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1 Introduction

Smarandache introduced the notion of neutrosophic set which is a more general platform that extends the
notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set (see [11, 12]).
Neutrosophic set theory is applied to various part which is refered to the site

http://fs.gallup.unm.edu/neutrosophy.htm.

Jun and his colleagues applied the notion of neutrosophic set theory toBCK/BCI-algebras (see [4, 5, 6, 7, 10,
13, 14]). Borzooei et al. [2] studied commutative generalized neutrosophic ideals inBCK-algebras. Mohseni
et al. [9] introduced the notion of MBJ-neutrosophic sets which is another generalization of neutrosophic
set. They introduced the concept of MBJ-neutrosophic subalgebras inBCK/BCI-algebras, and investigated
related properties. They gave a characterization of MBJ-neutrosophic subalgebra, and established a new MBJ-
neutrosophic subalgebra by using an MBJ-neutrosophic subalgebra of aBCI-algebra. They considered the
homomorphic inverse image of MBJ-neutrosophic subalgebra, and discussed translation of MBJ-neutrosophic
subalgebra. Bordbar et al. [1] introduced the notion of BMBJ-neutrosophic subalgebras, and investigated
related properties.

In this paper, we apply the notion of MBJ-neutrosophic sets to ideals ofBCK/BI-algebras. We intro-
duce the concepts of a BMBJ-neutrosophic◦-subalgebra and a (closed) BMBJ-neutrosophic ideal, and in-
vestigate several properties. We provide conditions for an MBJ-neutrosophic set to be a BMBJ-neutrosophic
ideal inBCK/BCI-algebras, and discuss characterizations of BMBJ-neutrosophic ideal. We consider rela-
tions between a BMBJ-neutrosophic subalgebra, a BMBJ-neutrosophic◦-subalgebra and a (closed) BMBJ-
neutrosophic ideal.
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2 Preliminaries

By a BCI-algebra, we mean a setX with a binary operation∗ and a special element0 that satisfies the
following conditions:

(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(II) (x ∗ (x ∗ y)) ∗ y = 0,

(III) x ∗ x = 0,

(IV) x ∗ y = 0, y ∗ x = 0 ⇒ x = y

for all x, y, z ∈ X. If a BCI-algebraX satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

thenX is called aBCK-algebra.
By aweaklyBCK-algebra(see [3]), we mean aBCI-algebraX satisfying0 ∗ x ≤ x for all x ∈ X.
EveryBCK/BCI-algebraX satisfies the following conditions:

(∀x ∈ X) (x ∗ 0 = x) , (2.1)

(∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) , (2.2)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (2.3)

(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (2.4)

wherex ≤ y if and only if x ∗ y = 0. Any BCI-algebraX satisfies the following conditions (see [3]):

(∀x, y ∈ X)(x ∗ (x ∗ (x ∗ y)) = x ∗ y), (2.5)

(∀x, y ∈ X)(0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)). (2.6)

A BCI-algebraX is said to bep-semisimple(see [3]) if

(∀x ∈ X)(0 ∗ (0 ∗ x) = x). (2.7)

In ap-semisimpleBCI-algebraX, the following holds:

(∀x, y ∈ X)(0 ∗ (x ∗ y) = y ∗ x, x ∗ (x ∗ y) = y). (2.8)

A BCI-algebraX is said to beassociative(see [3]) if

(∀x, y, z ∈ X)((x ∗ y) ∗ z = x ∗ (y ∗ z)). (2.9)

By an(S)-BCK-algebra, we mean aBCK-algebraX such that, for anyx, y ∈ X, the set

{z ∈ X | z ∗ x ≤ y}

has the greatest element, written byx ◦ y (see [8]).
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A nonempty subsetS of aBCK/BCI-algebraX is called asubalgebraof X if x ∗ y ∈ S for all x, y ∈ S.
A subsetI of aBCK/BCI-algebraX is called anidealof X if it satisfies:

0 ∈ I, (2.10)

(∀x ∈ X) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (2.11)

A subsetI of aBCI-algebraX is called aclosed idealof X (see [3]) if it is an ideal ofX which satisfies:

(∀x ∈ X)(x ∈ I ⇒ 0 ∗ x ∈ I). (2.12)

By an interval numberwe mean a closed subintervalã = [a−, a+] of I, where0 ≤ a− ≤ a+ ≤ 1. Denote
by [I] the set of all interval numbers.

Let X be a nonempty set. A functionA : X → [I] is called aninterval-valued fuzzy set(briefly, anIVF set)
in X. Let [I]X stand for the set of all IVF sets inX. For everyA ∈ [I]X andx ∈ X, A(x) = [A−(x), A+(x)]
is called thedegreeof membership of an elementx to A, whereA− : X → I andA+ : X → I are fuzzy sets
in X which are called alower fuzzy setand anupper fuzzy setin X, respectively. For simplicity, we denote
A = [A−, A+].

