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Abstract. 

A single-valued neutrosophic set (SVNS) and an interval 

neutrosophic set (INS) are two instances of a neutrosoph-

ic set, which can efficiently deal with uncertain, impre-

cise, incomplete, and inconsistent information. In this 

paper, we develop a novel method for solving single-

valued neutrosophic multi-criteria decision making with 

incomplete weight information, in which the criterion 

values are given in the form of single-valued neutrosoph-

ic sets (SVNSs), and the information about criterion 

weights is incompletely known or completely unknown. 

The developed method consists of two stages. The first 

stage is to use the maximizing deviation method to estab-

lish an optimization model, which derives the optimal 

weights of criteria under single-valued neutrosophic en-

vironments. After obtaining the weights of criteria 

through the above stage, the second stage is to develop a 

single-valued neutrosophic TOPSIS (SVNTOPSIS) 

method to determine a solution with the shortest distance 

to the single-valued neutrosophic positive ideal solution 

(SVNPIS) and the greatest distance from the single-

valued neutrosophic negative ideal solution (SVNNIS). 

Moreover, a best global supplier selection problem is 

used to demonstrate the validity and applicability of the 

developed method. Finally, the extended results in inter-

val neutrosophic situations are pointed out and a compar-

ison analysis with the other methods is given to illustrate 

the advantages of the developed methods. 

Keywords: neutrosophic set, single-valued neutrosophic set (SVNS), interval neutrosophic set (INS), multi-criteria decision  mak-

ing (MCDM), maximizing deviation method; TOPSIS. 

1. Introduction

Neutrosophy, originally introduced by Smarandache
[12], is a branch of philosophy which studies the origin, 

nature and scope of neutralities, as well as their interac-
tions with different ideational spectra [12]. As a powerful 
general formal framework, neutrosophic set [12] generaliz-
es the concept of the classic set, fuzzy set [24], interval-
valued fuzzy set [14,25], vague set [4], intuitionistic fuzzy 
set [1], interval-valued intuitionistic fuzzy set [2], paracon-

sistent set [12], dialetheist set [12], paradoxist set [12], and 
tautological set [12]. In the neutrosophic set, indeterminacy 
is quantified explicitly and truth-membership, indetermi-
nacy-membership, and falsity-membership are independent, 
which is a very important assumption in many applications 
such as information fusion in which the data are combined 

from different sensors [12]. Recently, neutrosophic sets 
have been successfully applied to image processing [3,5,6]. 

The neutrosophic set generalizes the above mentioned 
sets from philosophical point of view. From scientific or 
engineering point of view, the neutrosophic set and set-
theoretic operators need to be specified. Otherwise, it will 

be difficult to apply in the real applications [16,17]. There-
fore, Wang et al. [17] defined a single valued neutrosophic 
set (SVNS), and then provided the set theoretic operators 
and various properties of single valued neutrosophic sets 

(SVNSs). Furthermore, Wang et al. [16] proposed the set-
theoretic operators on an instance of neutrosophic set 

called interval neutrosophic set (INS). A single-valued 
neutrosophic set (SVNS) and an interval neutrosophic set 
(INS) are two instances of a neutrosophic set, which give 
us an additional possibility to represent uncertainty, impre-
cise, incomplete, and inconsistent information which exist 
in real world. Single valued neutrosophic sets and interval 

neutrosophic sets are different from intuitionistic fuzzy sets 
and interval-valued intuitionistic fuzzy sets. Intuitionistic 
fuzzy sets and interval-valued intuitionistic fuzzy sets can 
only handle incomplete information, but cannot handle the 
indeterminate information and inconsistent information 
which exist commonly in real situations. The connectors in 

the intuitionistic fuzzy set and interval-valued intuitionistic 
fuzzy set are defined with respect to membership and non-
membership only (hence the indeterminacy is what is left 
from 1), while in the single valued neutrosophic set and in-
terval neutrosophic set, they can be defined with respect to 
any of them (no restriction). For example [17], when we 

ask the opinion of an expert about certain statement, he or 
she may say that the possibility in which the statement is 
true is 0.6 and the statement is false is 0.5 and the degree in 
which he or she is not sure is 0.2. This situation can be ex-
pressed as a single valued neutrosophic set 0.6,0.2,0.5 , 
which is beyond the scope of the intuitionistic fuzzy set. 
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For another example [16], suppose that an expert may say 
that the possibility that the statement is true is between 0.5 
and 0.6, and the statement is false is between 0.7 and 0.9, 
and the degree that he or she is not sure is between 0.1 and 
0.3. This situation can be expressed as an interval neutro-
sophic set      0.5,0.6 , 0.1,0.3 , 0.7,0.9 , which is beyond the 

scope of the interval-valued intuitionistic fuzzy set. 
Due to their abilities to easily reflect the ambiguous na-

ture of subjective judgments, single valued neutrosophic 
sets (SVNSs) and interval neutrosophic sets (INSs) are 
suitable for capturing imprecise, uncertain, and incon-
sistent information in the multi-criteria decision analysis 

[20,21,22,23]. Most recently, some methods [20,21,22,23] 
have been developed for solving the multi-criteria decision 
making (MCDM) problems with single-valued neutrosoph-
ic or interval neutrosophic information. For example, Ye 
[20] developed a multi-criteria decision making method us-
ing the correlation coefficient under single-valued neutro-

sophic environments. Ye [21]  defined the single valued 
neutrosophic cross entropy, based on which, a multi-
criteria decision making method is established in which 
criteria values for alternatives are single valued neutro-
sophic sets (SVNSs). Ye [23] proposed a simplified neu-
trosophic weighted arithmetic average operator and a sim-

plified neutrosophic weighted geometric average operator, 
and then utilized two aggregation operators to develop a 
method for multi-criteria decision making problems under 
simplified neutrosophic environments. Ye [22] defined the 
similarity measures between interval neutrosophic sets 
(INSs), and then utilized the similarity measures between 

each alternative and the ideal alternative to rank the alter-
natives and to determine the best one. However, it is noted 
that the aforementioned methods need the information 
about criterion weights to be exactly known. When using 
these methods, the associated weighting vector is more or 
less determined subjectively and the decision information 

itself is not taken into consideration sufficiently. In fact, in 
the process of multi-criteria decision making (MCDM), we 
often encounter the situations in which the criterion values 
take the form of single valued neutrosophic sets (SVNSs) 
or interval neutrosophic sets (INSs), and the information 
about attribute weights is incompletely known or com-

pletely unknown because of time pressure, lack of 
knowledge or data, and the expert’s limited expertise about 
the problem domain [18]. Considering that the existing 
methods are inappropriate for dealing with such situations, 
in this paper, we develop a novel method for single valued 
neutrosophic or interval neutrosophic MCDM with incom-

plete weight information, in which the criterion values take 
the form of single valued neutrosophic sets (SVNSs) or in-
terval neutrosophic sets (INSs), and the information about 
criterion weights is incompletely known or completely un-
known. The developed method is composed of two parts. 
First, we establish an optimization model based on the 

maximizing deviation method to objectively determine the 

optimal criterion weights. Then, we develop an extended 
TOPSIS method, which we call the single valued neutro-
sophic or interval neutrosophic TOPSIS, to calculate the 
relative closeness coefficient of each alternative to the sin-
gle valued neutrosophic or interval neutrosophic positive 
ideal solution and to select the optimal one with the maxi-

mum relative closeness coefficient. Two illustrative exam-
ples and comparison analysis with the existing methods 
show that the developed methods can not only relieve the 
influence of subjectivity of the decision maker but also re-
main the original decision information sufficiently. 

