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Abstract: In this industrial era the innovation of industrial machines had a significant impact on
industrial evaluation which minimize manpower, time consumption for product making, material
wastage. Heavy usage of machines leads to the occurrence of some faults in it. Such damaged parts
of each machine have been identified to overhaul which is defined as a set called neutro-prime set
under its topological structure. Some related properties of such space have been proved and some
are disproved with counterexamples. Also, the idea of interior and closure dealt with this space
with few basic properties. This article provides a decision-making process to identify the best fit of
those damages under a neutrosophic environment and the priority is given to the heavily damaged
machine. We also use step by step algorithm and formulae to compute machine values. Our
objective is to demonstrate that our proposed algorithm can calculate key measurements for fault
diagnostic in machines as well as to provide fair and reliable forecasted outcomes.
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1. Introduction

Throughout history, the relation between humans and machines became most important in
moral, ethical, social, economic, and the environment. Machines have confirmed to grasp the key to
further developments we humans so extremely need. In the process of doing so, a machine whether
or not in continuous use will get damaged and worn-out. In our daily life, we need to reduce the risk
of its expensive cost, bad maintenance, and repair parts.

The principles of three autonomous membership degrees such as truth, falsity, and
indeterminacy, committed to each element of a set which categorized to neutrosophic set (NS) as
instigated by (1998) Smarandache [20, 21], which is an explanation of a fuzzy set (FS) defined by
(1965) Zadeh [33], and intuitionistic fuzzy set (IFS) generated by (1986) Atanassov [32]. It is an active
organization that hypothesizes the notion of all other sets introduced before. It goes out to be a
treasured mathematical implement to observe unformed, damaged, indistinct facts. In recent years
many researchers have further expanded and developed the theory and application of NSs [1, 2, 3, 5,
6, 14, 16-19]. Also, (2017) Smarandache [22] originated a new trend set called plithogenic set and
others developed [4, 9, 12, 15].
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Topology plays a vital role among many sets such as FS, NS, soft sets (SS), neutrosophic soft set
(NSS), etc., These types of sets are extended by different researchers [7, 10, 11, 13, 23-27, 29, 30, 31]
and its application in decision making (DM) problems [8]. Chinnadurai and Sindhu [28] introduced
the notion of prime sets (PSs) and prime-topological spaces (PTSs) (2020), as one of the mathematical
utensils for dealing with the subsets of the universe set.

The major achievements of this research are:

¢ Initiating a neutrosophic environment on prime sets under a topological space.

e  Demonstrating the decision-making problem for analyzing the amount of damage in machines.

e An outcome of the proposed algorithm fits in a better way with the number of faults in
machines by diagnosis the set values.

To overcome the disadvantages of machines, solving algorithms are presented in this study. A
decision-making process delivers to identify the best fit of those damages under a neutrosophic
environment and the priority is given to the heavily damaged machine with the use of step by step
algorithm and formulae to compute machine values. The main tool used to find the faults in
machines are complement and absolute complements of the specified set.

The structure of this study is as follows: Some significant definitions interrelated to the study
are presented in part 2. Part 3 introduces the definition of neutro-prime sets, neutro-prime
topological spaces, neutro-prime interior and neutro-prime closure with fundamental properties,
and related examples. Part 4 explains the DM problem to repair the sample machines with some
damages. The algorithm and formulae are presented to find the final result. Finally, the
contributions of this study are concluded with future works in part 5.

2. Preliminaries

In this part, some essential definitions connected to this work are pointed.

Definition 2.1 Let W be a non-empty set and weW . A NS D in W is characterized by a
truth-membership function Tp , an indeterminacy-membership function 1, , and a

false-membership function Fp which are subsets of [0, 1] and is defined as
D= {<W,TD(W), 15 (W), Fp (w)> : WGW},
where
0<supTp (W) +suplp (W) +supFp(w) <3.
Definition 2.2 Let NS(W) denote the family of all NSs over Wand 7, © NS(W) . Then 7, is called a
neutrosophic topology (NT) on W if it satisfies the following conditions
(1) 0,,1, €7,, where null NS 0, ={(w,0,0,1)): weW} and an absolute NS 1, = {(w,1,1,0)): weW}.
(ii) the intersection of any finite number of members of 7, belongsto 7,.
(iii) the union of any collection of members of 7, belongsto 7,.
Then the pair (W, 7,) is called a NTS.
Every member of 7, is called 7,-open neutrosophic set (7,- ONS). An NS is called z,-closed (z,-

CNS) if and only if its complement is 7,- ONS.

Definition 2.3 Let D be a NS over W. Then the complement of is denoted by D' and defined by
D, = {<W’ I:D (W)!l_ | D(W)'TD (W)> . WGW} .

Clearly, (D’)’ =D.
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Definition 2.4 Let (W, 7 ) be a topological space (TS), where W is the universe and 7 is a topology.
Let K be a proper nonempty subset of W. Let D be a 7 -open set, where D = @,W . Then the prime set

(PS) over Wis denoted by ¢ and defined by &= {¢,W, K:KND= ¢}.

Definition 2.5 Let (W, 7 ) be a TS. Then 7, is called a prime topology (PT) if it satisfies the following
conditions

i) pWer, .

(ii) the intersection of any finite number of members of 7, belongsto 7.
(iii) the union of any collection of members of 7, belongsto 7.
Then the pair (W, 7,,) is called a prime topological space (PTS).

Every member of r, is called z,-prime open set (7, - POS). The complement of every z,- POS of

Wis called the 7, -prime closed set (7, - PCS) of W and this collection is denoted by Tp* .

Example 2.6 Let W = {w;,w,, w5} with topology 7 = {g,W {w;}}.
Clearly, (W, 7 )is a TS over W.
Then

7o = W {w} g, wol {ws, Wil = PS(W)
and its members are 7, - POSs.
Thus (W, z,,) is a PTS over W.
Then

7y = 1. e, wat {ws 3 {wp )

and its members are 7, - PCSs, whose complements are 7, - POSs.

Definition 2.7 Let W be a set of universe and W, eW where iel . Let D be a NS over W. Then the
subset of NS (sub-NS) D is denoted as &, (W ™) and defined as

Eo W) = (Wi, To (W), 1 (), P (), (o, ;). (T (W), oy (wy ) ) a1 (e, 1, ;) ) min (o i), iy ()
where i,jel and i=j.

Clearly, (W, w;)=(w;,w).

Example 2.8 Let W ={w,W,,w;} be a set of features of the washing machine, where w; = energy
efficiency, w,= capacity, wsy=price. Let D be a NS over W, defined as
D={w,7,.5,4),(W,,.2,.7,.9),(;,.4,.1.3)}..
Then the sub-NS D is
EoW*) = {(w;,.7,.5,.4), (W, 2,.7,.9), (wy, 4,.1,.3), (W, W,),.7,.7,.4), (W, W5),.7, 5,.3), (s, W5), 4,.7,.3)}

Definition 2.9 Let W be a set of universe and w; eW where iel. Let V be any proper nonempty

subset of W, say {w;} and {w;,w;}. Let D be a NS over W. Then the subset of NS D with respect to
W; (sub-NSD,, ) and w;,w; (sub-NS DWiij ) are denoted as &p(W;) and &p(W;,wj), and defined

as
Eo () = Wi, To (W), 1o (W), Foy (), {0, ;). max(To (w4 ). To (w1 ) (1, (), 1 (w;) ) min (i (wh), Fop (w),

<Wk’TD(On)1IR(On)!FR(On)>:<(Wk’WI)ITD(On)7IR(On)IFD(On)>}
where iel, jel-{i}, k,lel-{i,j} and k=l
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and
Eo W W) = (W, To (W), I (W), Fo (W) (W), To W), I (W), Fo (W), (Wi, To (0,), 15 (00, Fip 0,))
< - W ) max(TD(W) TD(W )) max( I5(w), |D(W )) mln(FD(W) FD(W ))>
((w;, wy ), max(Tp (w;), Tp (Wi )), max(1 5 (wg), 1o (W) ) min (Fp (W), Fp, (W),

<(leWk)1maX(TD (Wj)vTD (Wk))’ max(l D(Wj)l ID(Wk))v m'n(FD (Wj)v Fo (Wk)>>}
where i, j,kel and i= j=k, respectively.