Let X be a non-empty set. Aneutrosophic set(NS) inX (see [11]) is a structure of the form:

A := {〈x; AT (x), AI(x), AF (x)〉 | x ∈ X}

whereAT : X → [0, 1] is a truth membership function,AI : X → [0, 1] is an indeterminate membership
function, andAF : X → [0, 1] is a false membership function. For the sake of simplicity, we shall use the
symbolA = (AT , AI , AF ) for the neutrosophic set

A := {〈x; AT (x), AI(x), AF (x)〉 | x ∈ X}.

We refer the reader to the books [3, 8] for further information regardingBCK/BCI-algebras, and to the
site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information regarding neutrosophic set theory.

Let X be a non-empty set. By anMBJ-neutrosophic setin X (see [9]), we mean a structure of the form:

A := {〈x; MA(x), B̃A(x), JA(x)〉 | x ∈ X}

whereMA andJA are fuzzy sets inX, which are called a truth membership function and a false membership
function, respectively, and̃BA is an IVF set inX which is called an indeterminate interval-valued membership
function.

For the sake of simplicity, we shall use the symbolA = (MA, B̃A, JA) for the MBJ-neutrosophic set

A := {〈x; MA(x), B̃A(x), JA(x)〉 | x ∈ X}.

Let X be aBCK/BCI-algebra. An MBJ-neutrosophic setA = (MA, B̃A, JA) in X is called aBMBJ-
neutrosophic subalgebraof X (see [1]) if it satisfies:

(∀x ∈ X)(MA(x) + B−
A(x) ≤ 1, B+

A(x) + JA(x) ≤ 1) (2.13)
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and

(∀x, y ∈ X)


MA(x ∗ y) ≥ min{MA(x), MA(y)}
B−

A(x ∗ y) ≤ max{B−
A(x), B−

A(y)}
B+

A(x ∗ y) ≥ min{B+
A(x), B+

A(y)}
JA(x ∗ y) ≤ max{JA(x), JA(y)}

 . (2.14)

3 BMBJ-neutrosophic ideals

Definition 3.1. Let X be aBCK/BCI-algebra. An MBJ-neutrosophic setA = (MA, B̃A, JA) in X is called
aBMBJ-neutrosophic idealof X if it satisfies (2.13) and

(∀x ∈ X)


MA(0) ≥ MA(x)
B−

A(0) ≤ B−
A(x)

B+
A(0) ≥ B+

A(x)
JA(0) ≤ JA(x)

 , (3.1)

(∀x, y ∈ X)


MA(x) ≥ min{MA(x ∗ y), MA(y)}
B−

A(x) ≤ max{B−
A(x ∗ y), B−

A(y)}
B+

A(x) ≥ min{B+
A(x ∗ y), B+

A(y)}
JA(x) ≤ max{JA(x ∗ y), JA(y)}

 . (3.2)

A BMBJ-neutrosophic idealA = (MA, B̃A, JA) of aBCI-algebraX is said to beclosedif

(∀x ∈ X)


MA(0 ∗ x) ≥ MA(x)
B−

A(0 ∗ x) ≤ B−
A(x)

B+
A(0 ∗ x) ≥ B+

A(x)
JA(0 ∗ x) ≤ JA(x)

 . (3.3)

Example 3.2. Consider a setX = {0, 1, 2, a} with the binary operation∗ which is given in Table1. Then

Table 1: Cayley table for the binary operation “∗”

∗ 0 1 2 a
0 0 0 0 a
1 1 0 0 a
2 2 2 0 a
a a a a 0

(X; ∗, 0) is aBCI-algebra (see [3]). Let A = (MA, B̃A, JA) be an MBJ-neutrosophic set inX defined by
Table2. It is routine to verify thatA = (MA, B̃A, JA) is a closed MBJ-neutrosophic ideal ofX.
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Table 2: MBJ-neutrosophic setA = (MA, B̃A, JA)

X MA(x) B̃A(x) JA(x)
0 0.7 [0.02, 0.08] 0.2
1 0.5 [0.02, 0.06] 0.2
2 0.4 [0.02, 0.06] 0.7
a 0.3 [0.02, 0.06] 0.7

Proposition 3.3. LetX be aBCK/BCI-algebra. Then every BMBJ-neutrosophic idealA = (MA, B̃A, JA)
of X satisfies the following assertion.

x ∗ y ≤ z ⇒


MA(x) ≥ min{MA(y), MA(z)},
B−

A(x) ≤ max{B−
A(y), B−

A(z)},
B+

A(x) ≥ min{B+
A(y), B+

A(z)},
JA(x) ≤ max{JA(y), JA(z)}

(3.4)

for all x, y, z ∈ X.

