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Abstract:

The fusion of symbolic plithogenic sets with algebraic structures generates novel algebraic
neutrosophic structures that generalize the classical known structures. The objective of
this paper is to define the concept of symbolic 2-plithogenic vector space over a symbolic

2-plitogenic field.

Concepts such as AH-subspace and AH-linear transformation will be presented and

discussed in terms of theorems.
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Introduction

The concept of symbolic plithogenic sets was defined by Smarandache in [13-17,30], and he
suggested an algebraic approach of these sets. Laterally, the concept of symbolic
2-plithogenic rings [31], where the concepts such as symbolic AH-ideals, and

AH-homomorphisms were presented and discussed.

In general, we can say that symbolic plithogenic structures are very close to neutrosophic
algebraic structures with many differences in the definition of multiplication operation

[1-10].

Let R be a ring, the symbolic 2-plithogenic ring is defined as follows:
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2 —SPg ={ap + a1Py + ayPy; a; € R, Pi* = P, Py X P, = P12y = Po ).

Smarandache has defined algebraic operations on 2 — SPy as follows:

Addition:

[ag + a1 Py + ayP,] + [by + b1 Py + by Py] = (ag + by) + (a; + by)P; + (ay + by)P,.
Multiplication:

[ap + a; Py + ayP,]. [by + b1 Py + byP,] = aghy + aghy Py + agh,P, + a;boPy? + a b,P P, +
a;boPy + ayb, PiP, + ayb,Py% + ay by Pi Py = agby + (aghy + a;by + ayby)P; + (agh, + ajb, +
abg + azby + ayb,y)P,.

It is clear that (2 — SPr) is a ring.

Also, if R is commutative, then 2 — SPy is commutative, and if R has a unity (1), than 2 —
SPg has the same unity (1).

If Ris a field, then 2 — SP; is called a symbolic 2-plithogenic field.

In this paper, we study the symbolic 2-plithogenic vector spaces according to many points
of view, where substructures such as AH-subspaces, and AH-linear transformations will be
presented in terms of theorems. In addition, many examples will be illustrated to explain

the novelty of these ideas.

Main Discussion

Definition.
Let V be a vector space over the field F, let 2—SPr be the corresponding symbolic
2-plithogenic field.
2—SP; ={x+yP, +2P,; x,y,z € F,P;*> = P,,P,P, = P,P, = P,}.
We define the symbolic 2-plithogenic vector space as follows:
2—SP, =V +VP,+VP, ={a+bP, +cP,; a,b,c € V}.
Operations on 2 — SP, can be defined as follows:
Addition: (+):2 —SP, — 2 — SPy, such that:
[xo + 1Py + x2P2] + [yo + y1P1 + ysaPo] = (%o + ¥0) + (X1 + y1)Py + (x2 + ¥2) P
Multiplication: (.):2 — SPr X 2 — SP, = 2 — SPy, such that:

[a + bP; + cP,].[xg + x1 Py + x,P;]

