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1 Introduction

Smarandache introduced the notion of neutrosophic set which is a more general platform that extends tr
notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set {4ed 7).
Neutrosophic set theory is applied to various part which is refered to the site

http://fs.gallup.unm.edu/neutrosophy.htm.

Jun and his colleagues applied the notion of neutrosophic set theBy i6/ BC'I-algebras (seel[ 5, 6, 7, 10,
13, 14]). Borzooei et al. 2] studied commutative generalized neutrosophic ideal3(hx -algebras. Mohseni
et al. 9] introduced the notion of MBJ-neutrosophic sets which is another generalization of neutrosophic
set. They introduced the concept of MBJ-neutrosophic subalgebia€'ii/ BC'I-algebras, and investigated
related properties. They gave a characterization of MBJ-neutrosophic subalgebra, and established a new ME
neutrosophic subalgebra by using an MBJ-neutrosophic subalgebr&0f aalgebra. They considered the
homomorphic inverse image of MBJ-neutrosophic subalgebra, and discussed translation of MBJ-neutrosoph
subalgebra. Bordbar et all][introduced the notion of BMBJ-neutrosophic subalgebras, and investigated
related properties.

In this paper, we apply the notion of MBJ-neutrosophic sets to ideal3(dk'/ BI-algebras. We intro-
duce the concepts of a BMBJ-neutrosopbisubalgebra and a (closed) BMBJ-neutrosophic ideal, and in-
vestigate several properties. We provide conditions for an MBJ-neutrosophic set to be a BMBJ-neutrosophi
ideal in BCK/BC1I-algebras, and discuss characterizations of BMBJ-neutrosophic ideal. We consider rela-
tions between a BMBJ-neutrosophic subalgebra, a BMBJ-neutrosoghibalgebra and a (closed) BMBJ-
neutrosophic ideal.
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2 Preliminaries

By a BC'I-algebra we mean a seX with a binary operation and a special elemeiftthat satisfies the
following conditions:

() (wxy)*(wx2)*(z5y) =0,
() (2 (xy))*y =0,

(M) z*z=0,

(V) zxy=0,yxx=0 = =y

forall x,y, 2 € X. If a BCI-algebraX satisfies the following identity:
(V) (Vz e X) (0% z =0),

thenX is called aBC K -algebra.
By aweaklyBC' K -algebra(see B]), we mean aBC'I-algebraX satisfying0 « x < x forall x € X.
Every BCK/BC'I-algebraX satisfies the following conditions:

(Ve e X)(zx0=ux), (2.1)
Ve,y,ze€ X)(x <y = wxz2<yx*xz zxy<z%xx), (2.2)
(Vz,y,z€ X) ((xxy)*x 2= (xx2) xy), (2.3)
(Vz,y,z € X)((xx2)* (y*2) <z xy) (2.4)

wherex < yif and only if z x y = 0. Any BC'[-algebraX satisfies the following conditions (se&):

(Vo,y € X)(xx (xx(xxy)) =x*xy), (2.5)
(Vo,y € X)(0* (z*xy) = (0% z)* (0*y)). (2.6)

A BC'-algebraX is said to bep-semisimplgsee B]) if
(Vo € X)(0x (0xx) = ). (2.7)
In ap-semisimpleBC'[-algebraX, the following holds:
(Vz,y € X)(0* (xxy) =y*x, x* (x*y) =1y). (2.8)
A B(C-algebraX is said to beassociativegsee B]) if
(Vo,y,z € X)((z*xy) x 2 =z % (y * 2)). (2.9)
By an(S)-BC K-algebrg we mean aBC K -algebraX such that, for any:, y € X, the set
{zeX |zxx <y}

has the greatest element, writtendy y (see B]).
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A nonempty subset of a BC'K/BC'I-algebraX is called asubalgebreof X if zxy € Sforall z,y € S.
A subset/ of a BC'K/BCI-algebraX is called arideal of X if it satisfies:

0el, (2.10)
VeeX)Vyel)(zxyel = xz€l). (2.12)

A subset/ of a BC'I-algebraX is called aclosed ideabf X (see B]) if it is an ideal of X which satisfies:

VreX)(xel = 0xzel). (2.12)

By aninterval numbemwe mean a closed subintervak [a~,a™] of I, where0 < a~ < o™ < 1. Denote
by [I] the set of all interval numbers.

