NSS Neutrosophic Sets and Systems, Vol. 54, 2023

University of New Mexico

gV
N1 =

On The Algebraic Properties of 2-Cyclic Refined
Neutrosophic Matrices and The Diagonalization Problem

1LRama Asad Nadweh, 2Rozina Ali,> Maretta Sarkis

Islamic Online University, Department Of Science and Information Technology, Doha, Qatar

ramaanadwehh@gmail.com

2Cairo University, Cairo, Egypt

rozyyy123n@gmail.com

3Abu Dhabi University, Abu Dhabi, United Arab Emirates

Sarkismarettal990@gmail.com

Abstract:

The n-cyclic refined neutrosophic algebraic structures are very diverse and rich materials.
In this paper, we study the elementary algebraic properties of 2-cyclic refined neutrosophic
square matrices, where we find formulas for computing determinants, eigen values, and
inverses. On the other hand, we solve the diagonalization problem of these matrices, where
a complete algorithm to diagonlaize every diagonalizable 2-cyclic refined neutrosophic

square matrix is obtained and illustrated by many related examples.

Key Words: n-cyclic refined neutrosophic ring, n —cyclic refined neutrosophic matrix, the
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1.Introduction

Neutrosophic algebraic structures were defined firstly in [1], by adding an algebraic
indeterminacy element I to classical algebraic structures to obtain n novel extensions. For
example, we can find neutrosophic geometry, neutrosophic functions, neutrosophic rings,

and neutrosophic spaces [2-7].
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The concept of n-cyclic neutrosophic algebraic structure was supposed in [8], and then it
has been studied widely, see [9-12].
As an important algebraic structure, neutrosophic matrices with many types were handled
and studied, where we can see many results about inverses, eigen vectors,
diagonalizations, and determinants were proven and established [13-24]. In the literature,
we have many types of neutrosophic matrices, refined neutrosophic matrices, and
n-refined neutrosophic matrices, and n-cyclic refined neutrosophic matrices [17].
The diagonalization algorithm for n-cyclic refined neutrosophic matrix has been asked as
an open problem in [12], and it is still open for all values of n.
This motivates us to study the diagonalization problem for n =2, and to present an effective
algorithm to diagonlaize a 2-cyclic refined neutrosophic square matrix, as well as many
related concepts, especially eigen values computing.
2. Preliminaries
Definition [8]
Let (R+,X) be a ring and I;1 < k < n be n sub-indeterminacies. We define R,(I)={ay +
ayI + -+ ayl, ; a; € R} to be n-cyclic refined neutrosophic ring.
Operations on R, (I) are defined as:
Yioxili + Xinovili = o + ¥yl Xiso xili X Do vili = X jco(x: X yi) il =27 —o(: X
¥i)(i+j modn) -

x is the multiplication on the ring R.
In this paper, we study open problem 3, open problem 4, and open problem 5 in [12].
3. Main discussion :

Definition.
Let M =My + M;I; + M,I, be a 2-cyclic refined neutrosophic matrix, then M is
diagonalizable if and only if there exists a 2-cyclic refined neutrosophic diagonal matrix K

and invertible matrix U such that M = UKU L.

Theorem.
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Let M =My+ M1, + M,I, be a 2-cyclic refined neutrosophic matrix, then M is
diagonalizable if and only if: My, My + M; + M, ,My — M; + M, are diagonalizable.

Proof.

Assume that M is diagonalizable, then there exists a diagonal matrix K = Ky + K11; + K51,
and an invertible matrix U = U, + U1, + U,I, such that M = UKU L.

The matrix equation UKU™* = M is equivalent to:

4 1 _
UoKoUp ™t + E11[(U0 + Uy 4+ Uy) (Ko + Ky + Kp)(Ug + Uy + Up) ™t
— Uy — Uy + Uy)(Kg — Ky + K3)(Ug — Uy + Uy) ™1
1
+ E12[(U0 + Uy + Uy)(Ky + Ky + K)(Ug + Uy + Uy)™t
— Uy — Uy + U)Ky — Ky + K2)(Ug — Uy + Up) ™t = 2UpKoUp ™|
= MO + Mlll + lez
Thus:

UOKOUO_1 = M,
(Ug+ U + U)Ky + Ky + K;))(Ug + Uy + Uy)™r = Mg + M; + M,
U — Uy + Up) (Ko — Ky + K)(Up — Uy + Up) ™t =My — My + M,