Example 2.10 Let W = {w;,w,,w5}. Let D and F be two NSs over W and are defined as follows
D ={w,.1.2,.8),(W,,.4,.7,.3), (s, 6,.5,.2)}

and
F = {w,.6,5,3),(w,,.9,.8,.1),(ws,.7,.6,.1)}.
Then sub-NS D and sub-NS F,, are defined as

Wyp, W3

Ep Wy, W3) = {<w1,0,0,1>,<W2,.4,.7,.3>,<W3,.6,.5,.2>,<w1’2,.4,.7,.3>,<W1’3,.6,.5,.2>,<W2'3,.6,.7,.2>} and

Ee (W) = {<w1,0,0,1>,<w2,.9,.8,.1),<w3,0,0,1>,<W1'2,.9,.8,.l>,<wly3,O,O,l>,<w2'3,.9,.8,.1>}, respectively.

3. Neutro-Prime Topology

In this part, the new type of set is initiated as neutro-prime sets and defined its topological
space as neutro-prime topological spaces. Some of its basic properties are examined with illustrative
examples.

Definition 3.1 Let (W, 7,,) be a neutrosophic topological space (NTS), where W is the universe and
7, is aneutrosophic topology (NT). Let D be a 7, -open neutrosophic set, where D =@W . Let V be
any proper nonempty subset of W. Then

1pDV) = oV ):V V" g,
for all proper nonempty subset V" of W.
Thus the elements belongs to 77,D(V) are said to be neutro-prime sets (NPSs) over W and denoted

by &H(V7).

Example 3.2 Let W ={w;,w,,w;} be a set of features of the washing machine, where w; = energy
efficiency, W, = capacity, Ws=price. Let D be a NS over W, defined as
D ={(w,.7,.5,4),(w,,.2,.7,.9), (ws,.4,.1,.3)} .
Then NPS
175 D(Ws) = {&p (Ws), &b (Wi, W), (W, Ws),
where
Eo(Ws) = {,0,0,1), (w,,0,0,1), (W, .4,.1,.3), (W, W,),0,0,1), (W, W5),.7,.5,.3), (W, W5), 4,.7,.3)},
oW, wy)={(ws,.7,.5,.4), (W, 0,0,1), (wy, 4,1, 3), (Wi, W,),.7,.7,.4), (W, W5),.7,.5,.3), (W, W), 4,.7,.3) |
and
Eo Wy, W) = {(W,0,0,2), (s, 2,.7,.9), (s, 4,.1,.3), (W, W),.7,.7,.4), (W, W5),.7,. 5,.3), (W, W), 4,.7, 3)}

Definition 3.3 Let W be a set of the universe and V be any proper nonempty subset of the W. Then
the null NPS is denoted as 0,, and defined as

Onp = V. TaV) =0, 15 (V) =0, Fe (V) =1): WV .

Chinnadurai V, Sindhu M P and Bharathivelan K, An Introduction to Neutro-Prime Topology and Decision Making
Problem



Neutrosophic Sets and Systems, Vol. 41, 2021 150

Definition 3.4 Let W be a set of the universe and V be any proper nonempty subset of the W. Then
the absolute NPS is denoted as 1,; and defined as

Ly ={V. Ta V) =L 15 (V) =L Fa (V) = 0): WV }.

Definition 3.5 Let &5(V;")and &5(V,") be two NPSs over W. Then their union is denoted as
) (Vl*) Uép (Vz*) =$p (V1v2*) and is defined as
EoVaz") = {Vaoe" max{Te 047) Ta O, )l (), 1 () i (). B ()

Definition 3.6 Let £;(V;")and &5(V,") be two NPSs over W. Then their intersection is denoted as
SMINE V) =Ep Vi) and is defined as
£ Vanz") = (Vi min(Ta 047). Ta (")) min{1 () 1 (V) hma( B (), B () ) -

Definition 3.7 Let &5(V™) be a NPS over W. Then its complement is denoted as &p(V™) and is

defined as

&Y = V" To v ) - 1o0), Fo V).

Clearly, the complement of &(V*)' equals &p(V7).1ie., (;‘D Y% *)') =& (VH).

Definition 3.8 Let &5(V;") and &(V,") be two NPSs over W. Then &y(V;") is said to be a
neutro-prime subset of &p(V,") if

ToM) <Tr(V2), Tr(7) <Tr(1,Y), FrM) 2 Fr(V,).
It is denoted by &p(V;) = &p (V).

Also &p(V;") is said to be neutro-prime equal to &p(V,") if &H(V,") is a neutro-prime subset of

Ep(V,") and &p(V,7) is aneutro-prime subset of &5 (V;") . Itis denoted by &p(V,") =&Ep(V,).

Proposition 3.9 Let &p(V,"), &p(V,') and &p(Vy") be NPSs over W. Then,
(i) &MIUOL, =&p(Wr).
(i) S MUL, =1,
RNV VA TIEN 25| HERVATTEN VS TEN A5

(iv) &MU M) NE V)= 0n) U E v N i U g (vah)|
Proof. Straightforward.

Proposition 3.10 Let &5(V;"), &p(V, ) and &5 (V5") be NPSs over W. Then,
(i) oM ) N0y, =0pp.
(i) &pM)NLyp =&p(Vr).
(i) &0 N o (%) N Ve |= [0 04 Nép V)N EpV:)

(iv) &M N[ M) UE V)= i) N U i Nép v
Proof. Straightforward.
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Proposition 3.11 Let &5(V;") and &p(V,") be two NPSs over W. Then,
) [§DN1*) U ¢b (Vz*)] =Sp (Vl*)' N o (Vz*)' .

(i1) [fo (Vl*) N §D (Vz*)] = fD (Vl*), U §D (Vz*)' .
Proof. Straightforward.

Proposition 3.12 Let &5(V;"), &p(V,') and & (V;") be NPSs over W for NSs D and F. Then,
(i) DecF=>&HM)cée V).
(ii) §D(V1*)U§D(V2*)=§D(V1* UVz*)-
(iti) SoM)NEp(VL) cépVy) and &MV )NE V) cép (VL)
(iv) SoMIUS V)28 M) and &5V ) U (VL) 28p (V7).

(V) &pM) Vo) =EpM) cép VL)
Proof. Straightforward.

Definition 3.13 Let (W, r,,) be a NTS. Let NPS(W) be the collection of NPSs &, (V") over W and D
be a 7, -open neutrosophic set (ONS), where D=gW . Then 7,, cNPS(W) is called a
neutro- prime topology (NPT) if it satisfies the following conditions

(©) OnpLnp € 7p -

(ii) the union of any collection of members of 7, belongsto z,,.

(i) the intersection of any finite number of members of 7., belongsto z,,.
Then the pair (W, z,,;) is said to be a neutro-prime topological space (NPTS).
Every member of 7., is said to be a 7, -neutro-prime open set (z,, - NPOS). The complement of

every 7,,- NPOS of W is said to be a 7, -neutro-prime closed set (z,,- NPCS) of W and this

collection is denoted by rnp* .