Let X be a nonempty set. A functiof: X — [I]is called arinterval-valued fuzzy sébriefly, anIVF se)
in X. Let [/]X stand for the set of all IVF sets iN. For everyA € [I]* andz € X, A(z) = [A™(z), AT (2)]
is called thedegreeof membership of an elementto A, whereA~ : X — I andA™ : X — [ are fuzzy sets
in X which are called dower fuzzy seand anupper fuzzy seh X, respectively. For simplicity, we denote
A=[A",AT].

Let X be a non-empty set. Aeutrosophic seNS) in X (see [L1]) is a structure of the form:

A= {{x; Ap(x), A;(z), Ap(z)) | v € X}

whereAr : X — [0,1] is a truth membership functiom; : X — [0, 1] is an indeterminate membership
function, andAr : X — [0, 1] is a false membership function. For the sake of simplicity, we shall use the
symbolA = (Ar, A;, Ar) for the neutrosophic set

A= {{x; Ap(x), Ar(x), Ap(x)) | x € X }.

We refer the reader to the book3 B] for further information regardind3C' K / BC'I-algebras, and to the
site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information regarding neutrosophic set theory.

Let X be a non-empty set. By aiBJ-neutrosophic seh X (see P]), we mean a structure of the form:
A = {{z; Ms(z), BA(J?), Ja(z)) |z € X}

whereM 4 and.J4 are fuzzy sets inX, which are called a truth membership function and a false membership
function, respectively, an, is an IVF set inX which is called an indeterminate interval-valued membership
function.

For the sake of simplicity, we shall use the symlgok (M 4, BA, J4) for the MBJ-neutrosophic set

A= {{x; Ma(z), Ba(z), Ja(z)) | z € X}.

Let X be aBCK/BCI-algebra. An MBJ-neutrosophic sdt = (M4, B, Ja) in X is called aBMBJ-
neutrosophic subalgebraf X (see []) if it satisfies:

(Vo € X)(Ma(z) + B4 (z) <1, Bf(z) + Ja(z) < 1) (2.13)
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and
Do) < ml E0), B (o)
Al xy) <maxB,(x), By
o € X0 By > min53(0). BN} | (244

3 BMBJ-neutrosophic ideals

Definition 3.1. Let X be aBC' K /BCI-algebra. An MBJ-neutrosophic sdt= (M4, BA7 J4) in X is called
aBMBJ-neutrosophic idealf X if it satisfies .13 and

Ma(0) = Ma(x)
B, (0) < By(x)
(Vz € X) Bi0)> Bt) |’ (3.1)
Ja(0) < Ja(z)
MA((:L’)) > mmEMA((x * y)), MA((y))}}
B,(z) <max{B,(x*xy), B, (y
Ve €0 B 2 min(Bi ). Bl | 82

( A
Ja(x) <max{Ja(z*y), Ja(y)}

A BMBJ-neutrosophic ideall = (My, BA, J4) of a BC'I-algebraX is said to beclosedif
(Vx € X) ; ) (3.3)

Example 3.2. Consider a seK = {0, 1,2, a} with the binary operatior which is given in Tablel. Then

Table 1: Cayley table for the binary operatios *

L N~ O ¥
QN OO
QN OO
QL OO O
S Q2 Q2 2

(X;%,0) is a BCI-algebra (seed). Let A = (My, By, J4) be an MBJ-neutrosophic set i defined by
Table2. Itis routine to verify thatd = (M4, Ba, J4) is a closed MBJ-neutrosophic ideal &f
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Table 2: MBJ-neutrosophic set = (M4, By, J4)

X My(x) Ba(x) Ja(x)
0 0.7 [0.02,0.08] 0.2
1 0.5 [0.02,0.06] 0.2
2 0.4 [0.02, 0.06] 0.7
a 0.3 [0.02, 0.06] 0.7

Proposition 3.3. Let X be aBC'K/BCI-algebra. Then every BMBJ-neutrosophic idgl= (M4, B4, J4)
of X satisfies the following assertion.

By(r) < ) B3},
PSS T Bl 2 winfBiG), Bi() &4

forall z,y,z € X.