This implies My, My + My + M, ,My — M; + M, are diagonalizable.
Conversely, assume that My, My + M; + M, ,My — M; + M, are diagonalizable, then there
exists diagonal matrices Dy, Dy, D, and invertible matrices Py, P;, P, such that PyDyP, ™! =
My, P,D;P,”* = My + My + M,, P,D,P,™* = My — M; + M,.
This  implies  that My =—(PDPy™" = P,D,Py "), My = 2(PLDy Py ™" + P,D, Py " —
2PyDyPy )

We put D = Do +31;(D; = D;) + 5 1(Dy + Dy = 2Dg) = Lo +35 1 Ly +

Lo = Dy

hly{ Li=Di=D; .
L2:D1+D2_2D0

1 1 1 1 No = Fo
P:P0+511(P1—P2)+512(P1+P2—Zpo)=N0+511N1+512N2, N1=P1_P2
N2=P1+P2_2P0

We have:

P™t= No ™ + S L[ (No + Ny + Np) ™t = (Ng = Ny + No) ™1 + 2 L[ (No + Ny + Np) ™ —
(No = Ny + Np)™ = 2Ny = Py + 2L [P = P+ S [Pt + P — 2P
It is easy to check that PDP™ = My + My1; + M,I, = M, thus M is diagonalizable.

Example.
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Consider the following 2 x 2 2-cyclic refined matrix:

34_11 31 11 +11 1 1 -3 1

S11 T 512 511 512 =y n I

¥ = 2 2 2 2 :(3 0)+ 2 2 |42 2|,
11 11 , 31 +11 0 2 1 -3 -1 1
2t 272 2122 2 2 2 2

= XO + X111 + lez
We have:

%0=C Nxorxirn=C Nx-xrr=(1 9

X, is diagonalizable with X, = P, 1A,P,, where P, = ((1) 2), Ay = (g g)

Xo + X1 + X, is diagonalizable with X, + X; + X, = P,7*A,P;, where P, = ((1) _1), A =

2 0
(o 1)
o . . _p -1 _(3 0 _
Xo — X1 + X, is diagonalizable with X, —X; + X, = P,” "A,P,, where P, = (1 1), A, =
10
(o 4
According the previous theorem, we have.

X = P~1YP, where:

1 -3
=0 —~ 0
Y=A0+%hm1—@)+%5ml+@-aA@=(3 $+ SR PR R P
7 ° 2
13
(3453 0
31
0 2-Sh+3h

1 1
P=a{1+zhp;1—5‘ﬂ+§5p;1+5‘?—m%*]

1 ! 1 1-6L+1 ! I L I
:(1(5+ o2, 2 |, “hth ghtah
0 1 -1 11 2 1 1
— -1 > 1 —shtsh 1-L-1L
The Eigen Values.

Definition.

Let A=Ay + A1l; + A1, be an n-cyclic refined neutrosophic matrix, we say that T = t, +
t1l; + t;I; € Ry(I) is an eigen value if and only if AX =tX; X =X, + X111 + x31; is an
n-cyclic refined neutrosophic vector, where X; € R™.

X is called n-cyclic refined neutrosophic vector.
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Theorem.

Let A=Ay + A1l; + AzI; be an n-cyclic refined neutrosophic matrix, then T =t + t11; +
toI, € Ry(I) is an eigen value with X = X, + X11; + X,I, as eigen vector if and only if:

to is an eigen value of A, with X, as eigen vector, t, +t; +t, is an eigen value of A, +
A1 + A, with X, + X1 + X, as eigen vector, t, —t; +t, is an eigen value of Ay — 4; + 4,
with Xy, — X; + X, as eigen vector.

Proof.

The equation AX = tX is equivalent to:
1
AogXo + 511[(140 + A1+ A2)(Xo + X1+ X2) — (Ag — A1 + 42)(Xo — X1 + X7)]

1
+ 512[(140 +A; +A)(Xo + X1 + X)) + (Ag — Ay + A) (X — Xy + X3)
—240Xo]

1
=toXo + Eh[(to +t; )Xo + X1 + X3) — (to — t1 +t2)(Xo — X1 + X3)]

1
+ 512[(150 + it + )Xo + X1 +X5) + (tg — t + t3)(Xo — X1 + X)) — 2t0X,]
So that:

tOXO - AOXO (1)
(to+t1 +t2)(Xo+ Xy +X3) — (g —t; + )Xo — X; + X3) = (Ag + A1 + A) (X + X1 + X3) — (A — Aq + A;
(to+t1 +t2)(Xo+ Xy + X3) — (g —t; + )Xo — X; + X3) = (Ag + A1 + A) (X + X1 + X3) — (A — Aq + A;

This equivalents:

AopXo = toXo
(AO +A1 +A2)(X0 +X1 +X2) == (tO + tl + tZ)(XO +X1 +X2)
(Ap—A; +A)(Xg — X1 + X3) = (tg — t1 + )Xo — X1 + X3)

Thus, the proof is complete.
Example.