Example 3.14 Let W ={w,w,, w5} and 7, ={0,,1,,D,F} where D and F are NSs over W and are
defined as follows
D ={(w,.1.2,.8),(W,,.4,.7,.3), (s, 6,.5,.2)|
and
F = {(w,.6,5,.3),(w,,.9,.8,.1),(W,,.7,.6,.1)}..
Thus (W, 7,) is a NTS over W.
Here NPSs are
17,D (W, W) = {Eo (W), &5 (Ws), Ep (Wi, W), Ep (W, Wa), Ep (W, Wa) |,
where
Eo(w) = {(w,.1,.2,.8),(W5,0,0,2), (w5,0,0,2), (W, W), 4,.7,.3), {(Wh, Wy),.6,.5,.2), (s, w5),0,0, 1)},
Eo(Ws) = {(W,0,0,2), (w,,0,0,), (W, 6,.5,.2), (Wi, W,),0.0.1), (g, W), 6,.5,.2), (W, Wy),.6,.7,.2)},
Eo (W, Wo) = {(w;,.1,.2,.8), (W, 4,.7,.3), (Ws,0,0,2), (W, W), 4,.7,.3), (W, Wy),.6,.5,.2), (W, W), 6,.7,.2)},
o (W, W) = {(w;,.1,.2,.8), (w,,0,0,1), (Wi, 6,.5,.2), (W, W), 4,.7,.3), (W, W), 6, 5,.2), (Wp, W), 6,.7,.2)
oWy, W) = {(w;,0,0,), (W, 4,.7,.3), (Ws,.6,.5,.2), (W, W), 4,.7,.3), (W, Wy), 6,.5,.2), (W, Ws),.6,.7,.2)},
and
7pF (Wp) = {5 (W), &¢ (Wi, Wy), & (W, )},
where
& (W) = {(w;,0,0,1), (w,,.9,.8,.1), (s, 0,0,1), (W, Wp),.9,.8,.1), (w4, Wy),0,0,1), (W, Ws),.9,.8,.2)},
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& (W, W) = {W,.6,.5,.3), (,,.9,.8,.2), (Wy,0,0,1), (W, W),.9,.8,.2), (Wh, Wy),.7,.6,.1), (W, W5),.9,.8,.1)},
e (Wy,W5) = {(W1,0,0,1), (W, 9,.8,.), (s, .7,.6,.2), (W, W,),.9,.8,.1), (W1, W5),.7,.6,.1), (W, s),.9,.8,.1)}.
Then
Top = OnpLnp s o (W), &6 (W, W,) | is a NPT.
Thus (W, Tnp ) is a NPTS over W.
Also, the complement of the NPT 7, is
Ty’ = Orplops G (W 05’ G (g, W)},
where
Eo (W, W) = {(W;,.8,.8,.1), (W,,.3,.3,.4), (W5, 1L, 0, (W, Wy),.3,.3,.4), (W, Wy), 2, 5,.6), (W, Wy),.2,.3,.6) |

and

Ee (W, W) = {(wg,.3,.5,.6), (Wy,.1,.2,.9), (W, 1.1,0), (g, W),.1,.2,.9), ((Wa, Wy), 1, 4,.7), (W, Ws),.1,.2,.9)}.

Remark 3.15 The collection of NPS 7,D(V) can generate one or more NPT, which is illustrated in

the following example.

Example 3.16 Consider Example 3.14.
Here

Iry, = }[Onpllnp7§D(Wl’W2) SF (Wl’WZ)} and

2t = {Onp dnp &p (Wa W3), & (W2,W3)} are NPTs
Thus (W, 1z, ) and (W, 27,,,) are NPTSs over W.
Also, the complement of the NPTs 1r,, and 2r,, are

1Tnp* = {Onp’lnpv(:D(Wl’WZ)lv‘fF (Wl’WZ)'} and

2y = {Onp’lnplgD (Wo W3)', G (Wz,Wg)’} , respectively,
where
Eo (W W) = {(w,,.8,.8,.1), (W,,.3,.3,.4), (W5, 11,0, (W, Wy),.3,.3,.4), (W4, Wy), 2, 5,.6), (W, W5),.2,.3,.6) |
& (W, W5) = {(W,.3,.5,.6), (Wy,.1,.2,.9), (W, 1.1,0), {(Wa, W), .1,.2,.9), ((Wh, W), 1,.4,.7), (W, W), .1, 2,.9)}

and
Ep Wy, W)’ {(Wl,LLO ) (Wy,.3,.3,.4),(W;,.2,.5,.6), (W, W,),.3,.3,.4), (W, W3),.2,.5,.6), { (W, W), .2, .3,.6)}

e Wy, W) = W, 11,0, (W, 1,.2,.9), (W, 14,7, (W Wy ), 1,.2,.9), ((We, W), 1,4, 7). ((Wy, W5), 1,.2,.9)

Definition 3.17 A NPT 7, is said to be a neutro-prime discrete topology if z,, = NPS(W) for all
the subsets of W.

Definition 3.18 A NPT 7., is said to be a neutro-prime indiscrete topology if 7., contains only

Op and 1.,

Proposition 3.19 Let (W, 1r,, ) and (W, 27, ) be two NPISs over W and let
1y, N2z, = {D e NPSW):D elr,, ﬂZrnp} Then 1r,, 2z, isalsoa NPT over W.

Proof. Let (W, 1z, ) and (W, 27, ) be two NPTSs over W.

(i) O,
(ii) Let Dy, D, €lry, 27y, .

Then D;,D, €lr,, and Dy, D, €2z,,.

Loy €lrny N 27,
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= D, ND, elry, and D,ND, e 275, -

= D, ND, elry, ﬂ21np.

(iii) Let D elry, ﬂZrnp, iel.

Then D €lr,, and D e27,,, iel.

= UD; €lr,, and = UUD; €27, i€l.
el iel

= UD; elry, U2ry,.
iel

Thus 1r,, N2z,, isalsoa NPT over W.

Remark 3.20 The union of two NPTs need not be a NPT. The following example illustrates this
remark.

Example 3.21 Consider Example 3.14.

Here NPTs are
Ity = {Onp,lnp,fD(wl,wz),gF (Wl,Wz)},
where

Eo (W, W) = (W, 1,.2,.8), (Wy,.4,.7,.3), (W5,0,0,2), (W, W,), 4,.7,.3), (W, Wy),.6,.5,.2), (W, W), 6,.7,.2)},
Ee (W, W) = {(Wl 6,.5,.3),(w,,.9,.8,.1),(W;3,0,0,1), (W, W5),.9,.8,.1), (W, W5),.7,.6,.1), {(W,, W;),.9,.8, 1>}
and

27np = {Onp '1np’§D (WZ ,W3),§;: (W2’W3)}/
where
oWy, W) = {(w;,0,0,), (W, 4,.7,.3), (Ws,.6,.5,.2), (W, W), 4,.7,.3), ((Wh, Wy), 6,.5,.2), (W, W), 6,.7,.2)},

e (Wy,W5) = {(W1,0,0,1), (W, 9,.8,.), (s,.7,.6,.2), (W, W,),.9,.8,.1), (W1, W5),.7,.6,.1), (W, Ws),.9,.8,.1)}.
Thus (W, 1z, ) and (W, 27,,,) are NPTSs over W.

Clearly,
1rn, U2z, = {Onpalnpyfa(wlvwz)fl: (W, W,),&p (Wp W3), S (W27W3)}-
Then
Ep (W, Wy) M Ep (W, W)
= {(w;,0,0,2), (w,,.4,.7,.3), (wy,0,0,), (W, W,),.4,.7,.3), (W, W), 6,.5,.2), (W, Ws), 6,.7,.2)}
Thus 1r,, U2z,, isnota NPTS, since &p(Wy,W,) (N Ep (W Ws) &1z, U 2z, .
Hence the union of two NPTs need not be a NPT.

Proposition 3.22 Let &,(V;") and &5(V,") betwo 7, -NPOSs over W. Then

@) (GZD (Vl*) UfD (Vz*)) =$&p (Vl*), N $p (Vz*)' .
(i) (EoM)NEML)) = &0 Y UMY
Proof. Straightforward.

Definition 3.23 Let (W, z,,) be a NPTS over W. Let &p(V ") be any NPSs over W. Then the
neutro-prime interior of &;(V”) is denoted by intnp(fD(V *)) and defined by

int (55 (V))=UlEoU™): 65U ey and E,U%) <o (V7))
Clearly, it is the union of all 7, -NPOSs contained in &, (V") .
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Definition 3.24 Let (W, z,,) be a NPTS over W. Let &r(V *) be any NPSs over W. Then the
neutro-prime closure of &, (V") is denoted by Clnp(fD(\/*)) and defined by

oy (5o )=NEp U7 : 60U €7y’ and &, (UT) D& (V)]

Clearly, it is the intersection of all z,,"-NPCSs containing &, (V™).

