

𝐷𝐼(𝐺) =2(
0.5+1+1+0.5+1

0.4+0.8+0.8+0.4+0.8
) = 2.5 

𝐹 −density 
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𝐷𝐹(𝐺) =2(
0.66+0.66+0.55+0.55+0.44

0.6+0.6+0.5+0.5+0.4
) = 2.2 

𝐷(𝐺) = (𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺)) = (1.2, 2.5, 2.2). 

Let 𝐻1 = {(𝑣1, 𝑣2)}, 𝐻2 = {(𝑣2, 𝑣3)}, 𝐻3 = {(𝑣3, 𝑣4)}, 𝐻4 = {(𝑣2, 𝑣4)}, 𝐻5 = {(𝑣1, 𝑣4)}, 𝐻6 = {(𝑣1, 𝑣3)},  

𝐻7 = {(𝑣1, 𝑣3, 𝑣4)}, 𝐻8 = {(𝑣1, 𝑣2, 𝑣3)}, 𝐻9 = {(𝑣1, 𝑣2, 𝑣4)}, 𝐻10 = {(𝑣2, 𝑣3, 𝑣4)}, 𝐻11 = {(𝑣1, 𝑣2, 𝑣3, 𝑣4)} be 

non-empty subgraphs of G. Density (𝐷𝑇(𝐻), 𝐷𝐼(𝐻), 𝐷𝐹(𝐻))  is 𝐷(𝐻1) = (1.2, 2.5, 2.2) ,  𝐷(𝐻2) =

(1.2, 2.5, 2.2) ,  𝐷(𝐻3) = (1.2, 2.5, 2.2) ,  𝐷(𝐻4) = (0, 0, 0) ,  𝐷(𝐻5) = (1.2, 2.5, 2.2) ,  𝐷(𝐻6) =

(1.2, 2.5, 2.2) ,  𝐷(𝐻7) = (1.2, 2.5, 2.2) ,  𝐷(𝐻8) = (1.2, 2.5, 2.2) ,  𝐷(𝐻9) = (1.2, 2.5, 2.2) ,  𝐷(𝐻10) =

(1.2, 2.5, 2.2), 𝐷(𝐻11) = (1.2, 2.5, 2.2). So 𝐷(𝐻) ≤ 𝐷(𝐺) for all subgraphs H of G. Hence G is balanced 

neutrosophic graph. 

” 

Definition 3.3  

“A single valued neutrosophic graph 𝐺 = (𝐴, 𝐵) is strictly balanced if for 𝑢, 𝑣 𝜖 𝑉, 𝐷(𝐻) = 𝐷(𝐺) for 

all sub graphs H of G.” 

 

Example 2. Consider a neutrosophic graph, 𝐺 = (𝑉, 𝐸) ,such that 𝑉 = {(𝑣1, 𝑣2, 𝑣3, 𝑣4 )}, 

 𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4 , 𝑣1 ), (𝑣1, 𝑣3), (𝑣2, 𝑣4)}. 

 

 

Fig. 2 Strictly Balanced Neutrosophic Graph 

“ 

𝑇 −density 

𝐷𝑇(𝐺) =2(
0.225+0.225+0.15+0.15+0.15+0.3

0.3+0.3+0.2+0.2+0.4+0.2
) = 1.5 

𝐼 −density 

𝐷𝐼(𝐺) =2(
0.69+0.575+0.805+0.805+0.69+0.805

0.6+0.5+0.7+0.7+0.7+0.6
) = 2.3 

𝐹 −density 

𝐷𝐹(𝐺) =2(
0.78+0.78+0.78+0.65+0.78+0.65

0.6+0.6+0.4+0.5+0.5+0.6
) = 2.6 

𝐷(𝐺) = (𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺)) = (1.5, 2.3, 2.6). 

Let 𝐻1 = {(𝑣1, 𝑣2)}, 𝐻2 = {(𝑣2, 𝑣3)}, 𝐻3 = {(𝑣1, 𝑣4)}, 𝐻4 = {(𝑣2, 𝑣4)}, 𝐻5 = {(𝑣2, 𝑣4)}, 𝐻6 = {(𝑣1, 𝑣3)},  

 𝐻7 = {(𝑣1, 𝑣2, 𝑣3)},𝐻8 = {(𝑣1, 𝑣3, 𝑣4)}, 𝐻9 = {(𝑣1, 𝑣2, 𝑣4)}, 𝐻10 = {(𝑣2, 𝑣3, 𝑣4)}, 𝐻11 = {(𝑣1, 𝑣2, 𝑣3, 𝑣4)} be 

non-empty subgraphs of G. Density (𝐷𝑇(𝐻), 𝐷𝐼(𝐻), 𝐷𝐹(𝐻))  is 𝐷(𝐻1) = (1.5, 2.3, 2.6) ,  𝐷(𝐻2) =