To do so, the remainder of this paper is set out as 

follows. Section 2 briefly recalls some basic concepts of 
neutrosophic sets, single-valued neutrosophic sets 
(SVNSs), and interval neutrosophic sets (INSs). Section 3 
develops a novel method based on the maximizing 
deviation method and the single-valued neutrosophic 
TOPSIS (SVNTOPSIS) for solving the single-valued 

neutrosophic multi-criteria decision making with 
incomplete weight information. Section 4 develops a novel 
method based on the maximizing deviation method and the 
interval neutrosophic TOPSIS (INTOPSIS) for solving the 
interval neutrosophic multi-criteria decision making with 
incomplete weight information. Section 5 provides two 

practical examples to illustrate the effectiveness and 
practicality of the developed methods. Section 6 ends the 
paper with some concluding remarks. 

2 Neutrosophic sets and and SVNSs 

In this section, we will give a brief overview of neutro-
sophic sets [12], single-valued neutrosophic set (SVNSs) 

[17], and interval neutrosophic sets (INSs) [16]. 

2.1 Neutrosophic sets 

Neutrosophic set is a part of neutrosophy, which stud-

ies the origin, nature, and scope of neutralities, as well as 

their interactions with different ideational spectra [12], and 

is a powerful general formal framework, which generalizes 

the above mentioned sets from philosophical point of view. 

Smarandache [12] defined a neutrosophic set as fol-

lows: 

Definition 2.1 [12]. Let X  be a space of points (objects), 

with a generic element in X  denoted by x . A neutrosoph-

ic set A  in X  is characterized by a truth-membership 

function  AT x , a indeterminacy-membership function 

 AI x , and a falsity-membership function  AF x . The 

functions  AT x ,  AI x  and  AF x  are real standard or 

nonstandard subsets of 0 ,1    . That is 

  : 0 ,1AT x X     ,   : 0 ,1AI x X      , and

  : 0 ,1AF x X     .
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There is no restriction on the sum of  AT x ,  AI x  and 

 AF x , so      0 sup sup sup 3A A AT x I x F x     . 

Definition 2.2 [12]. The complement of a neutrosophic set 

A  is denoted by 
cA  and is defined as 

     1c AA
T x T x ,      1c AA

I x I x , and 

     1c AA
F x F x  for every x  in X . 

Definition 2.3 [12]. A neutrosophic set A  is contained in 

the other neutrosophic set B , A B  if and only if 

   inf infA BT x T x ,    sup supA BT x T x , 

   inf infA BI x I x ,    sup supA BI x I x , 

   inf infA BF x F x , and    sup supA BF x F x  for 

every x  in X . 

2.2 Single-valued neutrosophic sets (SVNSs) 

A single-valued neutrosophic set (SVNS) is an instance 

of a neutrosophic set, which has a wide range of applica-

tions in real scientific and engineering fields. In the follow-

ing, we review the definition of a SVNS proposed by 

Wang et al. [17]. 

Definition 2.4 [17]. Let X  be a space of points (objects) 

with generic elements in X  denoted by x . A single-

valued neutrosophic set (SVNS) A  in X  is characterized 

by truth-membership function  AT x , indeterminacy-

membership function  AI x , and falsity-membership 

function  AF x , where        , , 0,1A A AT x I x F x   for 

each point x  in X . 

A SVNS A  can be written as 

      , , ,A A AA x T x I x F x x X         (1) 

Let       , , ,i A i A i A i iA x T x I x F x x X   and 

      , , ,i B i B i B i iB x T x I x F x x X   be two sin-

gle-valued neutrosophic sets (SVNSs) in 

 1 2, , , nX x x x . Then we define the following dis-

tances for A  and B . 

(i) The Hamming distance 

 
       

   1

1
,

3

n
A i B i A i B i

i A i B i

T x T x I x I x
d A B

F x F x

    
 
  

  (2) 

(ii) The normalized Hamming distance 

 
       

   1

1
,

3

n
A i B i A i B i

i A i B i

T x T x I x I x
d A B

n F x F x

    
 
  

  (3) 

(iii) The Euclidean distance 

 
       

   

2 2

2
1

1
,

3

n
A i B i A i B i

i
A i B i

T x T x I x I x
d A B

F x F x

   
 
 
  

  (4) 

(iv) The normalized Euclidean distance 

 
       

   

2 2

2
1

1
,

3

n
A i B i A i B i

i
A i B i

T x T x I x I x
d A B

n F x F x

   
 
 
  

 (5) 

2.3 Interval neutrosophic sets (INSs) 

Definition 2.5 [16]. Let X  be a space of points (objects) 

with generic elements in X  denoted by x . An interval 

neutrosophic set (INS) A  in X  is characterized by a 

truth-membership function  
A

T x , an indeterminacy-

membership function  
A

I x , and a falsity-membership

function  
A

F x . For each point x  in X , we have that 

       inf ,sup 0,1
A A A

T x T x T x    , 

       inf ,sup 0,1
A A A

I x I x I x    , 

       inf ,sup 0,1
A A A

F x F x F x    ,

and      0 sup sup sup 3
A A A

T x I x F x    . 

Let       , , ,i i i i iA A A
A x T x I x F x x X   and 

      , , ,i i i i iB B B
B x T x I x F x x X   be two inter-

val neutrosophic sets (INSs) in  1 2, , , nX x x x , 

where      inf ,supi i iA A A
T x T x T x    ,

     inf ,supi i iA A A
I x I x I x    ,

     inf ,supi i iA A A
F x F x F x    ,

      inf ,supi i iB B B
T x T x T x    ,

     inf ,supi i iB B B
I x I x I x    ,

and      inf ,supi i iB B B
F x F x F x    . Then Ye [22]

defined the following distances for A  and B . 

(i) The Hamming distance 

 

       

       

       
1

,

inf inf sup sup

1
inf inf sup sup

6

inf inf sup sup

i i i iB BA A
n

i i i iB BA A
i

i i i iB BA A

d A B

T x T x T x T x

I x I x I x I x

F x F x F x F x




    
 
    
 
   
 


  (6) 

(ii) The normalized Hamming distance 
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 

       

       

       
1

,

inf inf sup sup

1
inf inf sup sup

6

inf inf sup sup

i i i iB BA A
n

i i i iB BA A
i

i i i iB BA A

d A B

T x T x T x T x

I x I x I x I x
n

F x F x F x F x




    
 
    
 
   
 


 (7) 

(iii) The Euclidean distance 

 

       

       

       

2 2

2 2

1
2 2

,

inf inf sup sup

1
inf inf sup sup

6

inf inf sup sup

i i i iB BA A

n

i i i iB BA A
i

i i i iB BA A

d A B

T x T x T x T x

I x I x I x I x

F x F x F x F x





    
 
 

    
 
   
 


 (8) 

(iv) The normalized Euclidean distance 

 

       

       

       

2 2

2 2

1
2 2

,

inf inf sup sup

1
inf inf sup sup

6

inf inf sup sup

i i i iB BA A

n

i i i iB BA A
i

i i i iB BA A

d A B

T x T x T x T x

I x I x I x I x
n

F x F x F x F x





    
 
 

    
 
   
 


(9) 