Proof. Letz,y, 2 € X be such that «y < z. Then

Ma(z *xy) > min{Ma((x *y) * 2), Ma(2)} = min{Ma(0), Ma(2)} = Ma(z2),
By (zxy) < max{By((x+y) * 2), By(2)} = max{B,(0), By (2)} = B4 (2),

Bji(z+y) > min{Bi((z *y) » 2), By ()} = min{B}(0), By (2)} = Bi(2),
and
Ja(z xy) < max{Ja((z *xy) * 2), Ja(2)} = max{Js(0), Ja(2)} = Ja(2).
It follows that

Ma(z) = min{Ma(z + y), Ma(y)} = min{Ma(y), Ma(2)},
B (x) < max{B} (z *y), By (y)} = max{B,(y), B,(2)},

Bj(r) > min{ B} (v xy), Bi(y)} = min{ B} (y), Bi(2)},
and

Ja(z) < max{Ja(z *xvy), Ja(y)} = max{Ja(y), Ja(z)}.
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This completes the proof. O

We provide conditions for an MBJ-neutrosophic set to be a BMBJ-neutrosophic idéal'is/ BC'I-
algebras.

Theorem 3.4. Every MBJ-neutrosophic set inlBC' K/ BCI-algebra X satisfying(3.1) and(3.4) is a BMBJ-
neutrosophic ideal ok .

Proof. Let A = (Mg, Ba, J4) be an MBJ-neutrosophic set i satisfying .1) and @.4). Note thatr * (z
y) < yforallz,y € X. It follows from (3.4) that

Ma(z) > min{Ma(x *y), Ma(y)},

By (x) < max{ By (z *y), B4 (y)},

B} (x) > min{Bj (2 *y), Bi(y)},
and
Ja(x) < max{Ja(z *y), Ja(y)}.

Therefored = (M, By, J4) is a BMBJ-neutrosophic ideal of. O

Given an MBJ-neutrosophic sdt= (M4, B, Ja)inaBCK/BC1I-algebraX, we consider the following
sets.

My;t) :={z € X | Mu(z) > t},
;a7 ) ={r e X |By(z) <a}
UBL;a™):={z e X |Bl(z) >a"},
( =

wheret, s,a™, at € [0,1].

Theorem 3.5.An MBJ-neutrosophic set = (M4, B, Ja)ina BCK/BC1I-algebraX is an MBJ-neutrosophic
ideal of X if and only if the non-empty set&(M4;t), L(By; o), U(BL;a™) and L(J4; s) are ideals ofX
forall t,s,a".a™ € [0,1].

Proof. Suppose thatl = (Mg, By, J4) is an MBJ-neutrosophic ideal of. Lett, s, a—, o™ € [0,1] be such
thatU (M ;t), L(By;a7), U(BL;a™) andL(J4; s) are non-empty. Obviously, € U(M;t) N L(By;a™)N
U(BL;a™)NL(Ja;s). Foranyz,y,a,b,p,q,u,v € X, if xxy € U(Ma;t),y € U(Ma;t),axb € L(By;a™),

be L(By;a™),pxqe U(BL;a™),q€ UBL;a™),uxv € L(Ja;s) andv € L(Ja; s), then

Ma(z) > min{My(z *xy), Ma(y)} > min{t, t} =t,

B, (a) <max{Bj(a*b),B,(b)} <max{a ,a }=a,
Bi(p) > min{B;(p ), B(a)} > minfa*,a*} = a*,
Ja(u) < max{Ja(u*v), Ja(v)} < min{s, s} = s,
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and sor € U(May;t),a € L(By;a™), p € U(BY;a™) andu € L(Ja;s). ThereforelU (Ma;t), L(By;a™),
U(B};a™)andL(Ja; s) are ideals ofX.