= axy + (ax; + bxy + bxy)P; + (ax, + bx, + cxy + cx1 + cx3)P,

where x;,y; €V,a,b,c €F
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Theorem.
Let (2 - SPy,+,.) Isamodule over the ring 2 — SPp.
Proof.
Let X =xq + x.Py + x,P,,Y = yg +y1PL +y,P, €2—-SP, , A=ayg+a,P;+a,P,,B =>by+
b P; + b,P, € 2 — SP; we have:
LX=XX+N+Z=X+F+2D,X+(-X)=-X+X=0X+0=0+X=X
Also
AX +Y) = (ag + a1 Py + azPy)[(xo + o) + (x1 + y1)Py + (x2 + y2) P, ]
= ag(xo +yo) + (ag(xy +y1) + ar(xo + yo) + a; (x; + y1))Py
+ (ag(xz +y2) + ay(xz + y2) + az(xo + yo) + az(x; + y1) + az(x; +¥2))P,
=AX+AY
(A+ B)X = [(ag + bo) + (ay + b1)Py + (az + bz)P2](xg + x1 Py + x5P2)
= (aq + bo)xo + ((ag + bo)x; + (ay + by)xg + (ar + by)x; )Py
+ ((ag + bo)xy + (ay + by)xy + (az + by)xg + (az + by)xy + (ay + by)x2)P,
=AX+BX
(A.B).X = [agby + (aghy + a1by + a1by)P; + (agb, + a1b, + ayby + ayby + ayb,) Py ](x,
+x,P; + x,P,)
= agbyxy + [agboxs + (aghy + a1by + a1b1)xg + (aghy + a1by + a;b1)x1]P;
+ [agbox, + (aghy + azbg + a;by)x, + (agh, + a1b, + aybg + ayby + azby)xg
+ (agh, + a1b, + aybg + ayby + ayby)xq
+ (aghb, + a;b, + a,bg + ay,by + ayby)x, P, = A(B.X)
Example.
Let V = R3? be the Euclidean space over the field F = R.
The corresponding symbolic 2-plithogenic vector space over 2 — SPr is:
2 — SPps = {(x0,¥0,20) + (x1,¥1,21)P1 + (X2, ¥2,22) P2; X, ¥i, 2; € R}
Consider X = (1,1,0) + (2,-1,1)P; + (0,1,—-1)P, € 2 — SPp3s,A=2+ P, + P, € 2 — SP,. We
have:
AX=(0220)+[4-22)+ 1,10+ (2,-1,1D)]P,
+[(0,2,2) + (0,1,1) + (1,1,0) + (2,—-1,1) + (0,1,1)]P,
=(2,2,0) + (7,-2,3)P, + (3,4,5)P,
Definition.

Let 2 —SPy be a symbolic 2-plithogenic vector space over 2 — SPg, let V,,V;,V, be the

three subspaces of V, we define the AH-subspace as follows:
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W =Vy+ VP +V,P, ={x+yP, +2zP,; x €Vy,y EV,z € V,}
If Vo =V; =V,, then W is called an AHS-subspace.
Example.
Consider 2 — SPg3, we have Vy = {(a,0,0); a € R},V; ={(0,b,0); b € R},V, ={(0,0,¢); c €
R} are three subspaces of V = R3.
W =V, +V,P; +V,P, ={(a,0,0) + (0,b,0)P; + (0,0,c)P,; a,b,c € R} is an AH-subspace of
2 — SPps.
T =V, + VP + VP, ={(0,a,0) + (0,b,0)P; + (0,c,0)P;; a,b,c € R} is an AHS-subspace.
Theorem.
Let 2—SPy be a symbolic 2-plithogenic vector space over 2—SPr, let W be an
AHS-subspace of 2 — SPy, then W is a submodule of 2 — SPy.
Proof.
Suppose that W is an AHS-subspace, then there exists a subspace V, <V, such that
W =V, +VoP, + VP, ={x+yP; +2zP,; x,y,z € V}.
Let X = x¢ + x,P; + x,P,,Y =y +y, P, + y,P, € W, then:
X=Y=(xg—y)+ (xy —y)PL + (xz —y2)P, EW
VA=ay+a,P,+a,P, €2—SPg, then:
A X = agxy + (agx; + a;xg + ayx1)Py + (agxy + ayx, + azxg + azxq; + ayx,)P, € W, that is
because ayxg € Vy, agx, + a1xg + a1x1 € Vg, apxy + a1x, + ayxg + azxy +azx, €V, ,  this
implies the proof.
Definition.
Let V,W be two vector spaces over the field F. Let 2—-SP,, 2—SPy be the
corresponding symbolic 2-plithogenic vector spaces over 2 — SPg.
Let Ly,Ly,L,:V > W Dbe three linear transformations, we define the AH-linear
transformation as follows:
L:2—SPy — 2 —SPy,L = Lo+ L1 Py + LoPy ; L(x + yPy + zP,) = Lo(x) + Ly (y)P; + Ly (2)P,.
If Ly =Ly = L,, then L is called AHS-linear transformation.
Definition.
Let L=Ly+ L,P; +L,P,:2 —SP, » 2 — SPy, be an AH-linear transformation, we define:
1. AH — ker(L) = ker(Ly) + ker(L,)P, + ker(L,)P, = {x + yP, + zP,}; x € ker(L,),y €
ker(L,),z € ker(L,).
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2. AH —Im(L) = Im(Lo) + Im(L)P; + Im(L,)P, = {a + bP; + cP,};a € Im(Ly),b €
Im(Ly),c € Im(L,)