3 A novel method for single-valued neutrosophic 
multi-criteria decision making with incomplete 
weight information 

3.1 Problem description 

The aim of multi-criteria decision making (MCDM) 

problems is to find the most desirable alternative(s) from a 

set of feasible alternatives according to a number of criteria 

or attributes. In general, the multi-criteria decision making 

problem includes uncertain, imprecise, incomplete, and in-

consistent information, which can be represented by 

SVNSs. In this section, we will present a method for han-

dling the MCDM problem under single-valued neutrosoph-

ic environments. First, a MCDM problem with single-

valued neutrosophic information can be outlined as: let 

 1 2, , , mA A A A  be a set of m  alternatives and 

 1 2, , , nC c c c  be a collection of n  criteria, whose 

weight vector is  1 2, , ,
T

nw w w w , with  0,1jw  , 

1,2, ,j n , and 
1

1
n

j

j

w


 . In this case, the character-

istic of the alternative iA  ( 1,2, ,i m ) with respect to 

all the criteria is represented by the following SVNS: 

      , , ,
i i ii j A j A j A j jA c T c I c F c c C 

where        , , 0,1
i i iA j A j A jT c I c F c  , and 

     0 3
i i iA j A j A jT c I c F c    ( 1,2, ,i m ,

1,2, ,j n ). 

Here,  
iA jT c  indicates the degree to which the alter-

native iA  satisfies the criterion jc ,  
iA jI c  indicates the 

indeterminacy degree to which the alternative iA  satisfies 

or does not satisfy the criterion jc , and  
iA jF c  indicates 

the degree to which the alternative iA  does not satisfy the 

criterion jc . For the sake of simplicity, a criterion value 

     , , ,
i i ij A j A j A jc T c I c F c  in iA  is denoted by a sin-

gle-valued neutrosophic value (SVNV) , ,ij ij ij ija T I F

( 1,2, ,i m , 1,2, ,j n ), which is usually derived 

from the evaluation of an alternative iA  with respect to a 

criterion jC  by means of a score law and data processing 

in practice [19,22]. All ija  ( 1,2, ,i m , 1,2, ,j n ) 

constitute a single valued neutrosophic decision matrix 

   , ,ij ij ij ijm n m n
A a T I F

 
   (see Table 1): 

Table 1: Single valued neutrosophic decision matrix A . 

3.2 Obtaining the optimal weights of criteria by 
the maximizing deviation method 

Due to the fact that many practical MCDM problems 

are complex and uncertain and human thinking is inherent-

ly subjective, the information about criterion weights is 

usually incomplete. For convenience, let   be a set of the 

known weight information [8,9,10,11], where   can be 

constructed by the following forms, for i j : 

Form 1. A weak ranking:  i jw w ; 

1 1c jc
nc

1A 11 11 11, ,T I F 1 1 1, ,j j jT I F
1 1 1, ,n n nT I F

iA 1 1 1, ,i i iT I F , ,ij ij ijT I F , ,in in inT I F

mA 1 1 1, ,m m mT I F , ,mj mj mjT I F , ,mn mn mnT I F
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Form 2. A strict ranking:  i j iw w    ( 0i  ); 

Form 3. A ranking of differences:  i j k lw w w w   , 

for j k l  ; 

Form 4. A ranking with multiples:  i i jw w

( 0 1i  ); 

Form 5. An interval form:  i i i iw    

( 0 1i i i      ). 

Wang [15] proposed the maximizing deviation method 

for estimating the criterion weights in MCDM problems 

with numerical information. According to Wang [15], if 

the performance values of all the alternatives have small 

differences under a criterion, it shows that such a criterion 

plays a less important role in choosing the best alternative 

and should be assigned a smaller weight. On the contrary, 

if a criterion makes the performance values of all the alter-

natives have obvious differences, then such a criterion 

plays a much important role in choosing the best alterna-

tive and should be assigned a larger weight. Especially, if 

all available alternatives score about equally with respect 

to a given criterion, then such a criterion will be judged un-

important by most decision makers and should be assigned 

a very small weight. Wang [15] suggests that zero weight 

should be assigned to the criterion of this kind. 

Here, based on the maximizing deviation method, we 

construct an optimization model to determine the optimal 

relative weights of criteria under single valued neutrosoph-

ic environments. For the criterion jc C , the deviation of 

the alternative iA  to all the other alternatives can be de-

fined as below: 

 
2 2 2

1 1

,
3

m m
ij qj ij qj ij qj

ij ij qj

q q

T T I I F F
D d a a

 

    
  

1,2, ,i m , 1,2, ,j n  (10) 

where  
2 2 2

,
3

ij qj ij qj ij qj

ij qj

T T I I F F
d a a

    


denotes the single valued neutrosophic Euclidean distance 

between two single-valued neutrosophic values (SVNVs) 

ija  and qja  defined as in Eq. (4). 

Let 

 
1 1 1

2 2 2

1 1

,

3

m m m

j ij ij qj

i i q

m m
ij qj ij qj ij qj

i q

D D d a a

T T I I F F

  

 

  

    

 



1,2, ,j n  (11) 

then jD  represents the deviation value of all alternatives 

to other alternatives for the criterion jc C . 

Further, let 

 

2 2 2

1 1 1 1 3

n n m m
ij qj ij qj ij qj

j j j

j j i q

T T I I F F
D w w D w

   

    
  

(12) 

then  D w  represents the deviation value of all alterna-

tives to other alternatives for all the criteria. 

Based on the above analysis, we can construct a non-

linear programming model to select the weight vector w  

by maximizing  D w , as follows:

 

2 2 2

1 1 1

2

1

max
3

s.t. 0, 1,2, , , 1

n m m
ij qj ij qj ij qj

j

j i q

n

j j

j

T T I I F F
D w w

w j n w

  



    


  





        (M-1) 

To solve this model, we construct the Lagrange function 

as follows: 

 

2 2 2

1 1 1

2

1

,
3

1
2

n m m
ij qj ij qj ij qj

j

j i q

n

j

j

T T I I F F
L w w

w





  



    
 

 
 

 





       (13) 

where   is the Lagrange multiplier. 

Differentiating Eq. (13) with respect to jw

( 1,2, ,j n ) and  , and setting these partial deriva-

tives equal to zero, then the following set of equations is 

obtained: 

2 2 2

1 1

0
3

m m
ij qj ij qj ij qj

j

i qj

T T I I F FL
w

w


 

    
  


  

         (14) 

2

1

1
1 0

2

n

j

j

L
w

 

 
   

  
    (15) 

It follows from Eq. (14) that 

2 2 2

1 1 3

m m
ij qj ij qj ij qj

i q

j

T T I I F F

w


 

    





 (16)     

Putting Eq. (16) into Eq. (15), we get 
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2
2 2 2

1 1 1 3

n m m
ij qj ij qj ij qj

j i q

T T I I F F


  

 
     

   
 
 

 

       (17) 

Then, by combining Eqs. (16) and (17), we have 

2 2 2

1 1

2
2 2 2

1 1 1

3

3

m m
ij qj ij qj ij qj

i q

j

n m m
ij qj ij qj ij qj

j i q

T T I I F F

w

T T I I F F

 

  

    



 
     

 
 
 



 

       (18) 

By normalizing jw  ( 1,2, ,j n ), we make their sum 

into a unit, and get 

2 2 2

1 1

2 2 2

1

1 1 1

3

3

m m
ij qj ij qj ij qj

j i q

j n

n m m
ij qj ij qj ij qjj

j

j i q

T T I I F F

w
w

T T I I F Fw

 



  

    

 

    






  (19) 

which can be considered as the optimal weight vector of 

criteria. 