Conversely, assume that the non-empty $&t87,4;¢), L(B,;a™), U(BY;a™) and L(J4; s) are ideals
of X forall t,s,a,a™ € [0,1]. Assume that\/,(0) < Ma(a), B;(0) > Bj(a), Bf(0) < B}(a) and
Ja(0) > J4(a) for somea € X. Then0 ¢ U(M4; Ma(a)) N L(By; B4 (a)) NU(BY; Bf(a)) N L(Ja; Ja(a),
which is a contradiction. Henc&/4(0) > Ma(z), B;(0) < By (z), B4(0) > B}(z) andJ4(0) < Ja(z)
forall z € X. If Ma(ag) < min{My4(ag * bo), Ma(bo)} for someag, by € X, thenag x by € U(Ma;to)
andby € U(Ma;to) butag ¢ U(My;ty) for tg := min{Ma(ao * by), Ma(bo)}. This is a contradiction, and
thus M 4(a) > min{M4(a x b), M4(b)} for all a,b € X. Similarly, we can show thal,(a) < max{.J(a *
b), Ja(b)} for all a,b € X. Suppose thaB (ag) > max{B(ao * by), B (by)} for someay, b, € X. Taking
a” = max{B (ag*by), B, (by) } implies thatay * by € L(B,;a ) andby € L(B,; o) butay ¢ L(B,;a™).
This is a contradiction. Thu®, (z) < max{B,(z * y),B,(y)} for all z,y € X. Similarly, we obtain
B (z) > min{ B} (zy), B{(y)} forall z,y € X. Consequentlyd = (M,, B,, J4) is a BMBJ-neutrosophic
ideal of X. O

Theorem 3.6.An MBJ-neutrosophic set = (M4, B, Ja)ina BCK/BCI-algebraX is a BMBJ-neutrosophic
ideal of X if and only if (M4, By ) and (B}, J4) are intuitionistic fuzzy ideals of.

Proof. Straightforward. O

Theorem 3.7.Given an ideall of a BCK/BCI-algebraX, let A = (M4, B, J4) be an MBJ-neutrosophic
setinX defined by

t ifxel, _ oo ifzel,
Ma(z) _{ 0 otherwise, al )_{ 1  otherwise,

o :
" |« if z €1, | s ifzxel,
Bi(z) = { 0  otherwise, Jalz) = { 1 otherwise,

wheret, o™ € (0,1], s,a” € [0,1). ThenA = (M4, B4, J4) is a BMBJ-neutrosophic ideal of such that
U(Ma;t) = L(By;a™) =U(BY;at) = L(Ja;s) = 1.

Proof. Itis clear thaty/ (Ma;t) = L(B ;o) = U(B};at) = L(Ja;s) = I. Letz,y € X. lf zxy € I and
y € I,thenz € I and so

s

() =t =min{My(z *y), Ma(y)}
G(@)=a =max{B,(x*y), B;(v)},

Bi(z) = ot =min{BJ(z xy), B} (y)},

Ja(z) = s =max{Ja(z xy), Jaly)}.

If any one ofz x y andy is contained iy, sayz xy € I, thenMy(z*y) =t, B (x*xy) = a~, Ja(x*xy) = s,
Ma(y) =0, B4(y) =1, B (y) = 0 andJ4(y) = 1. Hence

Ma(z) > 0=min{t,0} = min{My(z xy), Ma(y)}
B(x) < 1= max{B; (z +y), By ()},

B3 (2) > 0 = min{B}(z ), By (o)}

Ja(z) <1 =max{s, 1} = max{Ja(z *xy), Ja(y)}.
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If % y,y ¢ I, thenMu(xxy) =0 = Ma(y), By(xxy) = 1 = B;(y), Bi(z*y) = 0 = Bf(y) and
Ja(zxy) =1= Ju(y). It follows that

Ma(e) > 0= min{Ma(e * ), Maly))}
By(z) <1 =max{B,(zxy), B, (y)},
Bi(x) > 0 = min{ B} (z x4), BL(y)},
Ja(z) <1 =max{Ja(x *y), Ja(y)}.

It is obvious thathM,(0) > M(z), B;(0) < By (z), B4(0) > Bji(x) andJ4(0) < Ju(x) forall z € X.
Therefored = (M4, Ba, J4) is a BMBJ-neutrosophic ideal of . l

Theorem 3.8. For any non-empty subsétof X, let A = (M, Bu, J4) be an MBJ-neutrosophic set ik
which is given in Theore®.7. If A = (M4, B4, J4) is a BMBJ-neutrosophic ideal of, then! is an ideal of
X.