If L is AHS-linear transformation, then we get AHS — kernel, AHS — Image.
Theorem.
Let L =Ly+ LP; + LyP,:2 —SP, = 2 — SPy, be an AH-linear transformation, then:

1. AH — ker(L) is AH-subspace of 2 — SPy,.

2. AH —Im(L) is AH-subspace of 2 — SPy,.
Proof.

1. Since ker(Ly),ker(L,), ker(L,) are subspaces of V, then AH —ker(L) is an

AH-subspace of 2 — SPy.

2. Itisholds by the same.
Remark.
If Ly, L1, L, are isomorphism, then ker(Ly) = ker(L;) = ker(L,) = {0},Im(Ly) = Im(L,) =
Im(L,) = W, thus AH — ker(L) = {0}, AH —Im(L) = 2 — SPy,.
Example.
Take V = R3, W =R3, Ly,L,L,:V = W such that:
Lo(x,y,2) = (x,¥), L1(x,,2) = (2x,2), L,(x,y,2) = (x = y,y — 2)
The corresponding AH-linear transformation is:
L=Ly+L{P; +LyPy:2—SPps > 2—SPp2:
L{(x0,¥0,20) + (X1, ¥1,21) Py + (x2,¥2, 22) P, ]

= Lo(x0,¥0,20) + L1(x1,¥1,21)P1 + La(x2,¥2,22) P,
= (0, ¥0) + (2x1,21)P1 + (x2 = ¥2,¥2 — 22)P,

For example, take X = (1,2,1) + (4,3, —-5)P; + (1,1,1)P,, then:
LX) = (1,2) + (8,=5)P, + (0,0)P, = (1,2) + (8, —=5)P,.

ker(Ly) = {(0,0,2,); z € R}
ker(Ll) = {(0'}’1' 0)' Y1 € R}
ker(Ly) = {(xz,x2,%;); x € R}
AH - keT(L) = {(0,0,Zo) + (O,yl, 0)P1 + (XZ,Xz,xz)Pz;Zo,yl,xZ € R}

Also,

( Im(Ly) = R?
Im(L,) = R?
Im(L,) = R?

AH —Im(L) = R% + R?P, + R?P, = 2 — SP,,

Example.

Nader Mahmoud Taffach, An Introduction to Symbolic 2-Plithogenic Vector Spaces Generated from The Fusion of
Symbolic Plithogenic Sets and Vector Spaces



50

Take W =V = R?, Ly, Ly,L,:V - W such that:
Lo(x:)’) = (3x:_2x):L1(x»J/) = (x =Y ZX),Lz(X,y,Z) = (x + Zy'y)
The corresponding AH-linear transformationis L = Ly + L1P; + L,P,:2 — SP, —» 2 — SPy;
L[(x0,y0) + (x1,y1)P1 + (x2,¥2)P2] = Lo(x0,¥0) + L1 (x4, ¥1)P1 + Ly (x2, y2)Ps
= (3%, —2x0) + (%1 — ¥1, 2x1) Py + (%2 + 2y, ¥2) P,
For example X = (1,4) + (2,8)P; + (3,—1)P,

ker(Lo) = {(0,¥0); Yo € R}
ker(L,) = {0}
ker(L,) = {0}
H — ker(L) = {(0,y,) + 0P, + 0P,;y, € R}

Also,
( Im(Ly) = {(a,0); a € R}
Im(Ly) = R?
Im(L,) = R?
H —1Im(L) = {(a,0) + (ay,b1)P; + (az, b;)Py; a,ay,a;, by, by € R}