(1.5, 2.3, 2.6), 𝐷(𝐻3) = (1.5, 2.3, 2.6) ,  𝐷(𝐻4) = (1.5, 2.3, 2.6) ,  𝐷(𝐻5) = (11.5, 2.3, 2.6) ,  𝐷(𝐻6) =

(1.5, 2.3, 2.6) ,  𝐷(𝐻7) = (1.5, 2.3, 2.6) ,  𝐷(𝐻8) = (1.5, 2.3, 2.6) ,  𝐷(𝐻9) = (1.5, 2.3, 2.6) ,  𝐷(𝐻10) =
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(1.5, 2.3, 2.6), 𝐷(𝐻11) = (1.5, 2.3, 2.6). So 𝐷(𝐻) = 𝐷(𝐺) for all subgraphs H of G. Hence G is strictly 

balanced neutrosophic graph. 

” 

Theorem 3.4 Every complete single valued neutrosophic graph is balanced. 

Proof: 

Let 𝐺 = (𝐴, 𝐵) be a complete single valued neutrosophic graph, then by the definition of complete 

neutrosophic graph, we have “𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) , 𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣)  and 𝐹B(𝑢, 𝑣) =

 𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  for every 𝑢, 𝑣 ∈  𝑉. 

∴∑ 𝑇B(𝑢, 𝑣)𝑢,𝑣𝜖𝑉 = ∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉   

  ∑ 𝐼B(𝑢, 𝑣)𝑢,𝑣𝜖𝑉 =  ∑  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉  and 

 ∑ 𝐹B(𝑢, 𝑣)𝑢,𝑣𝜖𝑉 =  ∑  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉 . 

Now 𝐷(𝐺) = (
2 ∑ 𝑇B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
   ,

2 ∑ 𝐼B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
,

2 ∑ 𝐹B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
 ) 

         𝐷(𝐺) = (
2 ∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉

∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
 ,

2 ∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉

∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
,

2 ∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉

∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
) 

          𝐷(𝐺) = (2, 2, 2). 

Let H be a non-empty subgraph of G then, 𝐷(𝐻) = (2, 2, 2) for every 𝐻 ⊆ 𝐺. 

Thus, G is balanced.” 

Note 3.5. The converse of the preceding theorem do not have to be true. Each balanced 

neutrosophic graph does not have to be complete. 

Example 3. Consider a neutrosophic graph, 𝐺 = (𝑉, 𝐸) ,such that 𝑉 = {(𝑣1, 𝑣2, 𝑣3, 𝑣4 )}, 

 𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4 , 𝑣1 )}. 

                   

                    Fig. 3 Balanced but not complete neutrosophic graph 

“𝐷(𝐺) = (𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺)) = (1.4, 2, 2.5). 

Let 𝐻1 = {(𝑣1, 𝑣2)}, 𝐻2 = {(𝑣2, 𝑣3)}, 𝐻3 = {(𝑣1, 𝑣4)}, 𝐻4 = {(𝑣2, 𝑣4)}, 𝐻5 = {(𝑣2, 𝑣4)}, 𝐻6 = {(𝑣1, 𝑣3)},  

 𝐻7 = {(𝑣1, 𝑣2, 𝑣3)},𝐻8 = {(𝑣1, 𝑣3, 𝑣4)}, 𝐻9 = {(𝑣1, 𝑣2, 𝑣4)}, 𝐻10 = {(𝑣2, 𝑣3, 𝑣4)}, 𝐻11 = {(𝑣1, 𝑣2, 𝑣3, 𝑣4)} be 

non-empty subgraphs of G. Density (𝐷𝑇(𝐻), 𝐷𝐼(𝐻), 𝐷𝐹(𝐻))  is 𝐷(𝐻1) = (1.4, 2, 2.5) ,  𝐷(𝐻2) =

(1.4, 2, 2.5), 𝐷(𝐻3) = (1.4, 2, 2.5), 𝐷(𝐻4) = (1.4, 2, 2.5) ,  𝐷(𝐻5) = (1.4, 2, 2.5) ,  𝐷(𝐻6) =

(1.4, 2, 2.5) ,  𝐷(𝐻7) = (1.4, 2, 2.5) ,  𝐷(𝐻8) = (1.4, 2, 2.5) ,  𝐷(𝐻9) = (1.4, 2, 2.5) ,  𝐷(𝐻10) =

(1.4, 2, 2.5), 𝐷(𝐻11) = (1.5, 2.3, 2.6). So 𝐷(𝐻) ≤ 𝐷(𝐺) for all subgraphs H of G. Hence G is balanced 

neutrosophic graph. 