Example 3.25 Let W :{Wl,Wz,W3} and 7, = {On,ln,A,B,C, D} where A, B, C, and D are NSs over W

and are defined as follows
A={w,.1,.2,.3),(w,, 4, 5,6),(wy,.2,4,6)},
B={(w,4,5,.6),(w,,.7,.8,.2) <w 1.2, 3}
C={w,1.2,6),(,,4,5,6),(w;,.1,.2,6)} and
D={w,4,5,.3),(w,,7,8.2),(w,,2,.4,3)}.

Here AUB=D, AUD=D, AUC=A, BUD=D, BUC=B, DUC=D and ANB=A,

AND=A, ANC=C, BND=B, BNC=C, DNC=C.

Then A, B, C, and D are r,- ONSs over W.

Thus (W, z,,) is a NTS over W.

Here NPSs are
7pAW,) = {E2 (W2), Ea (W, W), £ (W, o),

where

Ea(W,) = {<Wl, 0,0,1),(w,,.4,.5,.6),(ws,0,0,1),{(W, W), 4,.5,.3), (W, W5),0,0,1), {(W,, W3),.4,.5, .6)},

Enng, Wp) = {wg,.1,.2,.3), (W, 4,.5,.6), (Ws,0,0,1), (W, W,), 4,.5,.3), (W, W), .2,.4,.3), (W, W), 4, 5,.6)},

EnWy, W) = {(4,0,0,1),(Wy, 4, 5,.6), (w5, 2,.4,.6), (W, Wy),.4,.5,.3), (W, W), 2,.4,.3), ((Wy, W), 4, 5,.6)}

7,B(w) = e (W), & (W, W), & (W, W),
where

o (W) = {(w, 4,.5,.6), (W,,0,0,2), (W;,0,0,2), (W, Wp),.7,.8,.2), (s, W5), 4,.5,.3), (W, w5),0,0,1)},
Eg (W, W,) = {<Wl, 4,.5,.6),(W,,.7,.8,.2),(W3,0,0,1), (W, W,),.7,.8,.2),((Wy, W), .4,.5,.3), (W, W3),.7,.8, 2>}

£ (g, W5) = {(wi, 4,.5,.6), (y,0,0,1), (Wi, 1,.2,.3), (W, W,),.7,.8,.2), (W, W5), 4, 5,.3), (W, W), 7,.8,.2)};

7pC (W, W3) = {gc (W), & (W3), S (Wi, Wy ), & (W, W), S (W, Ws)}r
where
& (W) = {(w,.1,.2,.6), (w,,0,0,1), (5, 0,0,2), (W, W,),.4,.5,.6), (W, Wy),.1,.2,.6), (W, w3),0,0,1)},

& (W) = {(w,0,0,1), (W5, 0,0,1), (Ws,.1,.2,.6), (W, W,),0,01), (W, W5),.1,.2,.6), ((Wy, W), 4, 5,.6)},

Eo (W, Wp) = {(w,.1,.2,.6), (W, 4,.5,.6), (5,0,0,1), (W, W), 4, 5,.6), (W, Wy),.1,.2,.3), (Wy, W), 4, 5,.6)},
Eo (W, W5) = {wg,.1,.2,.6), (W, 0,0,1), (Ws,.1,.2,.6), (W, W,), 4,.5,.6), (W, W5),.1,.2,.3), (W, W), .4, 5,.6)},
Eo (W, W5) = {<W1,.o,o,1>,<W2,.4,.5,.e),<W3,L.z,.e>,<(W1,W2),.4,.5,.6>,<(W1,W3),.L.z,.3>,<(W2,w3),.4,.5,.e>};

17,D(w;) = {gD(WS)!gD(\vaWS)igD(WZ*W3)}’
where
Eo(Ws) = {(W,0,0,2),(w,,0,0,1), (s, 2,.4,.3), (W, W), 0,0 1), (W, W), 4,.5,.3), (W, Ws),.7,.8,.2)},
Eo (W, W) = {(a, 4,.5,.3), (W5,0,0,1), (s, 2,.4,.3), (W, W,),.7,.8,.2), (Wi, W), 4,.5,.3), (W, Ws),.7,.8,.2)}
Eo (o, w3) = {(w;,0,0,1), (s, 7,.8,.2), (W, 2,.4,.3), (W, W), 7,.8,.2), (W, W), 4,.5,.3), (W, Ws),.7, 8,.2)
Then

Top = O Lps &6 (W), & (W) is a NPT.
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Thus (W, Tnp ) is a NPTS over W.
Also, the complement of the NPT 7, is

Ty = {Onp,lnp,ffs (W), &c (Wl)'}’
where
Se(W)' = {<W1' 6,.5,.4),(W,,1,1,0),(w3,1,1,0), (W, Wp),-2,.2,.7), (Wi, W5),.3,.5,.4), (W, W;), L1, O>}
and

Eo(w) = {(\/\/1,.6,.8,.1>,<W2,],l 0),(W5,1,1,0),((Wy, W,),.6,.5,.4), (W, Ws),.6, .8,.1>,<(W2,W3),1L0>}.

Consider a NPS for NS B,
Ea (W, W5) = {wi, 4,.5,.6), (Wy,0,0,1), (Wi, 1,.2,.3), (Wi, W,),.7,.8,.2), (W, W5), 4, 5,.3), (W, Wy),.7,.8,.2)}.
Clearly,
Ee(Wy, W3) 20y, S5 (W) -
Thus
intnp(égs (W, Ws)) = Opp U & (Wy) = & () -
Also,
Ea(W,Wa) =1,
Thus
Clnp(fB (Wl!WB)):lnp
Consider a NPS for NS C,
o (W) = {(W,0,0,1), (W, 0,0,1), (Wi, .1, 2,.6), (W, W,),0.0,1), (g, W5),.1,.2,.6), (W, Ws), 4,.5,.6).

Clearly,

&c(wz) 20,
Thus

int np (fc (Wa)) =0
Also,

Sc(Wg) =1, e (wy)' -
Thus

Clop (& (Ws)) =10 N (W) =& (W)’

Theorem 3.26 Let (W, 7, ) be a NPTS over W. Let &p(V;) and &¢(V;") be NPSs over W for NSs D
and F. Then

(i) intop (60 04")) < £0 (V") and int, (65 (Vi) i the largest 7, -NPOS.

(i) DEF = inty(eo ) cint pgr ().

(iii) intg, (fD A )) isan 7,,-NPOS.
(iv) (V) isa 7o -NPOS iff int np(fD A )) SV).

(V) int np (Int np (gD (Vl ))): int np (§D (Vl ))

(vi) int, ( ) On, and int p(lnp)zlnp .

(vil) it (£ (V)N Er (V1)) = it 60 04)) M it 047)).
(viii) int np(fD MOUE W )) intnp(ézo (Vl*)) Uint, (fF (Vl*))

Proof. Follows from Definition 3.23.
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Theorem 3.27 Let (W, z,,,) be a NPTS over W. Let &p(V,") and &g (V,) be NPSs over W for NSs D
and F. Then

() &) ClylEo0) and clylo047)) is the smallest z,, -NPCS.
(11) DcF = Clnp(égD (Vl ))g Clnp(é:F (Vl*))-

(iii) cly, (:fD v )) isan 7,,-NPCS.

(V) Eo(Vy") isa 0y -NPCSiff clyp(Ep(7)=Ep(047)

(V) Clnp(CInp(é:D(Vl )))= Clnp(fD(Vl ))

(vi) cl, ( np)=0np and Clnp(lnp)zlnp.

(vii) cl np(ézD M)UE (Vl*))z Clnp(§D (Vl*)) U Clyp (‘fF (Vl*))

(viii) Clnp(‘fD M) NER (V) ))E Clnp(‘fD(Vl*)) N Clnp(fF (Vl*))-

Proof. Follows from Definition 3.24.