Proof. Obviously,0 € I. Letz,y € X be suchthat xy € I andy € I. ThenM(z xy) =t = Ma(y),
Bi(zxy)=a = B,(y), Bi(zxy) = a™ = B} (y) andJ(z xy) = s = Ja(y). Thus

Ma(z) > min{M4(z *y), Ma(y)} = t,
B (z) < max{Bj(z*y),B;(y)} = 077
Bj(x) > mln{B+(x *Y), B+(y)}

Ja(x) < max{Ja(z*y), Jaly)} =

and hence: € I. Thereforel is an ideal ofX. o
Theorem 3.9.1n a BC K-algebra, every BMBJ-neutrosophic ideal is a BMBJ-neutrosophic subalgebra.

Proof. Let A = (M, B,, J4) be a BMBJ-neutrosophic ideal of2C K -algebraX. Since(z xy) * z < y for
all x,y € X, it follows from PropositiorB8.3that

Ma(z +y) = min{Mx(z), Ma(y)},
By (2 xy) < max{Bj(x), B4 (y)},
Bj(x+y) = min{B}(z), By (y)},

Ja(z xy) <max{Ja(z), Ja(y)}

forall z,y € X. HenceA = (My, By, J4) is a BMBJ-neutrosophic subalgebra oB&’ K -algebraX. O

The converse of Theoref9 may not be true as seen in the following example.

Example 3.10.Consider aBC K-algebraX = {0, 1,2, 3} with the binary operation which is given in Table
3. Let A = (My, B, J4) be an MBJ-neutrosophic set X defined by Tablel. ThenA = (M, By, Ja)is
a BMBJ-neutrosophic subalgebra®f but it is not a BMBJ-neutrosophic ideal &f since

(1) # min{B}(1x2), B;(2)}.

We provide a condition for a BMBJ-neutrosophic subalgebra to be a BMBJ-neutrosophic idéalil a
algebra.
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Table 3: Cayley table for the binary operatios “

W N = O %
W N = OO
W= O ol
w O O O
O = OlW

Table 4: MBJ-neutrosophic sgt = (M4, B4, Ja)

X MA(ZL’) BA(I) JA(JZ)
0 0.7 [0.03,0.08] 0.2
1 0.4 0.02,0.06] 0.3
2 0.4 [0.03,0.08] 0.4
3 0.6 [0.02,0.06] 0.5

Theorem 3.11.Let A = (M, By, J4) be a BMBJ-neutrosophic subalgebra obd’ K -algebra X satisfying
the condition(3.4). ThenA = (M,, Ba, J4) is a BMBJ-neutrosophic ideal of.

Proof. For anyz € X, we get

Ma(0) = Ma(z*xx) > min{ My (x), Ma(x)} = Ma(z),
B (0) = By (z * x) < max{ B, (z), By(z)} = By (),

B;(0) = Bj(x* x) > min{B}(z), Bj ()} = Bj(x),
and
J4(0) = Ja(z x x) < max{Ja(z), Ja(z)} = Ja(z).
Sincezx * (z xy) < yforall z,y € X, it follows from (3.4) that

My(r) > min{Ma(z xy), Ma(y)},
By (z) < max{B(z *y), By(y)},
B (z) > min{Bj (v xy), Bi(y)},
Ja(z) < max{Ja(z *y), Ja(y)}

forall z,y € X. Therefored = (M4, Ba, J4) is a BMBJ-neutrosophic ideal of . O
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Theorem3.9is not true in aBC'[-algebra as seen in the following example.

Example 3.12.Let (Y, *,0) be aBCI-algebra and letZ, —,0) be an adjointBCI-algebra of the additive
group(Z, +,0) of integers. TherX =Y x ZisaB(CI-algebra and = Y x N is an ideal ofX whereN is
the set of all non-negative integers (s8p.[Let A = (M4, By, J) be an MBJ-neutrosophic set i which
is given in TheorenB.7. ThenA = (M, By, J4) is a BMBJ-neutrosophic ideal of by TheorenB.7. But it
is not a BMBJ-neutrosophic subalgebraofsince

MA((0,0) % (0,1)) = M4((0,—1)) = 0 < t = min{ M4 ((0,0)), MA(0,1))},
BZ((QO) * (07 2)) = Bg((()? _2)) =l>a = maX{BZ((()?O))»B,Z(Ov 2))}a