Proof. Let x, y, z ∈ X be such thatx ∗ y ≤ z. Then

MA(x ∗ y) ≥ min{MA((x ∗ y) ∗ z), MA(z)} = min{MA(0), MA(z)} = MA(z),

B−
A(x ∗ y) ≤ max{B−

A((x ∗ y) ∗ z), B−
A(z)} = max{B−

A(0), B−
A(z)} = B−

A(z),

B+
A(x ∗ y) ≥ min{B+

A((x ∗ y) ∗ z), B+
A(z)} = min{B+

A(0), B+
A(z)} = B+

A(z),

and

JA(x ∗ y) ≤ max{JA((x ∗ y) ∗ z), JA(z)} = max{JA(0), JA(z)} = JA(z).

It follows that

MA(x) ≥ min{MA(x ∗ y), MA(y)} = min{MA(y), MA(z)},

B−
A(x) ≤ max{B−

A(x ∗ y), B−
A(y)} = max{B−

A(y), B−
A(z)},

B+
A(x) ≥ min{B+

A(x ∗ y), B+
A(y)} = min{B+

A(y), B+
A(z)},

and

JA(x) ≤ max{JA(x ∗ y), JA(y)} = max{JA(y), JA(z)}.
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This completes the proof.

We provide conditions for an MBJ-neutrosophic set to be a BMBJ-neutrosophic ideal inBCK/BCI-
algebras.

Theorem 3.4.Every MBJ-neutrosophic set in aBCK/BCI-algebraX satisfying(3.1) and (3.4) is a BMBJ-
neutrosophic ideal ofX.

Proof. LetA = (MA, B̃A, JA) be an MBJ-neutrosophic set inX satisfying (3.1) and (3.4). Note thatx ∗ (x ∗
y) ≤ y for all x, y ∈ X. It follows from (3.4) that

MA(x) ≥ min{MA(x ∗ y), MA(y)},

B−
A(x) ≤ max{B−

A(x ∗ y), B−
A(y)},

B+
A(x) ≥ min{B+

A(x ∗ y), B+
A(y)},

and

JA(x) ≤ max{JA(x ∗ y), JA(y)}.

ThereforeA = (MA, B̃A, JA) is a BMBJ-neutrosophic ideal ofX.

Given an MBJ-neutrosophic setA = (MA, B̃A, JA) in aBCK/BCI-algebraX, we consider the following
sets.

U(MA; t) := {x ∈ X | MA(x) ≥ t},
L(B−

A ; α−) := {x ∈ X | B−
A(x) ≤ α−},

U(B+
A ; α+) := {x ∈ X | B+

A(x) ≥ α+},
L(JA; s) := {x ∈ X | JA(x) ≤ s}

wheret, s, α−, α+ ∈ [0, 1].

Theorem 3.5.An MBJ-neutrosophic setA = (MA, B̃A, JA) in aBCK/BCI-algebraX is an MBJ-neutrosophic
ideal ofX if and only if the non-empty setsU(MA; t), L(B−

A ; α−), U(B+
A ; α+) andL(JA; s) are ideals ofX

for all t, s, α−.α+ ∈ [0, 1].

Proof. Suppose thatA = (MA, B̃A, JA) is an MBJ-neutrosophic ideal ofX. Let t, s, α−, α+ ∈ [0, 1] be such
thatU(MA; t), L(B−

A ; α−), U(B+
A ; α+) andL(JA; s) are non-empty. Obviously,0 ∈ U(MA; t)∩L(B−

A ; α−)∩
U(B+

A ; α+)∩L(JA; s). For anyx, y, a, b, p, q, u, v ∈ X, if x∗y ∈ U(MA; t), y ∈ U(MA; t), a∗b ∈ L(B−
A ; α−),

b ∈ L(B−
A ; α−), p ∗ q ∈ U(B+

A ; α+), q ∈ U(B+
A ; α+), u ∗ v ∈ L(JA; s) andv ∈ L(JA; s), then

MA(x) ≥ min{MA(x ∗ y), MA(y)} ≥ min{t, t} = t,

B−
A(a) ≤ max{B−

A(a ∗ b), B−
A(b)} ≤ max{α−, α−} = α−,

B+
A(p) ≥ min{B+

A(p ∗ q), B+
A(q)} ≥ min{α+, α+} = α+,

JA(u) ≤ max{JA(u ∗ v), JA(v)} ≤ min{s, s} = s,
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and sox ∈ U(MA; t), a ∈ L(B−
A ; α−), p ∈ U(B+

A ; α+) andu ∈ L(JA; s). ThereforeU(MA; t), L(B−
A ; α−),

U(B+
A ; α+) andL(JA; s) are ideals ofX.