Theorem 3.28 Let (W, z,,, ) be a NPTS over W. Let & (V™) be aNPS over W for a NS D. Then
Q) (it £04))) =clopleovY).

(i) (el 20 04)) =intp(Eo(v ).
Proof. Follows from Definitions 3.23 and 3.24.

4. Decision Making in NPTS

In this section, the real-life application dealt to repair the sample machines with some damages.
To repair it, priority is given to the high damaged machine. The solving techniques are given in the
algorithm and formulae for evaluation are given. Some examples are considered to decide on these
DM problems.

Definition 4.1 Let &,(V™) be a 7,,-NPOS over W of a NPTS (W, z,,,). Then the neutro-prime
absolute complement of &;(V") is denoted as ED ((V *)’) and defined as ED ((V *)’)z e;;D ((\N -V *)).

Thus the collection of ED((\/ *)’) is denoted as 7,, and defined as 7, ={0np,1np,c;5D((V *)’)}. The

elements belong to ED ((\/ *)’) are said to be neutro-prime absolute open sets (NPAOSs) over (W, z,,, )
and the complement of NPOSs are said to be neutro-prime absolute closed sets (NPACSs) over

(W, 7,5 ) and denote the collection by 7,," .

Example 4.2 Let W ={w;,w,,w5} and 7, ={0,,1,,D} where D is a NS over W and are defined as
follows
D={(w;,.9,4,.6), (W, 6,5,.1),(w;,.7,.8,.1)}.
Thus (W, z,) is a NTS over W.
Then NPS
7,D(W;) :{éD(W3)’§D(W1'W3)I§D(W2’W3)}’
where
Ep(Ws) = {(W,0,0,1),(w,,0,0,1), (Wy,.7,.8,.2), (W, W5),0,0,1), (s, Wy),.9,.8,.2), (W, w5),.7,.8,.1) |,
Eo (W, Wy) = {W,.9,.4,.6),(,,0,0,1), (Ws,.7,.8,.2), (W, W,),.9,.5,.2), (W, W5),.9,.8,.2), (W, W5),.7,.8,.1)}

and
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Ep(Wy, W) = {w;,0,0,0), (w,,.6,.5,.2), (s,.7,.8,.1), (Wi, W,),.9,.5,.1), (W, W),.9,.8,. 1), (W, Wy),.7,.8,.1)}.

Then
Top = Onp Lp: € (Wi Ws) | is a NPT.

Thus (W, Tnp ) is a NPTS over W.
Also, the complement of the NPT 7, is
Z-np* = {Onp llnpvétD (W11W3)'}/

where
Ep (W, Wy) = {(wy,.6,.6,.9), (W, 1,L,0), (ws,.1,.2,.7), (W, W), 1,.5,.9), (W, W5),.L,.2,.9), (W, W5),.1,.2,.7)}.

Then NPAOSs over (W, Tnp ) is
zn:np = {Onp '1np , ED ((Wl 1W3),)}= {Onp 11np , ED (Wz)}/

where
Ep ((wy, W3)) = &5 (W) = {(wy,0,0,1), (w,.6,.5,.1), (w;,0,0,1), (W, W5),.9, 5,.1), (i, W3),0,0,2), (W, W), 7,.8,.1)}

Also, NPACSs over (W, Tnp ) is

;np* = Vnp nlnp ) ED ((Wl ’WS),), }

where

Eo (W, wa)) = Eo (Wp)' = {(wy,1,1,0), (s, .1, 5,.6), (w3, 1.1, 0), ((Wy, W), 1,.5,.9), {(wy, W), 1L, 0), (W, W), 1,.2,.7)}

Definition 4.3 Let W be a set of universe and weW . Let D be a NS over W and U be any proper
non-empty subset of W. Let &, (U) bea 7., -NPOS over W of a NFTS (W, 7., ).

Then the value of D with respect to U is denoted by Val[D(U)] and is calculated by the formula

>MoU)) -2 (R (U)/)in(TD L) -x(Fw '))i} I (PYCRY IS (P E))!

i i i x|1— i

_ [ i i 4.3.1)
val[D(U)] = ; ;

where

NUNE; )’)i , YU )’)i and Y (FpU )')i are the sum of all truth, indeterminacy and falsity values of
i

i i
&p(U)' respectively, and
Z(-FR u ')) , Z(TR u ')} and Z(IED (@] '))i are the sum of all truth, indeterminacy, and falsity values of
i i

&o((U") respectively.

Then the grand value of D is denoted by GV[D] and is calculated by the formula

GVID]=XVal[DU)]. for all 7. (4.3.2)

Algorithm

Step 1: List the set of machines for the sample.

Step 2: List some of its damaged parts as the universe W, where weW .

Chinnadurai V, Sindhu M P and Bharathivelan K, An Introduction to Neutro-Prime Topology and Decision Making
Problem



Neutrosophic Sets and Systems, Vol. 41, 2021 158

Step 3: Go through the damages of the machines.

Step 4: Define each machines as NSs, say M.

Step 5: Collect these NSs which defines a NT 7, and so (W, r,)is a NTS.

Step 6: Define NPSs for each NS with respect to their damaged parts, say &y (U), where U is a

proper non-empty subset of W.

Step 7: Define all possible NPTs 7, and &, (U)er,,, where U is a proper non-empty singleton

subset of W.

Step 8: Define NPTSs (W, 7, ) for all possible NPTs 7, .

Step 9: Find the complement and neutro-prime absolute complement of each NPTs.

Step 10: Calculate Val[M(U)] for all M with respect to some U, by using the formula 4.3.1.

Step 11: Tabulate all the estimated values of Val[M(U)].

Step 12: Calculate GV[M] for all M, by using the formula 4.3.2.

Step 13: Tabulate all the estimated values of GV[M].

Step 14: Select the highest value among all the GV[M].

Step 15: If two or more GV[M] are similar for a particular U, replace that U with some other
damaged parts and repeat the process.

Step 16: End the process, till getting a unique GV[M].

Example 4.4 Consider the problem that a technician came to repair damaged machines. Let MI, MII,
MIII, and MIV be sample machines whose damages to be repaired. Let W ={p;, p,, p;} be some
parts of each damaged machine, where p,—part1, p,—part1 and p;-—part 3. Here the technician
gives priority to the high damaged machine and to repair it initially.

1. Let MI, MII, MIII, and MIV be sample machines whose damages to be repaired.

2.Let W ={p;, p,, p3} be the universe, where p,—part1, p,—part2, and p,—part3.

3. The technician goes through the damages on each machine.
4. Define MI, MII, MIII, and MIV as NSs.

M1 ={py,.7,.6,:3),(Ps,4,.5,4),(ps,.5,3,4)},
MIl ={(p;,.6,3..1),(p,,.6,8,4),(ps,.2,2,.7)},
MIlI={p;,.7,.6,.2),(p,,.6,.8,4),(ps, 5,3.4)} and

MIV ={(p,.6,.3,.3),( P2, 4,.5,4),( p3,.2,2,.7)}.