B}((0,0) % (0,2)) = BA((0,-2)) =0 < a” = min{B}((0,0)), B4(0,2))},
and/or
Ja((0,0) % (0,3)) = Ja((0,=3)) = 1 > s = max{Ja((0,0)), J(0,3))}.
Definition 3.13. A BMBJ-neutrosophic ideall = (M4, By, J4) of a BC'I-algebraX is said to beclosedif
(Vo € X)(Ma(0x ) = Ma(z), By (0x2) < By(x), B;(0%2) > Bi(2), Ja(0xz) < Ja(z)). (3.5)

Theorem 3.14.1n a BC'I-algebra, every closed BMBJ-neutrosophic ideal is a BMBJ-neutrosophic subalge-
bra.

Proof. Let A = (My, B,, J4) be a closed BMBJ-neutrosophic ideal oB&'I-algebraX. Using .2), (2.3),
(11N and (3.3), we have

Ma(z *xy) > min{Ma((x *y) *z), Ma(z)} = min{Ma(0*y), Ma(z)} > min{Ma(y), Ma(z)},
By (zxy) < max{B,((x xy) xx), By ()} = max{ B, (0+y), By(r)} < max{B}(y), B, (v)},

Bj(xxy) = min{ Bj ((z xy) * ), By(x)} = min{ B3 (0 + y), By ()} > min{ B, (y), B} (x)},
and
Ja(zxy) < max{Ja((z xy) *xx), Ja(z)} = max{Ja(0*xy), Ja(x)} < max{Ja(y), Ja(x)}

forallz,y € X. Henced = (M4, B, J4) is a BMBJ-neutrosophic subalgebraf O
Theorem 3.15.1n a weaklyBC K -algebra, every BMBJ-neutrosophic ideal is closed.

Proof. Let A = (M4, B4, J4) be a BMBJ-neutrosophic ideal of a weakdB(' K -algebraX . For anyz € X,
we obtain

Ma(0xx) > min{Ma((0*z)xx), Ms(x)} = min{M4(0), Ms(x)} = My(x),
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By (0 2) <max{B, ((0*x) * ), By ()} = max{B,(0), By ()} = By(z),

B3(0+2) > min{B1((0* x) * z), Bj(x)} = min{B1(0), B} (v)} = Bj(x),
and
JA(0 % 2) <max{Ja((0*x) xx), Ja(x)} = max{J4(0), Ja(z)} = Ja(x).
Therefored = (M, By, J4) is a closed BMBJ-neutrosophic ideal &f O

Corollary 3.16. In a weaklyBC K -algebra, every BMBJ-neutrosophic ideal is a BMBJ-neutrosophic subal-
gebra.

The following example shows that any BMBJ-neutrosophic subalgebra is not a BMBJ-neutrosophic ideal
in a BC'I-algebra.

Example 3.17.Consider aBC'I-algebraX = {0, a, b, ¢, d, e} with thex-operation in Tablé&.

Table 5: Cayley table for the binary operatioti “

O QUL O o9 O %
D /UL T OO
ST O O
Q Q@ T o0 o|le
0O 0 OO0 oS o
QOO0 ol
O T OO OO

Let A = (Mg, B, J4) be an MBJ-neutrosophic set i defined by Tablé.

Table 6: MBJ-neutrosophic sgt = (M4, B4, J)

X MA(LE) BA(]J) JA($)
0 0.7 [0.14,0.19] 0.3
a 0.4 [0.04,0.45] 0.6
b 0.7 [0.14,0.19] 0.3
¢ 0.7 (0.14,0.19] 0.3
d 0.4 0.04,0.45] 0.6
e 0.4 0.04,0.45] 0.6

M. Mohseni Takallo, Hashem Bordbar, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic ideals in
BCK/BC1I-algebras.



12 Neutrosophic Sets and Systems, ¥9l.2019

It is routine to verify thatd = (M, Ba, Ja) is a BMBJ-neutrosophic subalgebra &t But it is not a
BMBJ-neutrosophic ideal ok since

Ma(d) < min{Ma(d *c), M4(c)},
B, (d) > max{B,(d*c),B,(c)},

B} (d) < min{B}(d*c), Bf(c)},
and/or
Ja(d) > max{Ja(d*c), Ja(c)}.