Conversely, assume that the non-empty setsU(MA; t), L(B−
A ; α−), U(B+

A ; α+) andL(JA; s) are ideals
of X for all t, s, α−, α+ ∈ [0, 1]. Assume thatMA(0) < MA(a), B−

A(0) > B−
A(a), B+

A(0) < B+
A(a) and

JA(0) > JA(a) for somea ∈ X. Then0 /∈ U(MA; MA(a))∩L(B−
A ; B−

A(a))∩U(B+
A ; B+

A(a))∩L(JA; JA(a),
which is a contradiction. HenceMA(0) ≥ MA(x), B−

A(0) ≤ B−
A(x), B+

A(0) ≥ B+
A(x) andJA(0) ≤ JA(x)

for all x ∈ X. If MA(a0) < min{MA(a0 ∗ b0), MA(b0)} for somea0, b0 ∈ X, thena0 ∗ b0 ∈ U(MA; t0)
andb0 ∈ U(MA; t0) but a0 /∈ U(MA; t0) for t0 := min{MA(a0 ∗ b0), MA(b0)}. This is a contradiction, and
thusMA(a) ≥ min{MA(a ∗ b), MA(b)} for all a, b ∈ X. Similarly, we can show thatJA(a) ≤ max{JA(a ∗
b), JA(b)} for all a, b ∈ X. Suppose thatB−

A(a0) > max{B−
A(a0 ∗ b0), B

−
A(b0)} for somea0, b0 ∈ X. Taking

α− = max{B−
A(a0 ∗ b0), B

−
A(b0)} implies thata0 ∗ b0 ∈ L(B−

A ; α−) andb0 ∈ L(B−
A ; α−) buta0 /∈ L(B−

A ; α−).
This is a contradiction. ThusB−

A(x) ≤ max{B−
A(x ∗ y), B−

A(y)} for all x, y ∈ X. Similarly, we obtain
B+

A(x) ≥ min{B+
A(x∗y), B+

A(y)} for all x, y ∈ X. ConsequentlyA = (MA, B̃A, JA) is a BMBJ-neutrosophic
ideal ofX.

Theorem 3.6.An MBJ-neutrosophic setA = (MA, B̃A, JA) in aBCK/BCI-algebraX is a BMBJ-neutrosophic
ideal ofX if and only if(MA, B−

A) and(B+
A , JA) are intuitionistic fuzzy ideals ofX.

Proof. Straightforward.

Theorem 3.7.Given an idealI of aBCK/BCI-algebraX, letA = (MA, B̃A, JA) be an MBJ-neutrosophic
set inX defined by

MA(x) =

{
t if x ∈ I,
0 otherwise,

B−
A(x) =

{
α− if x ∈ I,
1 otherwise,

B+
A(x) =

{
α+ if x ∈ I,
0 otherwise,

JA(x) =

{
s if x ∈ I,
1 otherwise,

wheret, α+ ∈ (0, 1], s, α− ∈ [0, 1). ThenA = (MA, B̃A, JA) is a BMBJ-neutrosophic ideal ofX such that
U(MA; t) = L(B−

A ; α−) = U(B+
A ; α+) = L(JA; s) = I.

Proof. It is clear thatU(MA; t) = L(B−
A ; α−) = U(B+

A ; α+) = L(JA; s) = I. Let x, y ∈ X. If x ∗ y ∈ I and
y ∈ I, thenx ∈ I and so

MA(x) = t = min{MA(x ∗ y), MA(y)}
B−

A(x) = α− = max{B−
A(x ∗ y), B−

A(y)},
B+

A(x) = α+ = min{B+
A(x ∗ y), B+

A(y)},
JA(x) = s = max{JA(x ∗ y), JA(y)}.

If any one ofx ∗ y andy is contained inI, sayx ∗ y ∈ I, thenMA(x ∗ y) = t, B−
A(x ∗ y) = α−, JA(x ∗ y) = s,

MA(y) = 0, B−
A(y) = 1, B+

A(y) = 0 andJA(y) = 1. Hence

MA(x) ≥ 0 = min{t, 0} = min{MA(x ∗ y), MA(y)}
B−

A(x) ≤ 1 = max{B−
A(x ∗ y), B−

A(y)},
B+

A(x) ≥ 0 = min{B+
A(x ∗ y), B+

A(y)},
JA(x) ≤ 1 = max{s, 1} = max{JA(x ∗ y), JA(y)}.
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If x ∗ y, y /∈ I, thenMA(x ∗ y) = 0 = MA(y), B−
A(x ∗ y) = 1 = B−

A(y), B+
A(x ∗ y) = 0 = B+

A(y) and
JA(x ∗ y) = 1 = JA(y). It follows that

MA(x) ≥ 0 = min{MA(x ∗ y), MA(y)}
B−

A(x) ≤ 1 = max{B−
A(x ∗ y), B−

A(y)},
B+

A(x) ≥ 0 = min{B+
A(x ∗ y), B+

A(y)},
JA(x) ≤ 1 = max{JA(x ∗ y), JA(y)}.

It is obvious thatMA(0) ≥ MA(x), B−
A(0) ≤ B−

A(x), B+
A(0) ≥ B+

A(x) andJA(0) ≤ JA(x) for all x ∈ X.
ThereforeA = (MA, B̃A, JA) is a BMBJ-neutrosophic ideal ofX.

Theorem 3.8. For any non-empty subsetI of X, letA = (MA, B̃A, JA) be an MBJ-neutrosophic set inX
which is given in Theorem3.7. If A = (MA, B̃A, JA) is a BMBJ-neutrosophic ideal ofX, thenI is an ideal of
X.

