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Abstract. Nowadays, incalculable volumes of data are generated due to the technological development achieved by the 
current society of information. The exponential growth of information significantly supports people's decision making in 

their daily activities. In Ecuador, there are many institutions that store the data of their processes. The tourism sector 

represents an example of this assertion. However, the data generated exceeds the power of analysis and processing of 

human beings, sometimes relevant information is presented it is not visible for persons. The present investigation proposes 
a solution to the described problem starting from the development of a method for the treatment of unlabeled data. The 

proposed method is based on the unsupervised k-means algorithm. We used rough neutrosophic sets to reduce the number 

of attributes. The proposal has been implemented from the stored dataset of the tourism sector in the City of Riobamba. 
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1. Introduction 

Tourism represents an important source of income in Ecuador's internal economy. Each region of the country 

has attractions that make it unique as a tourist destination. The city of Riobamba in Ecuador is characterized by 

representing a very attractive tourist area, it is a city with great cultural heritage that attracts even the most exquisite 

vacationers [1]. 

Tourism management itself generates high demands for products and services that include a wide range of 

different activities such as: transportation, accommodation, supply, shopping, travel agency services, inbound and 

outbound tourism operators, among others [2, 3]. Without doubt, tourism represents a fundamental source of 

income and it generates a large amount of data [4].  

From the different operations that are carried out in the City of Riobamba, there are stored historical data of 

the different operations in tourism management. However, the existing data is not properly labeled, which makes 

it impossible to obtain objective information that contributes to decision-making for the tourism sector [5]. 

Problems of this nature have been addressed in the scientific literature from data mining techniques for the 

cleaning, transformation and treatment of unlabeled data [6-8]. This investigation has the objective to develop a 

method based on k-means for the treatment of unlabeled data. 

We use three main tools for solving this problem. One is the combination of rough sets with single-valued 

neutrosophic sets, to deal with the so-called rough neutrosophic sets, which extends the existing rough fuzzy sets, 

but including the indeterminacy. The other two techniques are k-means and entropy. The hybridization of these 

methods creates a more accurate result. 

This paper is divided into the following sections: Section 2 contains the preliminary concepts; section 3 exposes 

the materials and methods that will be used in this paper. Section 4 summarizes the results applied to an actual 

case study related with a database of touristic industry in the city of Riobamba in Ecuador. The paper ends with 

the conclusions. 

2. Preliminaries 

This section introduces an approximation of the main theoretical references that support the research proposal. 

It begins with a characterization of machine learning. The fundamental elements on the rough sets and some criteria 
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for comparing k-means algorithms are presented. The section continues with the significant elements associated 

with entropy and information. Finally, the used k-means algorithm is described. 

2.1 Machine learning 

Machine learning introduces a new paradigm that refers to the study of computational algorithms that 

automatically incorporate experiences to improve its operation [9, 10]. Machine learning systems simulate the 

processes that humans perform when they are executing a task. 

A machine learning process needs to train a model by applying learning techniques. For the training process, 

the data that the machine will use to learn this procedure are provided [11-13]. This type of learning has been used 

in data mining applications with the aim of discovering rules and patterns in large data sets and filtering information 

[14, 15]. 

The classification of machine learning techniques can be divided into: 

 Supervised or predictive learning: where the objective is to learn to map from X inputs to Y outputs, 

given a labeled set of N input-output pairs; this set is called Training set. 

 Unsupervised or descriptive learning: aims to find interesting patterns in the N entries. 

 Reinforcement of learning: it is used to know how it acts or behaves when certain occasional signs 

of reward or punishment are given. 

2.2 Rough sets 

Rough sets (RS) are based on the assumption that each object x in the universe of discourse U has associated 

certain information that represents data and knowledge [16]. It is expressed through attributes that describe the 

object. Among the advantages of RS for data analysis are [17-19]: 

 It is based on the original data and does not require external information, so there is no need to 

make any assumptions about the data. 

 It allows the analysis of qualitative and quantitative traits. 

Then a rough set is formalized as follows: 

Definition 1. Let U be a finite universe. Let R be an equivalence relation defined in U, which partitions U. (U, 

R) is a collection of all equivalence classes, called the approximation space. Let w1, w2w3, ⋯ , wnelements of the 

approximation space (U, R). This connection is known as the knowledge base [20]. Then, for any subset B of U, 

the upper approximation B̅ and the lower approximation B are defined as [21, 22]:  

The ordered pair (B, B) is called an approximate set and its elements are defined as follows: 

The lower approximation of the set X with respect to R is defined in Equation 1: 

B(X) = ⋃x∈U{R(X): R(X) ⊆ X}  (1) 

The upper approximation of the set X with respect to R is defined in the following form: 

B(X) = ⋃x∈U{R(X): R(X) ∩ X ≠ ∅}  (2) 

And it also has: 

POS(B) = B: It is certainly a member of X. 

NEG(B) = U ∖ B: It is certainly not a member of X. 

BR(B) = B ∖ B: It is possibly a member of X. 

Where: 

POS(B) refers to the positive region of B, 

NEG(B) refers to the negative region of B, 

BR(B) refers to the border region of B. 

An approximate set can be defined by neutrosophic numbers. Neutrosophic logic is a general framework 

for unifying many existing logics. Generalize fuzzy logic (especially fuzzy intuitionist logic). In 1995, Florentin 

Smarandache extended Paradoxism (based on opposites) to a new branch of philosophy called Neutrosophy 

(based on opposites and their neutral), that gave birth to many areas of application [23, 24]. The important idea 

of NL is to characterize each logical statement in a neutrosophic 3 dimensional [0, 1]3-space, where each 

dimension of the space represents the truth (T) respectively, the falsehood (F), and indeterminacy (I) of the 

proposition, where T, I , F are standard or not standard real subset of ]-0, 1+[ [25]. 