5. Thus 7, =1{0,,1,,MI,MII,MIII,MIV} isa NT and so (W, z,) is a NTS.
6. Define NPSs for each NS with respect to their damaged parts as follows:

n7oMI(py, P3) = {&m (PL),Emn (P3).Ewn (Prs P2).Ewn (Prs P3).Emn (P21 B3},
where
Swi (1) = {< P1-7,6,:3),(P2,0,0,1),(P3,0,0,1),((P1, P2).-7,-6,-3), (P, P3),-7:-6,-3), (P2 p3),0a011>},
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Smi (P3) = {< p1,0,0,1>,< p2,0,0,1>,< |O3,.5,.3,.4>,<(p1, p2)10101>,<(p1a ps)a-7,-6,-3>:<(p21 p3),.5,.5,.4>},

Swi (P, P2) = {< pl,.7,.6,.3>,< p27-4,-5,-4>,< p3,0,0,1>,<(p1, pz),.7,.6,.3>,<(p1, p3),.7,.6,.3>,<(p2, p3),-5,.5,.4>},
Swi (P1y P3) = {< pl,.7,.6,.3>,< p2,0,0,1>,< P3,-5,.3, .4>,<(p1, pz)a-7a-6a-3>:<(plv p3),-7,-6,.3>,<(p2, P3).-5,.5, -4>},
S (P2, P3) = {< p1,0,0,1>,< P2,-4,.5, -4>1< pg,.5,.3,.4>,<(p1, pz),.7,.6,.3>,<(p1, pa)a-7,-6,-3>:<(p21 p3),.5,.5,.4>};

np,MI(p,) ={&n (P2): & (Prs P2):Evin (P2, P3) ),

where

Ewn (P2) ={(P1,0,01).(p..6,.8,4),(Ps,0,0.1),((Py. P,)..6..8,.1).((Py. P3).0,0,1), ((Py. Ps).-6..8,.4)},
Ewn Py, P2) = P1.-6,-3.0),(P,..6..8,.4),(p3,0,01).((py, P).-6..8,.2), ((Py. P3).-6,-3.-1), (P2, P3).-6,.8,.4),
Svin (P2, P3) = {< p1,0,0,1>,< P2,.6,.8, -4>,< p31-2:-21-7>:<(p1a pz),.G,.8,.1>,<(p1, p3),.6,.3,.1>,<(p2, P3).-6,.8, -4>}}

n,MI(py, p,) = {Emn (P Evin (P2): Evin (P1: P2): Ewin (Pa. Pa) v (P2s Pa)}

where

Ewn (P) = {(P1,-7,-6..2),(P5.0.0,1),(p3,0,01).((py. P2)..7..8.1).((py. Ps)..7.-6,-1), (P, P5).0.0.1)},

S (P2) = {< p1,0,0,1>,< p2,.6,.8,.4>,< p3,0,0,1>,<(p1, pz),.7,.8,.1>,<(p1, ps),010:1>a<(p2: P3)..6,.8, -4>},

v (1, P2) ={(P1.7..6..2),(P5..6,.8,4),(P3,0,00),((Py. P2)..7,.8,-1).((Py, P3).-7.-6,-1), (P, Ps)..6..8,.4),
S (P, P3) = {< pl,.7,.6,.1>,< p2,0,0,1>,< pg,-5,.3,.4>,<(p1, pz),.7,.8,.1>,<(p1, pg),.7,.6,.1>,<(p2, p3)1-6,-8,-4>}/

Eymn (P21 P3) ={(P1,0,0.0),( p2.6,.8,4),(P3,.5,.3.4),((Py, P2).-7,.8,:2).((Py, P5)..7,:6,.2), ((Po. Ps)..6,.8,.4)
and

n7poMIV(p,) = {SEMIV (P1):Svv (P1s P2) Sy (Prs pa)}/
where
Swmv (P1) = {< pl!'6!'3v'3>!< p2,0,0,1>,< p3!010!1>v<(p11 pz),.6,.5,.3>,<(p1, pg),.6,.3,.3>,<(p2, p3),0,0,l>},

Emv (Pr: P2) = {< P1,-6,-3,:3),(P2,-4,.5,4),( P3,0,0,1),((Py, P2).-6,-5,-3),((Py, P3),-6,:3,:3),((P2, P3), 4.5, -4>},
Smv (P P3) = {< 911-6:-3a-3>:< p2,0,0,1>,< pg,.2,.2,.7>,<(p1, pz),.6,.5,.3>,<(p1, pg),.6,.3,.3>,<(p2, pg),.4,.5,.4>}.

7. The possible NPTs for all proper non-empty singleton subset of W are defined as follows:
Iy, = }Lonpilnpnflvu (P2):Svm (P1) Snv (pl)} ,

2t = {Onpllnp,flvm (P2): S (pz)} and
32-np = {OnpilnpvfMl (p3)}

8. Thus (W, 1z, ), (W, 27, ) and (W, 3z, ) are NPTSs over W.

9. The complement and neutro-prime absolute complement of NPT 1z, are as follows,
1Tnp* = {Onp dnp s S (P1)"s S (P1)'s Ewy (pl),}/

where

S (Py)' = {< P13, -4,-7>,< p2,l1,0>,< pg,LLO>,<(p1, pz),.3,.4,.7>,<(p1, P3).-3, .4,.7>,<(p2, p3),1,1,0>}
S (P = {< P1.-1.4,.7),(P2,11,0),(p3,11,0),((Py1, P2),-1-2,.7),((P1, P3),- 1 4. 7), (P2, ps),ll.0>}
Sav (P)'= {< P1,-3,.7,.6),( P2,1,1,0),(P3,11,0),((Py, P2).-3,.5,.6),((P1, P3).-3,.7,.6),((P2, pa)all.0>}

and

1 = {Onp’lnplng (P2, p3)1gMIII (P2, p3)'§~Mlv (P2, ps)}/

where
Ewi (P2 Po) ={(P1.0.0,1),(p7..4,5,.4).( P35, 5.3.4).((Py., P;)..7.-6,.3).((Py P3)..7..6.3). (P2, Ps). 5.5,.4)}

EMIII (P2, P3) = {< p1,0,0,1>,< p2,.6,.8,.4>,< p3,-5,-3,.4>,<(p1, pz),.7,.8,.l>,<(p1, pg),.7,.6,.l>,<(p2, p3),.6,.8,.4>}
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Ewv (2. P3) = {(P1,0,0.2),(p;..4,5,4),(p3,.2,.2,.7).((py, P2)..6.5.3),((P1. P3)..6.3.3).((P;, Ps).4,5,.4)}.

The complement and neutro-prime absolute complement of NPT 2z, are as follows,

ZTnp* = {Onpvlan§Mll (P2)"sSvm (pz)'},
where
S (P2) = {(P1.11.0).(P..4.:2..6),(P3,110).{(P1, P).-L.2.6), ((Py, P3)LLO)((Py, Ps).4,.2,.6)
S (P2)' = {< p111,1,0>,< p2,.4,.2,.6>,< psll,l0>,<(p11 pz),.l,.2,.7>,<(pl, Ps3).L1, O>,<(p2, p3)1-4,-21-6>}
and
z;i:np = {Onpilnpngll (Py, p3)15|v|||| (Py, pa)}/
where
Eun (P P3) = {1, 6,:3.1),(P2,0,0.2).( P3,:2,2,.7).{(Py, P2),.6,8. 1) (P, P2), 6,3, 1) (P2 P2), 6,8, 4)}
Evin (P1. Ps) = {(P1..7.6.2),(p5,0,0.1).(p5..5,3,.4).{(P1. P).-7.-8,-1).((Py. P3)..7..6,.1).((P,. Ps)..6..8,.4)} .

The complement and neutro-prime absolute complement of NPT 3z, are as follows,

81" = OpsLops G (P)
where
Swi(Ps)' = {< P11, 0>,< P, 11, 0>'< p3,.4,-7,.5>,<(p1, P.).LL O>,<(p1, P3).-3, .4,.7>,<(p2, p3),.4,.5,.5>}
and
S;np = {Onpllnp’EMl (Py, pz)},
where
ng (P, p2) = {< pl,.7,.6,.3>,< p2,-4,-5,-4>,< p3,0,0,1>,<(p1, pz),-7,-6,-3>:<(p1a ps)a-7,-61-3>,<(p2: p3),.5,.5,.4>}.

10. By using the formula 4.3.1, evaluated the values of all machines with respect to each proper
non-empty singleton subset of W.

i.e. Val[MI(p)], Val[MIL(pi)], Val[MII(p:)] and Val[MIV(p3)], fori=1, 2, 3.
11. These estimated values are tabulated in the following table.

Table 4.4.1. Value Table

p1 p2 p3
M1 2.025 0 3.645
MII 0 2.3 0
MIII 1.59 3.6425 0
MIV 1.35 0 1.59

12. By using the formula 4.3.2, evaluated the grand values of all machines.
i.e. GV[MI], GV[MII], GV[MIII], and GV[MIV].
13. These estimated values are tabulated in the following table.