Proof. Obviously,0 ∈ I. Let x, y ∈ X be such thatx ∗ y ∈ I andy ∈ I. ThenMA(x ∗ y) = t = MA(y),
B−

A(x ∗ y) = α− = B−
A(y), B+

A(x ∗ y) = α+ = B+
A(y) andJA(x ∗ y) = s = JA(y). Thus

MA(x) ≥ min{MA(x ∗ y), MA(y)} = t,

B−
A(x) ≤ max{B−

A(x ∗ y), B−
A(y)} = α−,

B+
A(x) ≥ min{B+

A(x ∗ y), B+
A(y)} = α+,

JA(x) ≤ max{JA(x ∗ y), JA(y)} = s,

and hencex ∈ I. ThereforeI is an ideal ofX.

Theorem 3.9. In a BCK-algebra, every BMBJ-neutrosophic ideal is a BMBJ-neutrosophic subalgebra.

Proof. LetA = (MA, B̃A, JA) be a BMBJ-neutrosophic ideal of aBCK-algebraX. Since(x ∗ y) ∗x ≤ y for
all x, y ∈ X, it follows from Proposition3.3that

MA(x ∗ y) ≥ min{MA(x), MA(y)},
B−

A(x ∗ y) ≤ max{B−
A(x), B−

A(y)},
B+

A(x ∗ y) ≥ min{B+
A(x), B+

A(y)},
JA(x ∗ y) ≤ max{JA(x), JA(y)}

for all x, y ∈ X. HenceA = (MA, B̃A, JA) is a BMBJ-neutrosophic subalgebra of aBCK-algebraX.

The converse of Theorem3.9may not be true as seen in the following example.

Example 3.10.Consider aBCK-algebraX = {0, 1, 2, 3} with the binary operation∗ which is given in Table
3. LetA = (MA, B̃A, JA) be an MBJ-neutrosophic set inX defined by Table4. ThenA = (MA, B̃A, JA) is
a BMBJ-neutrosophic subalgebra ofX, but it is not a BMBJ-neutrosophic ideal ofX since

B+
A(1) � min{B+

A(1 ∗ 2), B+
A(2)}.

We provide a condition for a BMBJ-neutrosophic subalgebra to be a BMBJ-neutrosophic ideal in aBCK-
algebra.
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Table 3: Cayley table for the binary operation “∗”

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 1 0 2
3 3 3 3 0

Table 4: MBJ-neutrosophic setA = (MA, B̃A, JA)

X MA(x) B̃A(x) JA(x)
0 0.7 [0.03, 0.08] 0.2
1 0.4 [0.02, 0.06] 0.3
2 0.4 [0.03, 0.08] 0.4
3 0.6 [0.02, 0.06] 0.5

Theorem 3.11.LetA = (MA, B̃A, JA) be a BMBJ-neutrosophic subalgebra of aBCK-algebraX satisfying
the condition(3.4). ThenA = (MA, B̃A, JA) is a BMBJ-neutrosophic ideal ofX.

Proof. For anyx ∈ X, we get

MA(0) = MA(x ∗ x) ≥ min{MA(x), MA(x)} = MA(x),

B−
A(0) = B−

A(x ∗ x) ≤ max{B−
A(x), B−

A(x)} = B−
A(x),

B+
A(0) = B+

A(x ∗ x) ≥ min{B+
A(x), B+

A(x)} = B+
A(x),

and

JA(0) = JA(x ∗ x) ≤ max{JA(x), JA(x)} = JA(x).

Sincex ∗ (x ∗ y) ≤ y for all x, y ∈ X, it follows from (3.4) that

MA(x) ≥ min{MA(x ∗ y), MA(y)},
B−

A(x) ≤ max{B−
A(x ∗ y), B−

A(y)},
B+

A(x) ≥ min{B+
A(x ∗ y), B+

A(y)},
JA(x) ≤ max{JA(x ∗ y), JA(y)}

for all x, y ∈ X. ThereforeA = (MA, B̃A, JA) is a BMBJ-neutrosophic ideal ofX.
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Theorem3.9 is not true in aBCI-algebra as seen in the following example.

Example 3.12.Let (Y, ∗, 0) be aBCI-algebra and let(Z,−, 0) be an adjointBCI-algebra of the additive
group(Z, +, 0) of integers. ThenX = Y × Z is aBCI-algebra andI = Y × N is an ideal ofX whereN is
the set of all non-negative integers (see [3]). LetA = (MA, B̃A, JA) be an MBJ-neutrosophic set inX which
is given in Theorem3.7. ThenA = (MA, B̃A, JA) is a BMBJ-neutrosophic ideal ofX by Theorem3.7. But it
is not a BMBJ-neutrosophic subalgebra ofX since

MA((0, 0) ∗ (0, 1)) = MA((0,−1)) = 0 < t = min{MA((0, 0)), MA(0, 1))},

B−
A((0, 0) ∗ (0, 2)) = B−

A((0,−2)) = 1 > α− = max{B−
A((0, 0)), B−

A(0, 2))},

B+
A((0, 0) ∗ (0, 2)) = B+

A((0,−2)) = 0 < α+ = min{B+
A((0, 0)), B+

A(0, 2))},

and/or

JA((0, 0) ∗ (0, 3)) = JA((0,−3)) = 1 > s = max{JA((0, 0)), JA(0, 3))}.