From the above graph easy to see that: 

𝑇B(𝑢, 𝑣) ≠ 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣), 𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) and 𝐹B(𝑢, 𝑣) ≠  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  for every 𝑢, 𝑣 ∈

 𝑉. Hence G is balanced not complete.” 
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Corollary 3.6 Every strong single valued neutrosophic graph is balanced.  

 

Theorem 3.7 

Let G = (A, B) be a self-complementary neutrosophic graph. Then D(G) = (1,1,1).  

Proof: 

Let 𝐺 = (𝐴, 𝐵) be a self-complementary neutrosophic graph, then  

“    ∑ 𝑇B(𝑢, 𝑣)𝑢,𝑣𝜖𝑉 =
1

2
∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉   

  ∑ 𝐼B(𝑢, 𝑣)𝑢,𝑣𝜖𝑉 =
1

2
 ∑  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉  and 

 ∑ 𝐹B(𝑢, 𝑣)𝑢,𝑣𝜖𝑉 =  
1

2
∑  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉 . 

Now 𝐷(𝐺) = (
2 ∑ 𝑇B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
   ,

2 ∑ 𝐼B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
,

2 ∑ 𝐹B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
 ) 

         𝐷(𝐺) = (
2 ∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉

2 ∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
 ,

2 ∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉

2 ∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
,

2 ∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉

2 ∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
) 

 Hence 𝐷(𝐺) = (1, 1, 1).” 

Theorem 3.8 

Let G = (A, B) be a strictly balanced neutrosophic graph and 𝐺̅ = (𝐴̅, 𝐵̅) be its complement then 

D(G) + D(𝐺̅) = (2, 2, 2). 

Proof: 

Let G = (A, B) be a strictly balanced neutrosophic graph and 𝐺̅ = (𝐴̅, 𝐵̅)  be its complement. 

Let H be a subgraph of G which is non-empty. D(G) = D(H) for all H ⊆ G and u, v ∈ V since G is 

strictly balanced. 

“In 𝐺̅, 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) − 𝑇B(𝑢, 𝑣),             (1) 

      𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) − 𝐼B(𝑢, 𝑣)                 (2) 

 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣) − 𝐹B(𝑢, 𝑣)  for every (𝑢, 𝑣) ∈  𝐸.        (3) 

 

Dividing (1) by 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) 

             
𝑇𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)
= 1 −

𝑇B(𝑢,𝑣)

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)
 ,         for every 𝑢, 𝑣 ∈  𝑉 

Similarly dividing (2) by 𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) 

            
𝐼𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)
= 1 −

𝐼B(𝑢,𝑣)

𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)
 ,      for every 𝑢, 𝑣 ∈  𝑉 

and dividing (3) by 𝐹𝐴(𝑢)  ∨   𝐹𝐴(𝑣) 

            
𝐹𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹𝐴(𝑢) ∨  𝐹𝐴(𝑣)
= 1 −

𝐹B(𝑢,𝑣)

𝐹𝐴(𝑢) ∨  𝐹𝐴(𝑣)
 ,     for every 𝑢, 𝑣 ∈  𝑉 

then  

 

∑
𝑇𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)𝑢,𝑣∈𝑉 = 1 − ∑
𝑇B(𝑢,𝑣)

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)𝑢,𝑣∈𝑉  ,      for every 𝑢, 𝑣 ∈  𝑉 
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∑
𝐼𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)𝑢,𝑣∈𝑉 = 1 − ∑
𝐼B(𝑢,𝑣)

𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)𝑢,𝑣∈𝑉  ,      for every 𝑢, 𝑣 ∈  𝑉 

 

∑
𝐹𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹𝐴(𝑢) ∨  𝐹𝐴(𝑣)𝑢,𝑣∈𝑉 = 1 − ∑
𝐹B(𝑢,𝑣)

𝐹𝐴(𝑢) ∨  𝐹𝐴(𝑣)𝑢,𝑣∈𝑉  ,     for every 𝑢, 𝑣 ∈  𝑉 

Multiply the above equations by 2 on both sides 

2 ∑
𝑇𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)𝑢,𝑣∈𝑉 = 2 − 2 ∑
𝑇B(𝑢,𝑣)

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)𝑢,𝑣∈𝑉  ,      for every 𝑢, 𝑣 ∈  𝑉 

 

2 ∑
𝐼𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)𝑢,𝑣∈𝑉 = 2 − 2 ∑
𝐼B(𝑢,𝑣)

𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)𝑢,𝑣∈𝑉  ,      for every 𝑢, 𝑣 ∈  𝑉 

 

2 ∑
𝐹𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹𝐴(𝑢) ∨  𝐹𝐴(𝑣)𝑢,𝑣∈𝑉 = 2 − 2 ∑
𝐹B(𝑢,𝑣)