Theorem.
Let L=f+4+fP;+ fP,:2—SP, - 2— 5Py be an AHS-linear transformation, then L is a
module homomorphism.
Proof.
Let X =x¢ + x1P; + x,P,,Y =y +y, P, +y,P, € 2 — SPy, then:
LX+Y) = f(xo+yo) + f(x1 +y1)PL + f(x2 + ¥2)P,
= [f(xo) + fF(x)Py + f(x2)Po] + [f (o) + f(y1) Py + f(y2)Po] = L(X) + L(Y)
Let A=ay+ a,P; +a,P, € 2 —SPg, then:
L(A.X) = f(apxg) + f(apxs + ayxg + a1x1) Py + f(agx, + arxg + ayx; + a1, + ax1)P,
= aof(x) + (aof(x1) + a,f(x0) + alf(xl))Pl
+ (aof(xz) + axf(xo) + azf(xz) + a;f(xz) + azf(x1))P2
= [ag + a1 Py + axPy]. [f (x0) + f(x1) Py + f(x2)P2] = A.L(X)
Thus, L is a module homomorphism.
The algebraic relations between symbolic 2-plithogenic vector spaces and neutrosophic
vector spaces .

Theorem.
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Let V be a vector space over the field F, consider V(I) =V + VI ={x + yI;x,y € V} is the
corresponding neutrosophic vector space over the neutrosophic field F(I) = {a + bl;a,b €
F}.
VI, 1I) =V +VI+ VI, ={x+yl; +zl;;x,y,z€V} is the corresponding refined
neutrosophic vector space over the refined neutrosophic field F(Iy,1;) ={a+ bl; +
cly;a,b,c € F}.
2—SPy =V +VP +VP,={x+yP, +zP,;x,y,z€V} is the corresponding symbolic
2-plithogenic vector space over 2 — SPy, then:

1. 2 —SPy is semi homomorphic to V(I).

2. 2 —SPy issemiisomorphic to V(Iy,1,).
Proof.

1. Wedefine f:2 —SP, - V(I),g:2 — SPr — F(I) such that:
fx+yPi+2zP) =x+ylx,y,z€V
g(a+bP;+cP,)=a+bl;a,b,c€F
We have the following;:
g is a ring homomorphism, that is because:
A=ag+a,P; +ayP,,B=by+ b P; + b,P,; a;, b; €F, then:
If A =B, then a; = b; forall i, thus ag+ a;I = by + byl,i.e. g(A) = g(B).
g(A+ B) = gl(ag + by) + (a; + b)Py + (az + by)P,] = ag + by + (a; + b))l = g(A) + g(B).
g(A.B) = glagby + (aghy + a1by + a1b1)P; + (agh, + a1b, + a,b + a,by + a,b,)P,]

= aobo + (aghy + ayby + ayby)I = (ag + a11)(by + by11) = g(4). g(B)

On the other hand, f is well defined, that is because:
If X=xy+x.Py+x,P,,Y =vyy+y,P;, +y,P,, then x; = y; for all i, hence ay + a,I = by +
biI, thus f(X) = f(Y).
f preserves addition, that is because:
For X = x¢ + x,P; + x,P,,Y =y + y1 P, + y,P,, we have:
fFX+Y) = fllxo +y0) + (x1 + y1)P1 + (xz2 + ¥2)P2] = x0 + o + (g + y1)I = f(X) + f(Y).
f preserves multiplication, that is because:
For A =ay+ a,P; + a,P, € 2 —SP,, we have:
f(A.X) = apxo + (apxy + arxg + ayx)1 = (ag + a; ) (xo + x11) = g(A). f(X)

Thus f is a semi module homomorphism.
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We define f:2—-SP, - V(y,1;), g:2—SPr - F(I;,1,), where f(x+yP,+2zP,)=x+

zl; + yI,, and g(a+ bP; +cP;) =a+cly + bly;x,y,z€V,a,b,c EF.

(g) is well defined, that is because:

If A=ay+ a;P, +a,P,,B =by+ b P; + b,P,, then:

ag = aq,by = by, cy = c1, hence: ag + coly + byl, = a4 + ¢11; + b1, so that g(A) = g(B).

(f) is well defined by a similar discussion.

(g) is one-to-one mapping, that is because:

ker(g) = {a + bP, + cP,;g(a + bP, +cP,) =0} =0

Im(g) ={a+cl, + bly;g(a+ bP, +cP,) € F(I},1,); 3A € 2 — SP;,g(A) = a + cl; + bl,}
=F(y,13)

(f) is one-to-one mapping, it can be proved by the same.