Theorem 3.18.1n a p-semisimpleBC'I-algebra X, the following are equivalent.
(1) A= (My, By, J4) is a closed BMBJ-neutrosophic ideal &f

(2) A= (My, B4, J4) is a BMBJ-neutrosophic subalgebra &ft

Proof. (1) = (2). See Theorer@.14
(2) = (1). Suppose thatl = (M4, B4, J4) is a BMBJ-neutrosophic subalgebraXf For anyz € X, we
get

MaA(0) = Ma(x*x) > min{ My (z), Ma(z)} = Ma(z),
B4(0) = By (x xx) < max{B, (x), By ()} = By (x),

B1(0) = Bi(x xx) > min{Bj (z), Bj(z)} = By (x),
and
J4(0) = Jy(z x x) < max{Ja(x), Ja(z)} = Ja(x).

HenceM 4 (0xx) > min{Ma(0), Ma(z)} = Ma(z), B;(0xx) < max{B;(0), B;(z)} = B, (z) B (0*z) >
min{ B} (0), B;(x)} = B}(z) andJ4(0 * z) < max{Ja(0), Ja(z)} = Ja(z) forallz € X. Letz,y € X.
Then

Ma(z) = Ma(y = (y * ) = min{Ma(y), Ma(y = z)}
=min{M4(y), Ma(0* (zxy))}
> min{ M4 (z *y), Ma(y)},

By(z) = By(y* (y*x)) < max{B,(y), By (y xx)}
=max{B,(y), By(0* (z*y))}
< max{B,(z*y), B,y (y)}

M. Mohseni Takallo, Hashem Bordbar, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic ideals in
BCK/BC1I-algebras.



Neutrosophic Sets and Systems, \@t, 2019 13

Bji(x) = Bi(y* (y * x)) = min{B1(y), Bi(y * z)}

= min{B}(y), B (0% (z xy))}
> min{ B} (z *y), Bx(y)}

and

Ja(w) = Jaly * (y x @) < max{Ja(y), Jaly =)}
= max{Ja(y), Ja(0 = (z xy))}
< max{Ja(z *y), Ja(y)}.
Therefored = (M, By, J4) is a closed BMBJ-neutrosophic ideal &f O
Since every associativBC'[ -algebra igp-semisimple, we have the following corollary.
Corollary 3.19. In an associativeBC[-algebra X, the following are equivalent.
(1) A= (Ma, By, J4) is a closed BMBJ-neutrosophic ideal &f.
(2) A= (My, By, Ja) is a BMBJ-neutrosophic subalgebra &f

Definition 3.20. Let X be an(S)-BC K-algebra. An MBJ-neutrosophic sdt= (M4, B4, J4) in X is called
aBMBJ-neutrosophie-subalgebraof X if the following assertions are valid.

Ma(z oy) > min{My(z), Ma(y)},

2 (zoy) <max{B, (), B;(y)},
i (zoy) > min{Bj (), B+<y)}, (3.6)

Ja(xoy) <max{Ja(z), Ja(y)}

Sejle

forall z,y € X.

Lemma 3.21. Every BMBJ-neutrosophic ideal of AC' K/ BC'I-algebra X satisfies the following assertion.
(Vo,y € X) (x <y = Ma(z) > Ma(y), B4(x) < By (y), B} (z) = Bi(y), Ja(z) < Jaly)). (3.7
Proof. Assume that: < y forall z,y € X. Thenz xy = 0, and so

Ma(z) > min{Ma(z * y), Ma(y)} = min{M4(0), Ma(y)} = Ma(y),

By () <max{B,(z xy), By(y)} = max{B,(0), B4(y)} = B4 (v),

B (z) > min{ B} (v *y), B} (y)} = min{B;(0), Bi(y)} = Bi(y),
and

Ja(z) < max{Ja(z *vy), Ja(y)} = max{Ja(0), Ja(y)} = Ja(y).

This completes the proof. O
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Theorem 3.22.In an(S)-BC K-algebra, every BMBJ-neutrosophic ideal is a BMBJ-neutrosopisiabalgebra.