Table 4.4.2. Grand Value Table

p1 p2 p3 GV

Ml 2.025 0 3.645 5.67

MII 0 2.3 0 2.3
MIII 1.59 3.6425 0 5.2325

MIV 1.35 0 1.59 1.35

Chinnadurai V, Sindhu M P and Bharathivelan K, An Introduction to Neutro-Prime Topology and Decision Making
Problem



Neutrosophic Sets and Systems, Vol. 41, 2021

161

14. Thus GV[M]I] is the highest value.

Hence the technician gives priority to repairing the damaged machine MI.

Example 4.5 Consider the problem explained in Example 4.4.
1. Let MI, MII, and MIII be sample machines whose damages to be repaired.
2.Let W ={p;, p,, p3} be the universe, where p,—part1, p,-part2, and p,—part3.

3. The technician goes through the damages on each machine.
4. Define MI, MII, and MIII as NSs.

M1 ={py,.7,.6,.1),(p,,.6,.8,.4),(ps,.7,.6,.2)},
M ={(py,.6,.3.1),(p,,.6,8,4),(ps,2,2,7)} and

M ={(p;,.7,.6,.2),(p,,.6,.8,4),(p;,.7,.6,.1)} .
5. Thus 7, =1{0,,1,,MI,MII,MIIl} is a NT and so (W, z, ) is a NTS.

6. Define NPSs for each NS with respect to their damaged parts as follows:

npMI(p3) = 1w (P2). & (Pr, P3).Ewn (P2, Pa)},

where

S (P3) = {< pl,0,0,1>,< 92,0,0,1>,< p3,.7,.6,.1>,<(p1, pz),0,0,1>,<(pl, p3),.7,.6,.l>,<(p2, pg),.7,.8,.l>},
Svi (P P3) = {< pl!'71'61'1>1< p2,0,0,l>,<pg,.7,.6,.1>,<(p1, pz),.7,.8,.1>,<(p1, p3),.7,.6,.1>,<(p2, p3),.7,.8,.1>},
Ewi (P2, P3) = {< p11'71'61'1>!< pz,.6,.8,.4>,< p3.0,0,1>,<(p1, pz),.7,.8,.1>,<(p1, p3),.7,.6,.1>,<(p2, ps)--7v-81-1>}?

npMII(p,) ={&wn (P2). & (Prs P2).Ewir (P2: Pa)},

where

S (P2) = {< P1,0,0,1),(P,,-6,-8,.4),(P3,0,0,1),((Py, P>),-6,-8,-1),(( P, P3).0,0,2),((p,, p3),.6,.8,.4>},
Svin (P P2) = {< pl!'6!'3v'l>!< p2,.6,.8,.4>,< p3,0,0,1>,<(p1, p2),.6,.8,.1>,<(p1, p3),.6,.3,.1>,<(p2, p3),.6,.8,.4>},
S (P2, P3) = {< p1,0,0,1>,< P,,.6,.8, -4>,< pg,.2,.2,.7>,<(p1, p2),.6,.8,.1>,<(p1, p3),.6,.3,.1>,<(p2, P3)..6,.8, 4>}

and

npMII(p,) = {Em (PL):Evin (P12 P2), Evin (P p3)},

where

S (P1) = {< pl"7v'61'l>!< P2,0, 0,1>,< P3,0, 0,1>,<(p1, pz),.7,.8,.1>,<(p1, p3),.7,.6,.1>,<(p2, P3).0, 0,1>},

Svm (P, P2) = {< pl,.7,.6,.1>,< p2,.6,.8,.4>,< p3,0,0,l>,<(p1, pz),.7,.8,.1>,<(p1, pg),.7,.6,.1>,<(p2, p3),.7,.8,.l>},
Eun (P P3) = {(P1.7,.6,10,(P2,0,0,0),(P3,.7,.6,.2). (P, P2), 7, 8, 10 ((Pr, P2). 76,2 (P, p3). 7.8, 1),

7. The possible NPTs for all proper non-empty singleton subset of W are defined as follows:

g, = {Onp np s Smim (p1)} ’
27y = {Onp’lnp’ngl (pz)} and
3tnp = {Onp dnps S (ps)}-
8. Thus (W, 1z, ), (W, 2z, ) and (W, 3z,,,) are NPTSs over W.

9. The complement and neutro-prime absolute complement of NPT 1z, are as follows,

]Inp* = {Onp’lnp' Smm (pl),}r

Chinnadurai V, Sindhu M P and Bharathivelan K, An Introduction to Neutro-Prime Topology and Decision Making

Problem



Neutrosophic Sets and Systems, Vol. 41, 2021 162

where
S (P = {( Py 1.4,.7),(P2. 1L.0),( 3, 1L0).((Pr. P2).-L.2.7).((Py. P3).. L4, 7),((P,. P5) 11,0)]
and
1;np = OnpLnp: ng|| (P2, p3)’},
where
G (P2, o) = (p1,0,0.).(p2. 6.8,4).(Pa. 5.3.4)((py, P2). 781} ((Pr P 7.6,.2) (P, ). 6,8,4).

The complement and neutro-prime absolute complement of NPT 2z, are as follows,

200" = Onp Loy G (P2) ),
where
S (P2) = {(P1.LL,0),(Py..4,.2,.6), (3,110}, ((Py, P2).-1.2,.6), ((Py, P3).L10),((Py, P3)..4,.2,.6)
and
2;np = {Onp’lnplngl (Py, ps)},
where
EMII (P P3) = {< pl,.6,.3,.l>,< p2,0,0,1>,< p37-2,-2,-7>,<(p1, pz),.6,.8,.1>,<(p1, p3),.6,.3,.1>,<(p2, p3),.6,.8,.4>}.

The complement and neutro-prime absolute complement of NPT 3z, are as follows,

3Tnp* = {Onpvlnp7§M| (pg)'},
where
G (P3)' = {(P1.22.0).{ P2 11.0).(pay-L.4,.7).((Pr, P2) L1 OM{(Pr, Pa). L4, 7).{ (P2, P2), 1.2, )}
and
B;np = {Onpilnp!ng (Py, pz)}/
where
EMI (P, P2) = {< pl,.7,.6,.1>,< p2,.6,.8,.4>,< p3,0,0,1>,<(p1, pg),.7,.8,.1>,<(p1, p3),.7,.6,.1>,<(p2, p3),.7,.8,.1>}.

10. By using the formula 4.3.1, evaluated the values of all machines with respect to each proper
non-empty singleton subset of W.

i.e. Val[MI(pi)], Val[MIl(pi)] and Val[MIII(pi)], fori=1, 2, 3.
11. These estimated values are tabulated in the following table.

Table 4.5.1. Value Table

p1 p2 p3

M1 0 0 3.92
MII 0 23 0
MIII 3.92 0 0

12. By using the formula 4.3.2, evaluated the grand values of all machines.
i.e. GV[MI], GV[MII] and GV[MIII].
13. These estimated values are tabulated in the following table.

Table 4.5.2. Grand Value Table

p1 p2 p3 GV

Ml 0 0 3.92 3.92

MII 0 2.3 0 2.3
MIII 3.92 0 0 3.92
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14. Thus both GV[MI] and GV[MIII] are the highest value.
15. In this situation, replace part 3 ( p;) with some other damaged part, say p,, and repeat the
process.

1. Let MI, MII, and MIII be sample machines whose damages to be repaired.
2.Let W ={p,, p,, s} be the universe, where p,—part1, p,—part2, and p,—part 4.

3. The technician goes through the damages on each machine.
4. Define MI, MII, and MIII as NSs.

MI={py,.7,.6,.2),(p,,.6,8,4),( s, 5,3.4)},

MI1 ={(p;,.6,.3..2),(p,,.6,.8,4),(py..4,.3.6)} and

MII={(p;,.7,.6,.2),(p,,.6,.8,4),(ps, 5,.3,.4)} .