Definition 3.13. A BMBJ-neutrosophic idealA = (MA, B̃A, JA) of aBCI-algebraX is said to beclosedif

(∀x ∈ X)(MA(0 ∗ x) ≥ MA(x), B−
A(0 ∗ x) ≤ B−

A(x), B+
A(0 ∗ x) ≥ B+

A(x), JA(0 ∗ x) ≤ JA(x)). (3.5)

Theorem 3.14. In a BCI-algebra, every closed BMBJ-neutrosophic ideal is a BMBJ-neutrosophic subalge-
bra.

Proof. LetA = (MA, B̃A, JA) be a closed BMBJ-neutrosophic ideal of aBCI-algebraX. Using (3.2), (2.3),
(III) and (3.3), we have

MA(x ∗ y) ≥ min{MA((x ∗ y) ∗ x), MA(x)} = min{MA(0 ∗ y), MA(x)} ≥ min{MA(y), MA(x)},

B−
A(x ∗ y) ≤ max{B−

A((x ∗ y) ∗ x), B−
A(x)} = max{B−

A(0 ∗ y), B−
A(x)} ≤ max{B−

A(y), B−
A(x)},

B+
A(x ∗ y) ≥ min{B+

A((x ∗ y) ∗ x), B+
A(x)} = min{B+

A(0 ∗ y), B+
A(x)} ≥ min{B+

A(y), B+
A(x)},

and

JA(x ∗ y) ≤ max{JA((x ∗ y) ∗ x), JA(x)} = max{JA(0 ∗ y), JA(x)} ≤ max{JA(y), JA(x)}

for all x, y ∈ X. HenceA = (MA, B̃A, JA) is a BMBJ-neutrosophic subalgebra ofX.

Theorem 3.15.In a weaklyBCK-algebra, every BMBJ-neutrosophic ideal is closed.

Proof. LetA = (MA, B̃A, JA) be a BMBJ-neutrosophic ideal of a weaklyBCK-algebraX. For anyx ∈ X,
we obtain

MA(0 ∗ x) ≥ min{MA((0 ∗ x) ∗ x), MA(x)} = min{MA(0), MA(x)} = MA(x),
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B−
A(0 ∗ x) ≤ max{B−

A((0 ∗ x) ∗ x), B−
A(x)} = max{B−

A(0), B−
A(x)} = B−

A(x),

B+
A(0 ∗ x) ≥ min{B+

A((0 ∗ x) ∗ x), B+
A(x)} = min{B+

A(0), B+
A(x)} = B+

A(x),

and

JA(0 ∗ x) ≤ max{JA((0 ∗ x) ∗ x), JA(x)} = max{JA(0), JA(x)} = JA(x).

ThereforeA = (MA, B̃A, JA) is a closed BMBJ-neutrosophic ideal ofX.

Corollary 3.16. In a weaklyBCK-algebra, every BMBJ-neutrosophic ideal is a BMBJ-neutrosophic subal-
gebra.

The following example shows that any BMBJ-neutrosophic subalgebra is not a BMBJ-neutrosophic ideal
in aBCI-algebra.

Example 3.17.Consider aBCI-algebraX = {0, a, b, c, d, e} with the∗-operation in Table5.

Table 5: Cayley table for the binary operation “∗”

∗ 0 a b c d e
0 0 0 c b c c
a a 0 c b c c
b b b 0 c 0 0
c c c b 0 b b
d d b a c 0 a
e e b a c a 0

LetA = (MA, B̃A, JA) be an MBJ-neutrosophic set inX defined by Table6.

Table 6: MBJ-neutrosophic setA = (MA, B̃A, JA)

X MA(x) B̃A(x) JA(x)
0 0.7 [0.14, 0.19] 0.3
a 0.4 [0.04, 0.45] 0.6
b 0.7 [0.14, 0.19] 0.3
c 0.7 [0.14, 0.19] 0.3
d 0.4 [0.04, 0.45] 0.6
e 0.4 [0.04, 0.45] 0.6
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It is routine to verify thatA = (MA, B̃A, JA) is a BMBJ-neutrosophic subalgebra ofX. But it is not a
BMBJ-neutrosophic ideal ofX since

MA(d) < min{MA(d ∗ c), MA(c)},

B−
A(d) > max{B−

A(d ∗ c), B−
A(c)},

B+
A(d) < min{B+

A(d ∗ c), B+
A(c)},

and/or

JA(d) > max{JA(d ∗ c), JA(c)}.