However, it is noted that there are practical situations in 

which the information about the weight vector is not com-

pletely unknown but partially known. For such cases, we 

establish the following constrained optimization model: 

 

2 2 2

1 1 1

1

max
3

s.t. , 0, 1,2, , , 1

n m m
ij qj ij qj ij qj

j

j i q

n

j j

j

T T I I F F
D w w

w w j n w

  



    


   





    (M-2) 

It is noted that the model (M-2) is a linear programming 

model that can be solved using the MATLAB mathematics 

software package. Suppose that the optimal solution to the 

model (M-2) is  1 2, , ,
T

nw w w w , which can be con-

sidered as the weight vector of criteria. 

3.3. Extended TOPIS method for the MCDM with 
single valued neutrosophic information 

TOPSIS method, initially introduced by Hwang and 

Yoon [7], is a widely used method for dealing with 

MCDM problems, which focuses on choosing the alterna-

tive with the shortest distance from the positive ideal solu-

tion (PIS) and the farthest distance from the negative ideal 

solution (NIS). After obtaining the criterion weight values 

on basis of the maximizing deviation method, in the fol-

lowing, we will extend the TOPSIS method to take single-

valued neutrosophic information into account and utilize 

the distance measures of SVNVs to obtain the final ranking 

of the alternatives. 

In general, the criteria can be classified into two types: 

benefit criteria and cost criteria. The benefit criterion 

means that a higher value is better while for the cost crite-

rion is valid the opposite. Let 1C  be a collection of benefit 

criteria and 2C  be a collection of cost criteria, where 

1 2C C C  and 1 2C C  . Under single-valued neu-

trosophic environments, the single-valued neutrosophic 

PIS (SVNPIS), denoted by A
, can be identified by using

a maximum operator for the benefit criteria and a mini-

mum operator for the cost criteria to determine the best 

value of each criterion among all alternatives as follows: 

 1 2, , , nA a a a     (20) 

where 

     

     

1

2

max ,min ,min , if ,

min ,max ,max , if .

ij ij ij
i ii

j

ij ij ij
i i i

T I F j C

a

T I F j C



 


 
 


  (21) 

The single-valued neutrosophic NIS (SVNNIS), denoted 

by A
, can be identified by using a minimum operator for

the benefit criteria and a maximum operator for the cost 

criteria to determine the worst value of each criterion 

among all alternatives as follows: 

 1 2, , , nA a a a         (22) 

where 

     

     

1

2

min ,max ,max , if ,

max ,min ,min , if .

ij ij ij
i i i

j

ij ij ij
i ii

T I F j C

a

T I F j C



 


 
 


     (23) 

The separation measures, id 
 and id 

, of each alterna-

tive from the SVNPIS A
 and the SVNNIS A

, respec-

tively, are derived from 
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 

     

     

1

2

1

2 2 2

2 22

,

max min min

3

min max max

3

n

i j ij j

j

ij ij ij ij ij ij
i ii

j

j C

ij ij ij ij ij ij
i i i

j

j C

d w d a a

T T I I F F

w

T T I I F F

w

 









 
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  

 
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 







  (24) 

 

     
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2 22
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min max max

3

max min min

3

n

i j ij j
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i i i

j

j C

ij ij ij ij ij ij
i ii

j

j C

d w d a a

T T I I F F

w

T T I I F F

w

 









 
     

  

 
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 







  (25) 

The relative closeness coefficient of an alternative iA

with respect to the single-valued neutrosophic PIS A
 is

defined as the following formula: 

i
i

i i

d
C

d d



 



 (26) 

where 0 1iC  , 1,2, ,i m . Obviously, an alternative 

iA  is closer to the single-valued neutrosophic PIS A
 and

farther from the single-valued neutrosophic NIS A
 as iC

approaches 1. The larger the value of iC , the more differ-

ent between iA  and the single-valued neutrosophic NIS 

A
, while the more similar between iA  and the single-

valued neutrosophic PIS A
. Therefore, the alternative(s)

with the maximum relative closeness coefficient should be 

chosen as the optimal one(s). 

Based on the above analysis, we will develop a practi-

cal approach for dealing with MCDM problems, in which 

the information about criterion weights is incompletely 

known or completely unknown, and the criterion values 

take the form of single-valued neutrosophic information. 

The flowchart of the proposed approach for MCDM is 

provided in Fig. 1. The proposed approach is composed of 

the following steps: 

Step 1. For a MCDM problem, the decision maker (DM) 

constructs the single-valued neutrosophic decision matrix 

   , ,ij ij ij ijm n m n
A a T I F

 
  , where , ,ij ij ij ija T I F

is a single-valued neutrosophic value (SVNV), given by 

the DM, for the alternative iA  with respect to the attribute 

jc . 

Step 2. If the information about the criterion weights is 

completely unknown, then we use Eq. (19) to obtain the 

criterion weights; if the information about the criterion 

weights is partly known, then we solve the model (M-2) to 

obtain the criterion weights. 

Step 3. Utilize Eqs. (20), (21), (22), and (23) to determine 

the single-valued neutrosophic positive ideal solution 

(SVNPIS) A
 and the single-valued neutrosophic negative

ideal solution (SVNNIS) A
.

Step 4. Utilize Eqs. (24) and (25) to calculate the separa-

tion measures id 
 and id 

 of each alternative iA  from the 

single-valued neutrosophic positive ideal solution 

(SVNPIS) A
 and the single-valued neutrosophic negative

ideal solution (SVNNIS) A
, respectively.

Step 5. Utilize Eq. (26) to calculate the relative closeness 

coefficient iC  of each alternative iA  to the single-valued 

neutrosophic positive ideal solution (SVNPIS) A
.

Step 6. Rank the alternatives iA  ( 1,2, ,i m ) accord-

ing to the relative closeness coefficients iC  ( 1,2, ,i m ) 

to the single-valued neutrosophic positive ideal solution 

(SVNPIS) A
 and then select the most desirable one(s).

4 A novel method for interval neutrosophic multi-
criteria decision making with incomplete weight 
information 

In this section, we will extend the results obtained in 

Section 3 to interval neutrosophic environments. 

4.1. Problem description 

Similar to Subsection 3.1, a MCDM problem under in-

terval neutrosophic environments can be summarized as 

follows: let  1 2, , , mA A A A  be a set of m  alterna-

tives and  1 2, , , nC c c c  be a collection of n  criteria, 

whose weight vector is  1 2, , ,
T

nw w w w , with 

 0,1jw  , 1,2, ,j n , and 
1

1
n

j

j

w


 . In this case,

the characteristic of the alternative iA  ( 1,2, ,i m ) 

with respect to all the criteria is represented by the follow-

ing INS: 

      
       

   

, , ,

, inf ,sup , inf ,sup ,

inf ,sup

i i i
i j j j j jA A A

j j j j jA A A A

j

j jA A

A c T c I c F c c C

c T c T c I c I c
c C

F c F c

 

    
    

  
    

where        inf ,sup 0,1
i

j j jA A A
T c T c T c  

  , 

       inf ,sup 0,1
i

j j jA A A
I c I c I c  

  ,
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       inf ,sup 0,1
i

j j jA A A
F c F c F c  

  , and 

     sup sup sup 3j j jA A A
T c I c F c  

 ( 1,2, ,i m , 1,2, ,j n ). 