Consider the matrix:

3_{_11 31 1I+1I 1 1 -3 1

St 7 512 511 512 5 5 5 5

A= 270 2 2t 2 :(3 0)+ 2 2 042 2]
11 11 ) 31 11 0 2 1 -3 -1 1
21Tz fTgh Tk 2 2 2 2

= AO + Alll + Azlz
The eigen values of A, are {3,2}.
The eigen values of Ay + A, + A, are {2,1}.

The eigen values of Ay — A; + A, are {1,4}.
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To find the corresponding 2 x 2 2-cyclic refined neutrosophic matrix 4, we discuss the
following cases:
Case(l). If to = 3, to + tl + tz = 2, to - t]_ + tz = 1, then:
1 -3 1 3
tl :5 ’ tz :7 ,thuS T1 = 3+511_512.

Case(Z). If to = 3, to + tl + tz = 2, to - t]_ + tz = 4, then:

ty=—1,t,=0,thus T, =3 —1I,.
Case(3).If t, =3, to+t;+t, =1, to —t; +t, = 1, then:
t,=0,t,=—2,thus T; = 3 — 2L,
Case(4).If ty =3, to+t;+t, =1, to —t; +t, = 4, then:
ty =_73 , b =_71 ,thus T, = 3—%11—212.
Case(5).If tg =2, tg+t; +t, =2, ty—t, +t, =1, then:
ti=5, =", thus Ts =3 +_I, —11,.
Case(6). If tg =2, to+t; +t, =2, to —t; +t, = 4, then:
ty=—1,t,=1,thus Ty=3—1, + I,.
Case(7).If ty =2, to+t;+t, =1, to —t; +t, =1, then:
t;=0,t,=—1,thus T, =3 —1,.
Case(8).If tg =2, to+t;+t, =1, to —t; +t, = 4, then:
ti ==, ty == thus Ty =3 -2, +1,.
This implies that A has 8 eigen values.
The determinant of an n-cyclic refined neutrosophic matrix.
According to the previous discussion, we have found an algorithm to compute n-cyclic
refined neutrosophic matrix.
From the point of view, we are forced to study the computing of eigen values by
determinants.
Definition.
Let A=Ay + Al + AyI, be an n-cyclic refined neutrosophic matrix, we define its
determinant as follows:
detA = det A + 3 I1[det(Ag + Ay + A;) — det(Ag — Ay + A;)] +5 L [det(4q + Ay + Az) +
det(4y — A; + A,) — 2det4y].

Theorem.
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Let A=Ay + A1l + Ayl B = By + B11; + By, be two n X n n-cyclic refined neutrosophic
matrices, then:

1). A isinvertible if and only if detA is invertible.

2). det AT = det A.

3). det(A.B) = detA.detB.

4). T =ty + t11; +t,1, isaneigen of A if and only if det(A — TU,x,) = 0.

Proof.

1). It is clear and easy.

2). AT = A," + A,"I, + A," I, thus:
1
detAT = det4,” + 5h [det(Ay + A; + Ay)T — det(4, — Ay + 4,)7]

+ %12 [det(Ao + Ay + A)T = det(4y — Ay + A;)T — 2det4,” ]| = detA
3). A.B = AgBo +35 L [(Ag + Ay + A3)(Bo + By + By) — (Ao — Ay + A3)(Bo — By + By)] +
%12[(140 + Ay + A3)(By + By + By) + (Ag — Ay + A3) (B — By + By) — 240Bo] = A¢Bo +
%Il(T1 -T,)+ %Iz (Ty + T, — 244B,), where:
Ty = (Ao + A1 + A2)(By + By + By),T, = (Ag — A1 + A2)(By — By + B3)
det(4. B) = det Ay B,

1 1 1 1 1
+§Il [det(le _ETZ +§T1 +§T2 _AOBO +AoBo>

1 1 1 1
- det(AOBO —ETl +ET2 +§T1 +§T2 _AOBO)]

1 1 1 1 1
+§IZ [det(le _ETZ +§T1 +§T2 _AOBO +AoBo>

1 1 1 1
- det(AoBO _ET]_ +§T2 + ETl + ETZ - AoB()) - ZdetAoBo]

= detAy detB, + %h[detTl —detT,] + %Iz [detTy + detT, — 2 det A, det Bo]
= det A, det B,

+ %11 [det(4o + Ay + A3) .det(By + By + By)

+ det(dy — Ay + A,) .det(By — By + By)]