Theorem 3.18.In a p-semisimpleBCI-algebraX, the following are equivalent.

(1) A = (MA, B̃A, JA) is a closed BMBJ-neutrosophic ideal ofX.

(2) A = (MA, B̃A, JA) is a BMBJ-neutrosophic subalgebra ofX.

Proof. (1)⇒ (2). See Theorem3.14.
(2)⇒ (1). Suppose thatA = (MA, B̃A, JA) is a BMBJ-neutrosophic subalgebra ofX. For anyx ∈ X, we

get

MA(0) = MA(x ∗ x) ≥ min{MA(x), MA(x)} = MA(x),

B−
A(0) = B−

A(x ∗ x) ≤ max{B−
A(x), B−

A(x)} = B−
A(x),

B+
A(0) = B+

A(x ∗ x) ≥ min{B+
A(x), B+

A(x)} = B+
A(x),

and

JA(0) = JA(x ∗ x) ≤ max{JA(x), JA(x)} = JA(x).

HenceMA(0∗x) ≥ min{MA(0), MA(x)} = MA(x), B−
A(0∗x) ≤ max{B−

A(0), B−
A(x)} = B−

A(x) B+
A(0∗x) ≥

min{B+
A(0), B+

A(x)} = B+
A(x) andJA(0 ∗ x) ≤ max{JA(0), JA(x)} = JA(x) for all x ∈ X. Let x, y ∈ X.

Then

MA(x) = MA(y ∗ (y ∗ x)) ≥ min{MA(y), MA(y ∗ x)}
= min{MA(y), MA(0 ∗ (x ∗ y))}
≥ min{MA(x ∗ y), MA(y)},

B−
A(x) = B−

A(y ∗ (y ∗ x)) ≤ max{B−
A(y), B−

A(y ∗ x)}
= max{B−

A(y), B−
A(0 ∗ (x ∗ y))}

≤ max{B−
A(x ∗ y), B−

A(y)}
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B+
A(x) = B+

A(y ∗ (y ∗ x)) ≥ min{B+
A(y), B+

A(y ∗ x)}
= min{B+

A(y), B+
A(0 ∗ (x ∗ y))}

≥ min{B+
A(x ∗ y), B+

A(y)}

and

JA(x) = JA(y ∗ (y ∗ x)) ≤ max{JA(y), JA(y ∗ x)}
= max{JA(y), JA(0 ∗ (x ∗ y))}
≤ max{JA(x ∗ y), JA(y)}.

ThereforeA = (MA, B̃A, JA) is a closed BMBJ-neutrosophic ideal ofX.

Since every associativeBCI-algebra isp-semisimple, we have the following corollary.

Corollary 3.19. In an associativeBCI-algebraX, the following are equivalent.

(1) A = (MA, B̃A, JA) is a closed BMBJ-neutrosophic ideal ofX.

(2) A = (MA, B̃A, JA) is a BMBJ-neutrosophic subalgebra ofX.

Definition 3.20. Let X be an(S)-BCK-algebra. An MBJ-neutrosophic setA = (MA, B̃A, JA) in X is called
aBMBJ-neutrosophic◦-subalgebraof X if the following assertions are valid.

MA(x ◦ y) ≥ min{MA(x), MA(y)},
B−

A(x ◦ y) ≤ max{B−
A(x), B−

A(y)},
B+

A(x ◦ y) ≥ min{B+
A(x), B+

A(y)},
JA(x ◦ y) ≤ max{JA(x), JA(y)}

(3.6)

for all x, y ∈ X.

Lemma 3.21.Every BMBJ-neutrosophic ideal of aBCK/BCI-algebraX satisfies the following assertion.

(∀x, y ∈ X)
(
x ≤ y ⇒ MA(x) ≥ MA(y), B−

A(x) ≤ B−
A(y), B+

A(x) ≥ B+
A(y), JA(x) ≤ JA(y)

)
. (3.7)

Proof. Assume thatx ≤ y for all x, y ∈ X. Thenx ∗ y = 0, and so

MA(x) ≥ min{MA(x ∗ y), MA(y)} = min{MA(0), MA(y)} = MA(y),

B−
A(x) ≤ max{B−

A(x ∗ y), B−
A(y)} = max{B−

A(0), B−
A(y)} = B−

A(y),

B+
A(x) ≥ min{B+

A(x ∗ y), B+
A(y)} = min{B+

A(0), B+
A(y)} = B+

A(y),

and

JA(x) ≤ max{JA(x ∗ y), JA(y)} = max{JA(0), JA(y)} = JA(y).

This completes the proof.
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Theorem 3.22.In an(S)-BCK-algebra, every BMBJ-neutrosophic ideal is a BMBJ-neutrosophic◦-subalgebra.