Here,      inf ,sup
i

j j jA A A
T c T c T c 

   indicates the 

interval degree to which the alternative iA  satisfies the cri-

terion jc ,      inf ,sup
i

j j jA A A
I c I c I c 

   indicates 

the indeterminacy interval degree to which the alternative 

iA  satisfies or does not satisfy the criterion jc , and 

     inf ,sup
i

j j jA A A
F c F c F c 

   indicates the inter-

val degree to which the alternative iA  does not satisfy the 

criterion jc . For the sake of simplicity, a criterion value 

     , , ,
i i i

j j j jA A A
c T c I c F c  in iA  is denoted by an in-

terval neutrosophic value (INV) 

, , , , , , ,L U L U L U

ij ij ij ij ij ij ij ij ij ija T I F T T I I F F            

( 1,2, ,i m , 1,2, ,j n ), which is usually derived 

from the evaluation of an alternative iA  with respect to a 

criterion jc  by means of a score law and data processing 

in practice [19,22]. All ija  ( 1,2, ,i m , 1,2, ,j n ) 

constitute an interval neutrosophic decision matrix 

     , , , , , , ,L U L U L U

ij ij ij ij ij ij ij ij ij ijm n m n m n

A a T I F T T I I F F
  

             

(see Table 2): 

Table 2: Interval neutrosophic decision matrix A . 

4.2. Obtaining the optimal weights of criteria un-
der interval neutrosophic environments by the 
maximizing deviation method 

In what follows, similar to Subsection 3.2, based on the 

maximizing deviation method, we construct an optimiza-

tion model to determine the optimal relative weights of cri-

teria under interval neutrosophic environments. For the at-

tribute jc C , the deviation of the alternative iA  to all 

the other alternatives can be defined as below: 
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,
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    1,2, ,i m , 1,2, ,j n  (27) 

where  

2 2 2

2 2 2

,
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L L U U L L

ij qj ij qj ij qj
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    


denotes the interval neutrosophic Euclidean distance be-

tween two interval neutrosophic values (INVs) ija  and qja

defined as in Eq. (8). 

Let 

 
1 1 1
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1,2, ,j n  (28) 

then jD  represents the deviation value of all alternatives 

to other alternatives for the criterion jc C . 

Further, let 
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n

j j
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 

(29) 

then  D w  represents the deviation value of all alterna-

tives to other alternatives for all the criteria. 

From the above analysis, we can construct a non-linear 

programming model to select the weight vector w  by 

maximizing  D w , as follows:

2 1c jc
nc

1A 11 11 11, ,T I F 1 1 1, ,j j jT I F 1 1 1, ,n n nT I F

iA 1 1 1, ,i i iT I F , ,ij ij ijT I F , ,in in inT I F

mA 1 1 1, ,m m mT I F , ,mj mj mjT I F , ,mn mn mnT I F
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 

2 2 2

2 2 2

1 1 1

2

1

max
6

s.t. 0, 1,2, , , 1

L L U U L L

ij qj ij qj ij qj

U U L L U U
n m m

ij qj ij qj ij qj

j

j i q

n

j j

j

T T T T I I

I I F F F F
D w w

w j n w

  



 
      

 
     

  
 
 
 
 

  

 



  (M-3) 

To solve this model, we construct the Lagrange function: 

 

2 2 2

2 2 2

1 1 1

2

1

,
6

1
2

L L U U L L

ij qj ij qj ij qj

U U L L U U
n m m

ij qj ij qj ij qj

j

j i q

n

j

j

T T T T I I

I I F F F F
L w w

w





  



 
      

 
     

  
 
 
 
 

 
 

 

 



 (30) 

where   is the Lagrange multiplier. 

Differentiating Eq. (30) with respect to jw

( 1,2, ,j n ) and  , and setting these partial deriva-

tives equal to zero, then the following set of equations is 

obtained: 

2 2 2

2 2 2

1 1 6

0

L L U U L L

ij qj ij qj ij qj

U U L L U U
m m

ij qj ij qj ij qj

i qj

j

T T T T I I

I I F F F FL

w

w

 

     

    
 







         (31) 

2

1

1
1 0

2

n

j

j

L
w

 

 
   

  
         (32) 

It follows from Eq. (32) that 

2 2 2

2 2 2

1 1 6

L L U U L L

ij qj ij qj ij qj

U U L L U U
m m

ij qj ij qj ij qj

i q

j

T T T T I I

I I F F F F

w


 

     

    





 (33) 

Putting Eq. (33) into Eq. (32), we get 

2
2 2 2

2 2 2

1 1 1 6

L L U U L L

ij qj ij qj ij qj

U U L L U U
n m m

ij qj ij qj ij qj

j i q

T T T T I I

I I F F F F


  

 
     

 
      

   
 
 
 
 

 

   (34) 

Then, by combining Eqs. (33) and (34), we have 

2 2 2

2 2 2

1 1

2
2 2 2

2 2 2

1 1 1

6

6

L L U U L L

ij qj ij qj ij qj

U U L L U U
m m

ij qj ij qj ij qj

i q

j

L L U U L L

ij qj ij qj ij qj

U U L L U U
n m m

ij qj ij qj ij qj

j i q

T T T T I I

I I F F F F

w

T T T T I I

I I F F F F

 

  

     

    



 
      

 
     

 
 
 
 
 



 

  (35) 

By normalizing jw  ( 1,2, ,j n ), we make their sum 

into a unit, and get 
2 2 2

2 2 2

1 1

2 2 2

1
2 2 2

1 1 1

6

6

L L U U L L

ij qj ij qj ij qj

U U L L U U
m m

ij qj ij qj ij qj

j i q

j n
L L U U L L

ij qj ij qj ij qjj

j

U U L L U U
n m m

ij qj ij qj ij qj

j i q

T T T T I I

I I F F F F

w
w

T T T T I Iw

I I F F F F

 



  

     

    

 

     

    







    (36) 

which can be considered as the optimal weight vector of 

criteria. 

However, it is noted that there are practical situations in 

which the information about the weight vector is not com-

pletely unknown but partially known. For such cases, we 

establish the following constrained optimization model: 

 

2 2 2

2 2 2

1 1 1

1

max
6

s.t. , 0, 1,2, , , 1

L L U U L L

ij qj ij qj ij qj

U U L L U U
n m m

ij qj ij qj ij qj

j

j i q

n

j j

j

T T T T I I

I I F F F F
D w w

w w j n w

  



 
      

 
     

  
 
 
 
 

   

 



                                                (M-4) 
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It is noted that the model (M-4) is a linear programming 

model that can be solved using the MATLAB mathematics 

software package. Suppose that the optimal solution to the 

model (M-4) is  1 2, , ,
T

nw w w w , which can be con-

sidered as the weight vector of criteria. 

4.3. Extended TOPIS method for the MCDM with 
interval neutrosophic information 

After obtaining the weights of criteria on basis of the 

maximizing deviation method, similar to Subsection 3.3, 

we next extend the TOPSIS method to interval neutrosoph-

ic environments and develop an extended TOPSIS method 

to obtain the final ranking of the alternatives. 