𝐹𝐴(𝑢) ∨  𝐹𝐴(𝑣)𝑢,𝑣∈𝑉  ,     for every 𝑢, 𝑣 ∈  𝑉 

𝐷𝑇(𝐺̅) = 2 - 𝐷𝑇(𝐺), 𝐷𝐼(𝐺̅) = 2 - 𝐷𝐼(𝐺) and 𝐷𝐹(𝐺̅) = 2 - 𝐷𝐹(𝐺) 

Now, D(G) + D(𝐺̅) = (𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺)) + (𝐷𝑇(𝐺̅), 𝐷𝐼(𝐺̅), 𝐷𝐹(𝐺̅)) 

      D(G) + D(𝐺̅) =((𝐷𝑇(𝐺) + 𝐷𝑇(𝐺̅)), (𝐷𝐼(𝐺) + 𝐷𝐼(𝐺̅)), (𝐷𝐹(𝐺) + 𝐷𝐹(𝐺̅))) 

Hence D(G) + D(𝐺̅) =(2, 2, 2).” 

 

Theorem 3.9 

“The complement of a single valued neutrosophic graph that is strictly balanced is also strictly 

balanced.” 

Proof: 

Let G = (A, B) be a strictly balanced neutrosophic graph and 𝐺̅ = (𝐴̅, 𝐵̅) be its complement. 

Let H be a subgraph of G which is non-empty. D(G) = D(H) for all H ⊆ G and u, v ∈ V since G is 

strictly balanced. 

As G is strictly balanced by Theorem 3.7, D(G) + D(𝐺̅) =(2, 2, 2) 

Since D(H) + D(𝐻) =(2, 2, 2) for every 𝐻 ⊆ 𝐺. 

Which implies D(𝐻) = D(𝐺̅) 

Hence 𝐺̅ is strictly balanced. 

 

Theorem 3.10 

The complement of strongly regular SVNG is balanced. 

Proof: 

Let G = (A, B) be a strongly regular neutrosophic graph and 𝐺̅ = (𝐴̅, 𝐵̅) be its complement. 

Since G is strongly, we have “𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣), 𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) and 

𝐹B(𝑢, 𝑣) =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  for every (𝑢, 𝑣) ∈  𝐸.          (1) 

In 𝐺̅, 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) − 𝑇B(𝑢, 𝑣),              

      𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) − 𝐼B(𝑢, 𝑣)                 

 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣) − 𝐹B(𝑢, 𝑣)  for every (𝑢, 𝑣) ∈  𝐸.  
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Since G is strongly regular, we have 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0, 𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 by (1) for every 

 (𝑢, 𝑣) ∈  𝐸 and  

      𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣),              

      𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣)                

 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  for every (𝑢, 𝑣) ∈  𝐸̅ .  

⟹ 𝐺̅ is a strong neutrosophic graph. Then by Corollary 3.6, 𝐺̅ is balanced.” 

 

Theorem 3.11 

Let G = (A, B) be a SVNG and 𝐺̅ = (𝐴̅, 𝐵̅) be its complement then 𝐺̿ = G. 

Proof: 

Let G = (A, B) be a SVNG 𝐺̅ = (𝐴̅, 𝐵̅) be its complement. 

In 𝐺̅, 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) − 𝑇B(𝑢, 𝑣),             (1) 

      𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) − 𝐼B(𝑢, 𝑣)                 (2) 

 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣) − 𝐹B(𝑢, 𝑣)  for every (𝑢, 𝑣) ∈  𝐸.        (3) 

Taking complement for (1), we get  𝑇B(𝑢, 𝑣)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) − 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅    

Substitute  𝑇𝐴(𝑢) ⋀ 𝑇𝐴(𝑣)  = 𝑇B(𝑢, 𝑣) + 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   from (1) weget, 𝑇B(𝑢, 𝑣)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ = 𝑇B(𝑢, 𝑣) 

Similarly, 𝐼B(𝑢, 𝑣)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ = 𝐼B(𝑢, 𝑣) and 𝐹B(𝑢, 𝑣)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ = 𝐹B(𝑢, 𝑣) 

Hence 𝐺̿ = G. 

 

4. Conclusion 

Neutrosophic graph theory is now commonly used in numerous sciences and technology, most 

notably in cognitive science, genetic algorithms, optimization techniques, cluster analysis, medical 

diagnosis, and decision theory. Florentin Smarandache created a neutrosophic graph based on 

neutrosophic sets. When compared to other traditional and fuzzy models, neutrosophic models 

provide the system with greater precision, adaptability, and compatibility. We introduced the 

concept of balanced neutrosophic graphs in this paper and we plan to expand our work on the 

application of balancing social network connectivity using density functions in the neutrosophic 

environment. 
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