(9) and (f) preserve addition, that is because:

Consider A =ag+ aP; +a,P,,B =by+ bPy +byP, €2 —SPp, X =xg+ x,P; + x,P,,Y =

Yo + Y1P1 + y,P, € 2 — SPy, then:

g(A+ B) = gl(ag + by) + (a; + b)P; + (az + by)P,] = ag + by + (a; + b)ly + (az + by,
=g(A) +g(B)

fX+Y)=f(X)+ f(Y) by asimilar discussion.

(g) preserves multiplication, that is because:

g(A.B) = agby + (agh, + ayby + ab, + a1by + ayby)1; + (aghy + a1by + a;1b1)1, =

9(4).9(B).

(f) is semi module homomorphism, that is because:

f(A.X) = agxg + (apxy + azxg + axx; + ayx; + apx)ly + (agxy + ajxg + a;xq)1,
= (ap + a1y + axl;)(xg + X214 + x113) = g(4). f(X)

The basis of a symbolic 2-plithogenic vector spaces:

Theorem.

Let T = {ty, ..., t,} be a basis of the vector space V over the field F, then the set:

Tp ={t; + (tj — t;)P1 + (tx — tj)P;;1 < i,j,k < n} isabasis of 2 — SPy.

Proof.

Let X = x5 +x1P; +x,P, € 2—SPy,xq,%1,%, EV.

Xo = Xi=q Qiti, Xo + X1 = Xj_q Bjtj, Xo + X1 + X3 = X1 Vil @i, B, Vi € F.

Wevput 4;jx =a;+ (B —a;)Pr+ (vk = Bj)P;1 < i,j,k <n

Tyjre=ti+ (G —t)Pr+ (te — )P 1< ijk <n
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n
Z Aij Tijk

i,j,k=1
n
= Z[aiti + [ﬁ]tj - ,Bjti - (Zl'tj + aiti + ﬁjti - al-tl- + aitj - al-tl-]Pl
i=1
+ [aite — @ity + viti — Biti — vietj + vieti — Bjtj + Biti + Ytk — Yit; — Bit
+ _ﬁ]t] + ﬁjtk - ﬁ]t] - aitk + aitj]Pz]
n n n n n
Z aiti + P1 Zﬁ]t] - Z aiti + PZ Z )/ktk - zﬁ]t]
i=1 j=1 i=1 k=1 j=1

= xo + Pi[xg + x4 — xo] + Pylxg + x4 + x5 — (X + x1)] = xog + %, P; + x,P,
=X

Thus T generates 2 — SPy.

On the other hand, T is linearly independent, that is because:

If ¥ k=14ijk-X =0, then:

i1 ait; = 0,X% Bit; = 0,Xk_1 Ytk = 0, hencea; = B; =y = 0 forall i,j,k, thus A; ;) =

0.

This implies that T is a basis of 2 — SPy,.

Example.

Find a basis of 2 — SPp2.

Solution.

First of all, we have {u; = (1,0),u, = (0,1)} is a basis of R?.

The corresponding basis of 2 — SPp2 is:

T ={T,,T,,T5,T4,Ts, Tg, T7, Tg} such that:

Ty =(1,0),T, = (0,1),Ts = uy + (uz —uP; + (uz —ux)P, = (1,0) + (L, 1P,

Ty =up + (uz —uP; + (ug —ux)P, = (1L,0) + (-1, 1P, + (1, -1)P,

Ts =up + (uz —u)Py + (uy —u)P, = (0,1) + (1, -DP,

Te = uy + (uz —u )Py + (uz —uy )P, = (0,1) + (L, -1P, + (L 1P,

T7 =uy + (g —uPy + (uz —u)P, = (1,0) + (L 1P,

Tg =up + (uz —ux)Py + (g —ux)P, = (0,1) + (1, -1P,

Remark.

dim (2 — SP,) = (dimV)3.

Conclusion
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In this paper we have defined the concept of symbolic 2-plithogenic vector spaces over a

symbolic 2-plithogenic field, where we have presented some of their elementary properties

such as basis, linear transformations, and AH-subspaces. On the other hand, we have

suggested many examples to clarify the validity of our work.
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