Under interval neutrosophic environments, the interval 

neutrosophic PIS (INPIS), denoted by A
, and the interval

neutrosophic NIS (INNIS), denoted by A , can be defined 

as follows: 

 1 2, , , nA a a a      (37) 

 1 2, , , nA a a a       (38) 

where 

     

     
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    (40) 

The separation measures, id 
 and id 

, of each alterna-

tive iA  from the INPIS A
 and the INNIS A

, respec-

tively, are derived from 

 

     
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 (42) 

The relative closeness coefficient of an alternative iA

with respect to the interval neutrosophic PIS A
 is defined

as the following formula: 

i
i

i i

d
C

d d



 



 (43) 

where 0 1iC  , 1,2, ,i m . Obviously, an alternative 

iA  is closer to the interval neutrosophic PIS A
 and far-

ther from the interval neutrosophic NIS A
 as iC  ap-

proaches 1. The larger the value of iC , the more different 

between iA  and the interval neutrosophic NIS A
, while

the more similar between iA  and the interval neutrosophic 

PIS A
. Therefore, the alternative(s) with the maximum

relative closeness coefficient should be chosen as the op-

timal one(s). 

Based on the above analysis, analogous to Subsection 

3.3, we will develop a practical approach for dealing with 

MCDM problems, in which the information about criterion 

weights is incompletely known or completely unknown, 

and the criterion values take the form of interval neutro-

sophic information. 

The flowchart of the proposed approach for MCDM is 
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provided in Fig. 1. The proposed approach is composed of 

the following steps: 

Step 1. For a MCDM problem, the decision maker con-

structs the interval neutrosophic decision matrix 

   , ,ij ij ij ijm n m n
A a T I F

 
  , where , ,ij ij ij ija T I F

is an interval neutrosophic value (INV), given by the DM, 

for the alternative iA  with respect to the criterion jc . 

Step 2. If the information about the criterion weights is 

completely unknown, then we use Eq. (36) to obtain the 

criterion weights; if the information about the criterion 

weights is partly known, then we solve the model (M-4) to 

obtain the criterion weights. 

Step 3. Utilize Eqs. (37), (38), (39), and (40) to determine 

the interval neutrosophic positive ideal solution (INPIS) 

A
 and the interval neutrosophic negative ideal solution

(INNIS) A
.

 Step 4. Utilize Eqs. (41) and (42) to calculate the separa-

tion measures id 
 and id 

 of each alternative iA  from the 

interval neutrosophic positive ideal solution (INPIS) A

and the interval neutrosophic negative ideal solution (IN-

NIS) A
, respectively.

 Step 5. Utilize Eq. (43) to calculate the relative closeness 

coefficient iC  of each alternative iA  to the interval neu-

trosophic positive ideal solution (INPIS) A
.

Step 6. Rank the alternatives iA  ( 1,2, ,i m ) accord-

ing to the relative closeness coefficients iC  ( 1,2, ,i m ) 

to the interval neutrosophic positive ideal solution (INPIS) 

A
 and then select the most desirable one(s).

5 Illustrative examples 

5.1. A practical example under single-valued neu-
trosophic environments 

Example 5.1 [13]. In order to demonstrate the application 

of the proposed approach, a multi-criteria decision making 

problem adapted from Tan and Chen [13] is concerned 

with a manufacturing company which wants to select the 

best global supplier according to the core competencies of 

suppliers. Now suppose that there are a set of four suppli-

ers  1 2 3 4 5, , , ,A A A A A A  whose core competencies are

evaluated by means of the following four criteria: 

(1) the level of technology innovation ( 1c ), 

(2) the control ability of flow ( 2c ), 

(3) the ability of management ( 3c ), 

(4) the level of service ( 4c ). 

It is noted that all the criteria jc  ( 1,2,3,4j  ) are the 

benefit type attributes. The selection of the best global 

supplier can be modeled as a hierarchical structure, as 

shown in Fig. 2. According to [21], we can obtain the 

evaluation of an alternative iA  ( 1,2,3,4,5i  ) with re-

spect to a criterion jc  ( 1,2,3,4j  ) from the question-

naire of a domain expert. Take 11a  as an example. When 

we ask the opinion of an expert about an alternative 1A

with respect to a criterion 1c , he or she may say that the 

possibility in which the statement is good is 0.5 and the 

statement is poor is 0.3 and the degree in which he or she 

is not sure is 0.1. In this case, the evaluation of the alterna-

tive 1A  with respect to the criterion 1c  is expressed as a 

single-valued neutrosophic value 11 0.5,0.1,0.3a  . 

Through the similar method from the expert, we can obtain 

all the evaluations of all the alternatives iA  ( 1,2,3,4,5i  ) 

with respect to all the criteria jc  ( 1,2,3,4j  ), which are 

listed in the following single valued neutrosophic decision 

matrix    , ,ij ij ij ijm n m n
A a T I F

 
   (see Table 3). 

 Table 3: Single valued neutrosophic decision matrix A .

Selection of the best global supplier

3A 4A
2A

1A 5A

1c
2c 3c

4c

Fig. 2: Hierarchical structure. 

In what follows, we utilize the developed method to 

find the best alternative(s). We now discuss two different 

cases. 

Case 1: Assume that the information about the criterion 

weights is completely unknown; in this case, we use the 

following steps to get the most desirable alternative(s). 

Step 1. Considering that the information about the criterion 

weights is completely unknown, we utilize Eq. (19) to get 

the optimal weight vector of attributes: 

3 1c 2c 3c 4c

1A 0.5,0.1,0.3 0.5,0.1,0.4 0.3,0.2,0.3 0.7,0.2,0.1

2A 0.6,0.1,0.2 0.5,0.2,0.2 0.5,0.4,0.1 0.4,0.2,0.3

3A
0.9,0.0,0.1 0.3,0.2,0.3 0.2,0.2,0.5 0.4,0.3,0.2

4A 0.8,0.1,0.1 0.5,0.0,0.4 0.6,0.2,0.1 0.2,0.3,0.4

5A 0.7,0.2,0.1 0.4,0.3,0.2 0.6,0.1,0.3 0.5,0.4,0.1
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 0.2184,0.2021,0.3105,0.2689
T

w 

Step 2. Utilize Eqs. (20), (21), (22), and (23) to determine 

the single valued neutrosophic PIS A
 and the single val-

ued neutrosophic NIS A
, respectively:

 0.9,0.0,0.1 , 0.5,0.0,0.2 , 0.6,0.1,0.1 , 0.7,0.2,0.1A 

 0.5,0.2,0.3 , 0.3,0.3,0.4 , 0.2,0.4,0.5 , 0.2,0.4,0.4A 

Step 3: Utilize Eqs. (24) and (25) to calculate the separa-

tion measures id 
 and id 

 of each alternative iA  from the 

single valued neutrosophic PIS A
 and the single valued

neutrosophic NIS A
, respectively:

1 0.1510d   , 1 0.1951d   , 2 0.1778d   , 

2 0.1931d   , 3 0.1895d   , 3 0.1607d   , 

4 0.1510d   , 4 0.2123d   , 5 0.1523d   ,   

5 0.2242d   . 

Step 4: Utilize Eq. (26) to calculate the relative closeness 

coefficient iC  of each alternative iA  to the single valued 

neutrosophic PIS A
:

1 0.5638C  ,  2 0.5205C  , 3 0.4589C  , 

 4 0.5845C  , 5 0.5954C  . 

 Step 5: Rank the alternatives iA  ( 1,2,3,4,5i  ) accord-

ing to the relative closeness coefficient iC  ( 1,2,3,4,5i  ). 

Clearly, 5 4 1 2 3A A A A A , and thus the best alter-

native is 5A . 