Proof. Let A = (M, B4, J4) be a BMBJ-neutrosophic ideal of &§)-BC K -algebraX. Note that(z o y) *
x <yforallz,y € X. Using Lemm&3.21and @.2) inplies that

Ma(z oy) = min{Ma((z 0 y) * x), Ma(x)} > min{Ma(y), Ma(z)},
By(woy) <max{B,((zoy)*x), By(z)} <max{B}(y), By(z)},

Bi(zoy) > min{Bi((zoy) *x), Bi(r)} = min{B}(y), Bi(z)},
and
Ja(zoy) <max{Ja((zoy)*xx), Ja(r)} <max{Ja(y), Ja(z)}.

Therefored = (M, By, J4) is a BMBJ-neutrosophie-subalgebra o . O

We provide a characterization of a BMBJ-neutrosophic ideal ils9nBC K -algebra.

Theorem 3.23.Let A = (My, By, J4) be an MBJ-neutrosophic set in d5)-BC K-algebra X. Then
A = (M4, Ba, Ja) is a BMBJ-neutrosophic ideal of if and only if the following assertions are valid.

M(z) = min{Ma(y), Ma(2)}, By (x) < max{B}(y), By(2)},

Bi(x) > min{ B (4), B ()}, Ja(x) < max{Ja(y), Ja(2)} (38)

forall z,y,z € X withz < yo z.

Proof. Assume thatd = (M, B, J4) is a BMBJ-neutrosophic ideal of and letz, y, 2 € X be such that
x < yo z. Using B.1), (3.2 and Theoren3.22 we have

Ma(x) > min{ Ma(z % (y 0 2)), Ma(y 0 2)}
= min{M4(0), M4s(y o 2)}
— Ma(yoz) > min{M(y), Ma(2)},

B, (z) <max{B (x*(yoz)),B (yoz)}
= max{B(0), By (y o 2)}
= B, (yoz) <max{B,(y), B,(2)},

Bj(z) = min{ B} (z * (y 0 2)), By (y © 2)}
= min{B}(0), Bi(yoz2)}
= Bi(yoz) > min{B}(y), B4(2)},
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and

Ja(z) < max{Ja(r * (y o 2)), Ja(y o 2)}
= max{J4(0), Ja(y o 2)}
= Ja(y o z) < max{Ja(y), Ja(z)}.

Conversely, letd = (M4, B, J4) be an MBJ-neutrosophic set in &fi)-BC K -algebraX satisfying the
condition @.8) forall z,y, z € X withz < y o z. Sine0 < z o z forall x € X, it follows from (3.8) that

M4(0) > min{Mu(z), Ma(x)} = Ma(x),
B4 (0) <max{B,(z), By(r)} = By (),

B (0) > min{ B} (x), B} (x)} = B («),
and
Ja(0) < max{Ja(z), Ja(z)} = Ja(x).
Note thatr < (z xy) oy forall z,y € X. Hence we have

Ma(z) > min{Ma(x * ), Ma(y)}, B3 (2) < max{B; (x ), B3 (3)},
B (x) > min{B (¢ y), B} (y)} andJa(x) < max{Ja(z * y), Ja(y)}.

Therefored = (M, B4, J4) is a BMBJ-neutrosophic ideal of. O

4 Conclusions

As a generalization of neutrosophic set, Mohseni et @jl.hive introduced the notion of MBJ-neutrosophic
sets, and have applied it 8C K/ BC'I-algebras. BMBJ-neutrosophic set has been introduced wnifh an
application inBC K /BC'I-algebras. In this article, we have applied the notion of MBJ-neutrosophic sets to
ideals of BCK/BI-algebras. We have introduced the concepts of a BMBJ-neutrosoghibalgebra and

a (closed) BMBJ-neutrosophic ideal, and have investigated several properties. We have provided conditior
for an MBJ-neutrosophic set to be a BMBJ-neutrosophic ided@ W/ BCI-algebras, and have discussed
characterizations of BMBJ-neutrosophic ideal. We have considered relations between a BMBJ-neutrosophi
subalgebra, a BMBJ-neutrosophkisubalgebra and a (closed) BMBJ-neutrosophic ideal. Using the results and
ideas in this paper, our future work will focus on the study of several algebraic structures and substructures.
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