Proof. LetA = (MA, B̃A, JA) be a BMBJ-neutrosophic ideal of an(S)-BCK-algebraX. Note that(x ◦ y) ∗
x ≤ y for all x, y ∈ X. Using Lemma3.21and (3.2) inplies that

MA(x ◦ y) ≥ min{MA((x ◦ y) ∗ x), MA(x)} ≥ min{MA(y), MA(x)},

B−
A(x ◦ y) ≤ max{B−

A((x ◦ y) ∗ x), B−
A(x)} ≤ max{B−

A(y), B−
A(x)},

B+
A(x ◦ y) ≥ min{B+

A((x ◦ y) ∗ x), B+
A(x)} ≥ min{B+

A(y), B+
A(x)},

and

JA(x ◦ y) ≤ max{JA((x ◦ y) ∗ x), JA(x)} ≤ max{JA(y), JA(x)}.

ThereforeA = (MA, B̃A, JA) is a BMBJ-neutrosophic◦-subalgebra ofX.

We provide a characterization of a BMBJ-neutrosophic ideal in an(S)-BCK-algebra.

Theorem 3.23. Let A = (MA, B̃A, JA) be an MBJ-neutrosophic set in an(S)-BCK-algebra X. Then
A = (MA, B̃A, JA) is a BMBJ-neutrosophic ideal ofX if and only if the following assertions are valid.

MA(x) ≥ min{MA(y), MA(z)}, B−
A(x) ≤ max{B−

A(y), B−
A(z)},

B+
A(x) ≥ min{B+

A(y), B+
A(z)}, JA(x) ≤ max{JA(y), JA(z)} (3.8)

for all x, y, z ∈ X with x ≤ y ◦ z.

Proof. Assume thatA = (MA, B̃A, JA) is a BMBJ-neutrosophic ideal ofX and letx, y, z ∈ X be such that
x ≤ y ◦ z. Using (3.1), (3.2) and Theorem3.22, we have

MA(x) ≥ min{MA(x ∗ (y ◦ z)), MA(y ◦ z)}
= min{MA(0), MA(y ◦ z)}
= MA(y ◦ z) ≥ min{MA(y), MA(z)},

B−
A(x) ≤ max{B−

A(x ∗ (y ◦ z)), B−
A(y ◦ z)}

= max{B−
A(0), B−

A(y ◦ z)}
= B−

A(y ◦ z) ≤ max{B−
A(y), B−

A(z)},

B+
A(x) ≥ min{B+

A(x ∗ (y ◦ z)), B+
A(y ◦ z)}

= min{B+
A(0), B+

A(y ◦ z)}
= B+

A(y ◦ z) ≥ min{B+
A(y), B+

A(z)},
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and

JA(x) ≤ max{JA(x ∗ (y ◦ z)), JA(y ◦ z)}
= max{JA(0), JA(y ◦ z)}
= JA(y ◦ z) ≤ max{JA(y), JA(z)}.

Conversely, letA = (MA, B̃A, JA) be an MBJ-neutrosophic set in an(S)-BCK-algebraX satisfying the
condition (3.8) for all x, y, z ∈ X with x ≤ y ◦ z. Sine0 ≤ x ◦ x for all x ∈ X, it follows from (3.8) that

MA(0) ≥ min{MA(x), MA(x)} = MA(x),

B−
A(0) ≤ max{B−

A(x), B−
A(x)} = B−

A(x),

B+
A(0) ≥ min{B+

A(x), B+
A(x)} = B+

A(x),

and

JA(0) ≤ max{JA(x), JA(x)} = JA(x).

Note thatx ≤ (x ∗ y) ◦ y for all x, y ∈ X. Hence we have

MA(x) ≥ min{MA(x ∗ y), MA(y)}, B−
A(x) ≤ max{B−

A(x ∗ y), B−
A(y)},

B+
A(x) ≥ min{B+

A(x ∗ y), B+
A(y)} andJA(x) ≤ max{JA(x ∗ y), JA(y)}.

ThereforeA = (MA, B̃A, JA) is a BMBJ-neutrosophic ideal ofX.

4 Conclusions

As a generalization of neutrosophic set, Mohseni et al. [9] have introduced the notion of MBJ-neutrosophic
sets, and have applied it toBCK/BCI-algebras. BMBJ-neutrosophic set has been introduced in [1] with an
application inBCK/BCI-algebras. In this article, we have applied the notion of MBJ-neutrosophic sets to
ideals ofBCK/BI-algebras. We have introduced the concepts of a BMBJ-neutrosophic◦-subalgebra and
a (closed) BMBJ-neutrosophic ideal, and have investigated several properties. We have provided conditions
for an MBJ-neutrosophic set to be a BMBJ-neutrosophic ideal inBCK/BCI-algebras, and have discussed
characterizations of BMBJ-neutrosophic ideal. We have considered relations between a BMBJ-neutrosophic
subalgebra, a BMBJ-neutrosophic◦-subalgebra and a (closed) BMBJ-neutrosophic ideal. Using the results and
ideas in this paper, our future work will focus on the study of several algebraic structures and substructures.
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