Case 2: The information about the criterion weights is 

partly known and the known weight information is given 

as follows: 

1 2 3

4

4

1

0.15 0.25, 0.25 0.3, 0.3 0.4,

0.35 0.5, 0, 1,2,3,4, 1j j

j

w w w

w w j w


      
 

   
     

 


 

Step 1: Utilize the model (M-2) to construct the single-

objective model as follows: 

  1 2 3 4max 2.9496 2.7295 4.1923 3.6315

s.t.

D w w w w w

w

    




By solving this model, we get the optimal weight vec-

tor of criteria  0.15,0.25,0.3,0.35
T

w  .

Step 2. Utilize Eqs. (20), (21), (22), and (23) to determine 

the single valued neutrosophic PIS A
 and the single val-

ued neutrosophic NIS A
, respectively:

 0.9,0.0,0.1 , 0.5,0.0,0.2 , 0.6,0.1,0.1 , 0.7,0.2,0.1A 

 0.5,0.2,0.3 , 0.3,0.3,0.4 , 0.2,0.4,0.5 , 0.2,0.4,0.4A 

Step 3: Utilize Eqs. (24) and (25) to calculate the separa-

tion measures id 
 and id 

 of each alternative iA  from the 

single valued neutrosophic PIS A
 and the single valued

neutrosophic NIS A
, respectively:

1 0.1368d   , 1 0.2260d   , 2 0.1852d   , 

2 0.2055d   , 3 0.2098d   , 3 0.1581d   , 

4 0.1780d   , 4 0.2086d   , 5 0.1619d   ,   

5 0.2358d   . 

Step 4: Utilize Eq. (26) to calculate the relative closeness 

coefficient iC  of each alternative iA  to the single valued 

neutrosophic PIS A
:

1 0.6230C  ,  2 0.5260C  , 3 0.4297C  , 

4 0.5396C  , 5 0.5928C  . 

Step 5: Rank the alternatives iA  ( 1,2,3,4,5i  ) accord-

ing to the relative closeness coefficient iC  ( 1,2,3,4,5i  ). 

Clearly, 1 5 4 2 3A A A A A , and thus the best alter-

native is 1A . 

5.2. The analysis process under interval neutro-
sophic environments 

Example 5.2. Let’s revisit Example 5.1. Suppose that the 

five possible alternatives are to be evaluated under the 

above four criteria by the form of INVs, as shown in the 

following interval neutrosophic decision matrix A  (see 

Table 4). 

Table 4: Interval neutrosophic decision matrix A . 

In what follows, we proceed to utilize the developed 

method to find the most optimal alternative(s), which con-

sists of the following two cases: 

Case 1: Assume that the information about the criterion 

weights is completely unknown; in this case, we use the 

following steps to get the most desirable alternative(s). 

Step 1. Considering that the information about the criterion 

weights is completely unknown, we utilize Eq. (36) to get 

the optimal weight vector of attributes: 

4 1c 2c 3c 4c

1A
<[0.7, 0.9], 

[0.1, 0.2], 

[0.5, 0.6]> 

<[0.3, 0.4], 

[0.2, 0.3], 

[0.4, 0.5]> 

<[0.3, 0.5], 

[0.2, 0.3], 

[0.6, 0.7]> 

<[0.7, 0.9], 

[0.3, 0.4], 

[0.5, 0.6]> 

2A
<[0.5, 0.6], 

[0.2,0.3], 

[0.2, 0.4]> 

<[0.2, 0.3], 

[0.1, 0.3], 

[0.7, 0.8]> 

< [0.5, 0.7], 

[0.2, 0.3], 

[0.7, 0.8]> 

<[0.8, 0.9], 

[0.1, 0.2], 

[0.5, 0.7]> 

3A
< [0.4, 0.5], 

[0.2, 0.3], 

[0.4, 0.6]> 

<[0.3, 0.4], 

[0.1, 0.2], 

[0.7, 0.9]> 

<[0.3, 0.5], 

[0.2, 0.3], 

[0.6, 0.7]> 

<[0.7, 0.9], 

[0.2, 0.3], 

[0.5, 0.6]> 

4A
< [0.2,0.3], 

[0.1, 0.2], 

[0.4, 0.5]> 

<[0.4, 0.5], 

[0.3, 0.5], 

[0.2, 0.3]> 

<[0.8, 0.9], 

[0.1, 0.3], 

[0.3, 0.4]> 

< [0.2,0.3], 

[0.3, 0.5], 

[0.6, 0.8]> 

5A
<[0.7, 0.8], 

[0.3,0.4], 

[0.6,0.7] > 

< [0.6, 0.7], 

[0.1, 0.2], 

[0.7, 0.9]> 

<[0.2, 0.3], 

[0.1, 0.2], 

[0.7, 0.8]> 

<[0.6, 0.7], 

[0.3, 0.4], 

[0.4, 0.5]> 
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 0.2490,0.2774,0.2380,0.2356
T

w 

Step 2. Utilize Eqs. (37), (38), (39), and (40) to determine 

the interval neutrosophic PIS A
 and the interval neutro-

sophic NIS A
, respectively:

0.7,0.9,0.1,0.2,0.2,0.4 , 0.6,0.7,0.1,0.2, 0.2,0.3 ,

0.8,0.9,0.1,0.2,0.3,0.4 , 0.8,0.9,0.1,0.2, 0.4,0.5
A

  
  
  

 

   

   

0.2,0.3,0.3,0.4,0.6,0.7 , 0.2,0.3,0.3,0.5,0.7,0.9 ,

0.2,0.3,0.2,0.3,0.7,0.8 , 0.2,0.3,0.3,0.5,0.6,0.8
A

  
  
  

Step 3: Utilize Eqs. (41) and (42) to calculate the separa-

tion measures id 
 and id 

 of each alternative iA  from the 

interval neutrosophic PIS A
 and the interval neutrosophic

NIS A
, respectively:

1 0.2044d   , 1 0.2541d   , 2 0.2307d   , 

 2 0.2405d   , 3 0.2582d   , 3 0.1900d   , 

 4 0.2394d   ,   4 0.2343d   , 5 0.2853d   , 

   5 0.2268d   . 

Step 4: Utilize Eq. (43) to calculate the relative closeness 

coefficient iC  of each alternative iA  to the interval neu-

trosophic PIS A
:

1 0.5543C  ,  2 0.5104C  , 3 0.4239C  , 

 4 0.4946C  , 5 0.4429C  . 

Step 5: Rank the alternatives iA  ( 1,2,3,4,5i  ) accord-

ing to the relative closeness coefficient iC  ( 1,2,3,4,5i  ). 

Clearly, 1 2 4 5 3A A A A A , and thus the best alter-

native is 1A . 

Case 2: The information about the attribute weights is 

partly known and the known weight information is given 

as follows: 

1 2 3

4

4

1

0.25 0.3, 0.25 0.35, 0.35 0.4,

0.4 0.45, 0, 1,2,3,4, 1j j

j

w w w

w w j w


      
 

   
     

 


Step 1: Utilize the model (M-4) to construct the single-

objective model as follows: 

  1 2 3 4max 4.2748 4.7627 4.0859 4.0438

s.t.

D w w w w w

w

   




By solving this model, we get the optimal weight vector 

of criteria  0.25,0.25,0.35,0.4
T

w  . 