+ %12 [det(Ao + A; + Az).det(By + By + By)
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4:) We haVe A - TUan = (AO + A111 + Azlz) - (to + tlll + tz]z)Uan = (AO - tOUan) +
(A1 — t1Upxn)ly + (A — tUnyn) 1.
det(A — TUpxn)
= det(Ay — toUpnxn)
1
+ 511 [det(Ag + Ay + A, — (to + t1 + t2)Upxn)
—det(4dg — Ay + A4, — (to — t1 + t2)Upxn)]
1
+ EIZ [det(Ag + A; + Ay — (to + t1 + t2)Upxn)
+det(Ag — Ay + A, — (t — t1 + t3)Unxn) — 2det(Ag — toUpyn)]
The equation det(4 — TUyxy,) = 0 is equivalent to:

det(4g — toUnxn) =0
det(AO +A;+ A4, - (tO +t + tz)Uan) =0
det(AO - Al + Az — (to - tl + tz)Uan) =0

This is equivalent to:
To is eigen value of Ay, to +t; +t;, is eigen value of Ay + A; + A,, to —t; +t, is eigen

value of Ay — A; + A, thus T is an eigen value of A.

Theorem.
Let A=Ay + A1l + Azl B = By + B11; + By1, be two n X n n-cyclic refined neutrosophic

matrices, then:
1
A.B = A¢B, + 511[(140 + Ay + A)(Bo + By + By) — (Ag — Ay + A2)(By — By + By)]

1
+ Elz[(Ao +4; + A2)(By + By + By) + (4o — 41 + A2)(By — By + By)
— 240By]
The proof is easy and clear.
Example.

Consider the following 2 X 2 2-cyclic refined neutrosophic matrix:

12y, 2 1 1 0y, (1+2L+1, 1+ \_
A_(O 2)+(1 1)11+(3 1)12_( I + 31, 2+11+12>—A0+A111+A212

4 3 1

s a)r Qo+ ar+a) =4

a7 =22 ), o+ Ay +a) = b)) Uo-an+
-0 Don-noni =% 7
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1 1 -1,2 -1
-1 - - _
A "2( [4( 2(—2 0)]
1 14 -3 —_12—1_<1)2—2]
+212[4(—4 4)+2(—2 0) 2\3 (0 1)
1 -1 1 3 1
2 -1 1 -1 0
3 1
1 _
1 == -1 = 2 -2
+512( 4)+( 2)‘(0 1)]
-1 1 1 0
1 -1 5 7
1 1
2 -2 1 0 0
5 7
_ 1+ —1, —1—§Il+§12
I 1+11
1 2 21
Theorem.

Let X = Xy + X;1I; + X1, be a 2-cyclic refined neutrosophic matrix, then X is invertible if

and only if Xy, Xy + X; + X,, Xg — X; + X, are invertible, also:

4 1 _ _
Xt =X, 1+§I1[(X0+X1 +X)7H = (Xo — Xy + X5)7]

1
+ 512[(X0 +X1 + Xz)_l + (XO - X1 + Xz)_l - ZXO]
Proof.
Assume that X is invertible, the exists Y =Y, + Y;I; + Y51, such that X.Y = U, «,.

XY =XoYy + L[XoV: + X1 Yo + X0V + X1 Yol + L[XoY, + X,V + X1 V7 + X, 05]

1
= Xo¥o + 511[(X0 + X1+ X)) Yo+ Y+ 1) — KXo — X1 + X)) (Yo — Y5 + Y2)]

1
+ 512[(X0 + X+ X)) Yo+ Y + 1) + (Xo — X + Xp)(Yo — Y + 12) — 2X,Y5]

= Unxn
This implies that:

{ XoYo = Unxn
KXo+ X1+ X))V + Y+ V) =(Xo = X1 + X)) (Yo = Y1+ Y5) = Upyn

Hence X,, X, + X; + X5, Xy, — X; + X, are invertible.
On the other hand, we get YO = Xo_l, YO - Y1 + Y2 = (XO _X1 +X2)_1, YO + Y1 + Y2 =

(XO + X1 + Xz)_l, thus:

[(Xo+ X1 + X))t = (Xo — X1 + X) 71

NIH
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V=2 [(Xo + Xy +X) 7 4+ (Ko — Xy + X)) 7 = 2X, 7).
Conclusion

In this paper, we have presented a full solution of the diagonalization problem of 2-cyclic
refined neutrosophic matrices, where we have presented a novel algorithm to compute the
eigen values and vectors of 2-cyclic refined neutrosophic matrices that helps in
representing them as a product A"*DA, where A is an invertible matrix, and D is diagonal
matrix.

In the future, we suggest researchers to continue our efforts, and to study the possibility of

diagonalization problem of 3-cyclic refined neutrosophic matrices.
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