5. Thus 7, =1{0,,1,,MI,MII,MIIl} is a NT and so (W, z, ) is a NTS.
6. Define NPSs for each NS with respect to their damaged parts as follows:

n,MI(p4) ={§M| (P4),Ew (P1y P4). S (P2, p4)},

where
& (P2) = {(1,0,0,1),(p,0,0,1),( ps,.5,.3,4), (P, P2),0.0), ((pr, Pa).-7,-6,.1),((P2, Pa), 68,4},

Ewn (P1y Pg) = {< plv'7!'6"1>’< P2,0, 011>:< p4,.5,.3,.4>,<(p1, pz),.7,.8,.1>,<(p1, p4),.7,.6,.1>,<(p2, p4),.6,.8,.4>},
£t (P22 ) = {(P1.0.0),{ P2..6,.8,4)(P4..5,.3,4) ((Pr, P2). 7,8, {(Pr, Pa). 7,6, (2. Pa). 6.8, 4));

npMI(p,) ={&wn (P2): & v (P1 P2).Evin (P2, )},

where
S (P2) = {< p1,0,0,1>,< p2,.6,.8,.4>,< p4,0,0,l>,<(p1, p2),.6,.8,.1>,<(p1, p4),0,0,1>,<(p2, p4),.6,.8,.4>},

S (P, P2) = {< pl,.6,.3,.1>,< p2,.6,.8,.4>,< p4,0,0,1>,<(p1, pz),.ﬁ,.S,.l>,<(p1, p4),.6,.3,.1>,<(p2, p4),.6,.8,.4>},

En (P2, Pa) = {(P1,0.01),(P3..6,8,.4), (P44, 3.6), ((Pr, P2).-6,.8.1),((Py, P), 6,31 ((Py, Pa)..6,.8,.4)}
and

noMII(py, pp) = {flvun (P1):Evan (P2): S (P P2)s S (Pys Pa)s Svin (P2 P4)}/

where
S (P1) = {< pl,.7,.6,.l>,< p2,0,0,1>,< p4,0,0,1>,<(p1, pz),.7,.8,.1>,<(p1, p4),.7,.6,.l>,<(p2, p4),0,0,l>},

S (P2) = {(P1,0.01)(p2.6,.8,4),(p4,0,0.0).((Py, P2)..7.:8. 1) ((P1, P4).0.01) (P2, P).6.8,4)},

Svan (P pz):{< pl,.7,.6,.1>,<p2,.6,.8,.4>,<p4,0,0,1>,<(p1, pz),.7,.8,.1>,<(p1, p4),.7,.6,.1> (P2, P4).-6,.8,.4 }/
S (P Pa) :{< pl,.7,.6,.1>,<p2,0,0,1>,<p4,.5,.3..4>,<(p1, pz),.7,.8,.1>,<(p1, p4),.7,.6,.1> (P2, P4).-6,.8,4 }
Evin (P2, Pg) = {< P1,0,0,2),(P,,-6,.8,.4),(Ps,-5,:3.4),((Pr. P2),-7.-8,: 1), ((Py, P4).-7,-6,.2),((P2, Pa).-6,.8,.4)

7. The possible NPTs for all proper non-empty singleton subset of W are defined as follows:
1Tnp {Onp 1np Smin (pl)}

2t = {Onp Lo Evn (P2)s S (pz)} and
3np = Onp:Lup Emn (Pa) -
8. Thus (W, 1z, ), (W, 27, ) and (W, 37, ) are NPTSs over W.
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9. The complement and neutro-prime absolute complement of NPT 1z, are as follows,

]Inp* = {Onp’lnpn S (pl)'},
where
S (P’ =P 1.4.7),(p2.11.0).( P4 LLO)((Pr. P2).-1-2..7),((Py, Pa)-L.4.7).((P2. P4) LLO)]
and
1705 = Orp Lo, glvuu (P2, p4)'},
where
Eumn (P20 P2) = {(91,0,0,0).(p,.6,:8.4),(Pa, 5,:3.4),((Py P2), 7,8, 1), ((Br, Pa)r-7,.6,.1), (P2, Pa). 6,.8,.4)).

The complement and neutro-prime absolute complement of NPT 2z, are as follows,
2y, = {Onp oS (P2)'s Sy (pz)'},

where

Swn (P2) = {< P1.1L0),(P2,4,2,.6),( P4, 11,0),((Py, P2),-1.-2,-6),((P1, P4),L.L.0), (P2, p4),.4,.2,.6>}
S (P2)' = {< P1,1L0),(P2,4,-2,.6),( P4, 11,0),((Py, P2),-L1-2,.7),{(P1, P4), 1L, 0), (P2 p4),.4,.2,.6>}
and
2;np = {Onp’lnplngl (Py, p4)é?|vu|| (P1, p4)},
where
Ewn (P1. Pa) = {16,320, (P2.0,0.2),(Ps.-2,:2,.7).((Py. P2)..6,.8,. 1), ((Py. P).-6.-3..1). (P2 Pa).-6..8,.4)
ngu (P1, Ps) = {< pl,.7,.6,.l>,< p2,0.0,1>,< p4,.5..3,.4>,<(p1. pz)--7--8’-1>’<(p11 p4),.7,.6,.l>,<(p2, p4),.6,.8,.4>}.

The complement and neutro-prime absolute complement of NPT 3z, are as follows,

anp* = {onp71an§M| (p4)’},
where
Ewn (Pa) = {12100 (P2 1100 Pas 4,7, B {(Pry P2) LLO) (P, Pa). L 4,.7), (o Pa), 4,:2.6)
and
3t = {Onpilnp!ng (Py, pz)}/
where
ele CADE {< pl,.7,.6,.1>,< pz,.6,.8,.4>,< p4,0,0,1>,<(p1, pz)a-7,-8:-1>:<(p1, p4),.7,.6,.1>,<(p2, p4),.6,.8,.4>}.

10. By using the formula 4.3.1, evaluated the values of all machines with respect to each proper
non-empty singleton subset of W.

i.e. Val[MI(pi)], Val[MIl(pi)] and Val[MIII(pi)], fori=1, 2, 3.
11. These estimated values are tabulated in the following table.

Table 4.5.3. Value Table

p1 p2 p4

M1 0 0 4.8675
MII 0 2.665 0
MIII 1.59 3.6425 0

12. By using the formula 4.3.2, evaluated the grand values of all machines.
i.e. GV[MI], GV[MII] and GV[MIII].
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13. These estimated values are tabulated in the following table.

Table 4.5.4. Grand Value Table

p1 p2 p4 GV
Ml 0 0 4.8675 4.8675
MII 0 2.665 0 2.665
MIII 1.59 3.6425 0 5.2325

14. Thus GV[MIII] is the highest value.

Hence the technician gives priority to repairing the damaged machine MIIL

5. Conclusions

The major contribution of this work is initiating a neutrosophic environment on prime sets
under a topological space. Some related properties of NPTSs have been proved and some are
disproved with counterexamples. Also, the idea of interior and closure dealt with such space with
few basic properties. The novelty of this study is to merge two different poles. The decision-making
problem is demonstrated with an example to analyze the number of faults in industrial machines.
Sample machines are represented as NSs and their damages are represented as NPSs under its
topological space. The values of fault machines are detected by finding the complement and absolute
complement of each NPS. The various values of faults are taken as different subsets, for analysis. The
proposed algorithm analyzes through the NPSs and finds the best suitable set values which indicate
the heavy damage in machines. The lower fault machines are neglected by decision-making
problems.

The primary results of this study are:

e  Prime set is studied under the environment of neutrosophic.

e  Related properties are stated with proof and also disproved in counter examples.

e  The intersection of two NPTs is a NPT but not for its union.

e  Demonstrating the decision-making problem of analyzing the number of damages in machines.

e  The complement and absolute complement of NPSs are evaluated to find the best fit of fault by
diagnosis the machines.

In the future, this set may develop more genetic algorithms to predict multi-criteria DM
problems. Many more sets like soft sets, rough sets, crisp sets, etc., can be developed on NPTSs.
More ideas may be claimed and investigated to achieve a deeper understanding of the economic and
social consequences of robotization.
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