Step 2. Utilize Eqs. (37), (38), (39), and (40) to determine 

the interval neutrosophic PIS A
 and the interval neutro-

sophic NIS A
, respectively:

0.7,0.9,0.1,0.2,0.2,0.4 , 0.6,0.7,0.1,0.2, 0.2,0.3 ,

0.8,0.9,0.1,0.2,0.3,0.4 , 0.8,0.9,0.1,0.2, 0.4,0.5
A

  
  
  

 

   

   

0.2,0.3,0.3,0.4,0.6,0.7 , 0.2,0.3,0.3,0.5,0.7,0.9 ,

0.2,0.3,0.2,0.3,0.7,0.8 , 0.2,0.3,0.3,0.5,0.6,0.8
A

  
  
  

Step 3: Utilize Eqs. (41) and (42) to calculate the separa-

tion measures id 
 and id 

 of each alternative iA  from the 

interval neutrosophic PIS A
 and the interval neutrosophic 

NIS A
, respectively:

1 0.2566d   , 1 0.3152d   , 2 0.2670d   , 

 2 0.3228d   , 3 0.2992d   , 3 0.2545d   , 

 4 0.3056d   ,   4 0.2720d   , 5 0.3503d   , 

   5 0.2716d   . 

Step 4: Utilize Eq. (43) to calculate the relative closeness 

coefficient iC  of each alternative iA  to the interval neu-

trosophic PIS A
:

1 0.5513C  ,  2 0.5474C  , 3 0.4596C  , 

 4 0.4709C  , 5 0.4368C  . 

Step 5: Rank the alternatives iA  ( 1,2,3,4,5i  ) accord-

ing to the relative closeness coefficient iC  ( 1,2,3,4,5i  ). 

Clearly, 1 2 4 3 5A A A A A , and thus the best alter-

native is 1A . 

5.3. Comparison analysis with the existing single-
valued neutrosophic or interval neutrosophic 
multi-criteria decision making methods 

Recently, some methods [20,21,22,23] have been de-

veloped for solving the MCDM problems with single-

valued neutrosophic or interval neutrosophic information. 

In this section, we will perform a comparison analysis be-

tween our new methods and these existing methods, and 

then highlight the advantages of the new methods over 

these existing methods. 

It is noted that these existing methods have some in-

herent drawbacks, which are shown as follows: 

(1) The existing methods [20,21,22,23] need the decision 

maker to provide the weights of criteria in advance, which 

is subjective and sometime cannot yield the persuasive re-

sults. In contrast, our methods utilize the maximizing devi-

ation method to determine the weight values of criteria, 

which is more objective and reasonable than the other ex-

isting methods [20,21,22,23]. 

(2) In Ref. [23], Ye proposed a simplified neutrosophic 

weighted arithmetic average operator and a simplified neu-

trosophic weighted geometric average operator, and then 

utilized two aggregation operators to develop a method for 

multi-criteria decision making problems under simplified 

neutrosophic environments. However, it is noted that these 
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operators and method need to perform an aggregation on 

the input simplified neutrosophic arguments, which may 

increase the computational complexity and therefore lead 

to the loss of information. In contrast, our methods do not 

need to perform such an aggregation but directly deal with 

the input simplified neutrosophic arguments, thereby can 

retain the original decision information as much as possi-

ble. 

(3) In Ref. [22], Ye defined the Hamming and Euclidean 

distances between interval neutrosophic sets (INSs) and 

proposed the similarity measures between INSs on the ba-

sis of the relationship between similarity measures and dis-

tances. Moreover, Ye [22] utilized the similarity measures 

between each alternative and the ideal alternative to rank 

the alternatives and to determine the best one. In order to 

clearly demonstrate the comparison results, we use the 

method proposed in [22] to revisit Example 5.2, which is 

shown as follows: 

First, we identify an ideal alternative by using a maxi-

mum operator for the benefit criteria and a minimum oper-

ator for the cost criteria to determine the best value of each 

criterion among all alternatives as: 

0.7,0.9,0.1,0.2,0.2,0.4 , 0.6,0.7,0.1,0.2, 0.2,0.3 ,

0.8,0.9,0.1,0.2,0.3,0.4 , 0.8,0.9,0.1,0.2, 0.4,0.5
A

  
  
  

 

In order to be consistent with Example 5.2, the same dis-

tance measure and the same weights for criteria are adopt-

ed here. Then, we apply Eq. (8) to calculate the similarity 

measure between an alternative iA  ( 1,2,3,4,5i  ) and 

the ideal alternative A
 as follows:

   1 1, 1 , 1 0.2044 0.7956s A A d A A       

   2 2, 1 , 1 0.2307 0.7693s A A d A A       

   3 3, 1 , 1 0.2582 0.7418s A A d A A       

   4 4, 1 , 1 0.2394 0.7606s A A d A A       

   5 5, 1 , 1 0.2853 0.7147s A A d A A     

Finally, through the similarity measure  , is A A

( 1,2,3,4,5i  ) between each alternative and the ideal al-

ternative, the ranking order of all alternatives can be de-

termined as: 1 2 4 3 5A A A A A . Thus, the optimal 

alternative is 1A . 

It is easy to see that the optimal alternative obtained by 

the Ye’ method [22] is the same as our method, which 

shows the effectiveness, preciseness, and reasonableness of 

our method. However, it is noticed that the ranking order 

of the alternatives obtained by our method is 

1 2 4 5 3A A A A A , which is different from the 

ranking order obtained by the Ye’ method [22]. Concretely, 

the ranking order between 3A  and 5A  obtained by two 

methods are just converse, i.e., 5 3A A  for our method 

while 3 5A A  for the Ye’ method [22]. The main reason is 

that the Ye’ method determines a solution which is the 

closest to the positive ideal solution (PIS), while our meth-

od determines a solution with the shortest distance from 

the positive ideal solution (PIS) and the farthest from the 

negative ideal solution (NIS). Therefore, the Ye’ method is 

suitable for those situations in which the decision maker 

wants to have maximum profit and the risk of the decisions 

is less important for him, while our method is suitable for 

cautious (risk avoider) decision maker, because the deci-

sion maker might like to have a decision which not only 

makes as much profit as possible, but also avoids as much 

risk as possible. 

Conclusions 

Considering that some multi-criteria decision making 

problems contain uncertain, imprecise, incomplete, and in-
consistent information, and the information about criterion 
weights is usually incomplete, this paper has developed a 
novel method for single-valued neutrosophic or interval 
neutrosophic multi-criteria decision making with incom-
plete weight information. First, motivated by the idea that a 

larger weight should be assigned to the criterion with a 
larger deviation value among alternatives, a maximizing 
deviation method has been presented to determine the op-
timal criterion weights under single-valued neutrosophic or 
interval neutrosophic environments, which can eliminate 
the influence of subjectivity of criterion weights provided 

by the decision maker in advance. Then, a single-valued 
neutrosophic or interval neutrosophic TOPSIS is proposed 
to calculate the relative closeness coefficient of each alter-
native to the single-valued neutrosophic or interval neutro-
sophic positive ideal solution, based on which the consid-

ered alternatives are ranked and then the most desirable 
one is selected. The prominent advantages of the devel-
oped methods are that they can not only relieve the influ-
ence of subjectivity of the decision maker but also remain 
the original decision information sufficiently. Finally, the 
effectiveness and practicality of the developed methods 

have been illustrated with a best global supplier selection 
example, and the advantages of the developed methods 
have been demonstrated with a comparison with the other 
existing methods. 

. 
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