The classic interval unit [0,1] can be used. T, I, F are independent components leaving room for incomplete 

information (when they sum up <1), for consequent and contradictory information (when they sum up > 1) or 

complete information (sum of components = 1)[25-27]. 

Definition 2. Neutrosophic sets are a fuzzy set generalization (spatially fuzzy intuitive set). Let U, be a 

universe of discourse, and M a set included in U. An element x of U is denoted with respect to the set M as x(T, 

I, F) and it belongs to M in the following way: It is t% true, it is i% indeterminate, and it is f% false, where t 

varies in T, i varies in I, and f varies in F[28, 29].  
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Statistically T, I, F are subsets of [0, 1], but dynamically T, I, F are functions or operations dependent on 

many unknown or known parameters [26]. 

In order to facilitate practical application to decision-making and engineering problems, the proposal was 

made for single-value valued neutrosophic sets [16, 30, 31], which allow us to use linguistic variables [32, 33] 

increasing the interpretability in the recommendation models and the use of indeterminacy. 

Definition 3. Let X be a universe of discourse. A Single-valued neutrosophic set (SVNS) A over X is an 

object of the form. 

𝐴 =  {〈𝑥, 𝑢𝐴(𝑥), 𝑟𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈ 𝑋} (3) 

Where 𝑢𝐴(𝑥): 𝑋 →  [0,1] , 𝑟𝐴(𝑥), ∶ 𝑋 →  [0,1] and 𝑣𝐴(𝑥): 𝑋 →  [0,1] with0 ≤ 𝑢𝐴(𝑥) + 𝑟𝐴(𝑥) +
𝑣𝐴(𝑥):≤ 3 for all 𝑥∈𝑋. The intervals 𝑢𝐴(𝑥), 𝑟𝐴(𝑥)and 𝑣𝐴(𝑥) denote the memberships to true, indeterminate, and 

false of x in A, respectively. For reasons of convenience, a single-valued neutrosophic number will be expressed 

as 𝐴 = (𝑎, 𝑏, 𝑐), where𝑎, 𝑏, 𝑐∈ [0,1], and 0 ≤ 𝑎 +  𝑏 +  𝑐 ≤  3. 

Definition 4. [34] Let U be a non-null set and R be an equivalence relation on U. Let F be neutrosophic set 

in U with the membership function µ𝐹, indeterminacy function 𝜈𝐹  and non-membership function 𝜔𝐹. The 

lower and the upper approximations of F in the approximation (U, R) denoted by 𝑁(𝐹)  and 𝑁(𝐹)  are 

respectively defined as follows: 𝑁(𝐹) =  {<  𝑥, µ𝑁(𝐹)(𝑥), 𝜈𝑁(𝐹)(𝑥), 𝜔𝑁(𝐹)(𝑥) >|𝑦 ∈  [𝑥]𝑅, 𝑥 ∈  𝑈}, 

𝑁(𝐹)  =  {<  𝑥, µ𝑁(𝐹)(𝑥), 𝜈𝑁(𝐹)(𝑥), 𝜔𝑁(𝐹)(𝑥) >|𝑦 ∈  [𝑥]𝑅, 𝑥 ∈  𝑈}. 

Where:  

µ𝑁(𝐹)(𝑥)  = ∧𝑦∈[𝑥]𝑅
µ𝐹(𝑦), 𝜈𝑁(𝐹)(𝑥)  = ∧𝑦∈[𝑥]𝑅

𝜈𝐹(𝑦), 𝜔𝑁(𝐹)(𝑥)  = ∧𝑦∈[𝑥]𝑅
𝜔𝐹(𝑦), 

µ𝑁(𝐹)(𝑥)  = ∨𝑦∈[[𝑥]𝑅
µ𝐹(𝑦), 𝜈𝑁(𝐹)(𝑥)  = ∨𝑦∈[𝑥]𝑅

𝜈𝐹(𝑦), 𝜔𝑁(𝐹)(𝑥)  = ∨𝑦∈[𝑥]𝑅
𝜔𝐹(𝑦). 

Then, 0 ≤  µ𝑁(𝐹)(𝑥)  +  𝜈𝑁(𝐹)(𝑥)  +  𝜔𝑁(𝐹)(𝑥)  ≤  3  and µ𝑁(𝐹)(𝑥)  +  𝜈𝑁(𝐹)(𝑥)  +

 𝜔𝑁(𝐹)(𝐹)(𝑥)  ≤  3, where “∨” and “∧” mean “max” and “min” operators respectively, µ𝐹(𝑦), 𝜈𝐹(𝑦), and 

𝜔𝐹(𝑦) are the membership, indeterminacy and non-membership of y with respect to F. 

Especially for decision-making, we define R as the similarity relation, such that there is a similar or equal 

labels between two elements, see [35]. 

The membership, indeterminate-membership, and non-membership are defined from the rough set as 

follows: 

𝑇(𝑥) =  
𝑐𝑎𝑟𝑑(SB(x)∩B(x))

𝑐𝑎𝑟𝑑(SB(x))
, 𝐼(𝑥) =  

𝑐𝑎𝑟𝑑(SB(x)∩(B(x)∖B(x)))

𝑐𝑎𝑟𝑑(SB(x))
, and 𝐹(𝑥) =  

𝑐𝑎𝑟𝑑(SB(x)∩B(x))

𝑐𝑎𝑟𝑑(SB(x))
, respectively. 

2.3 Entropy and information gain 

The entropy in a data source represents the magnitude that measures the information provided about the data 

source. Entropy provides information about a specific data source or fact [36-38]. 

Definition 5. Given two classes P and N in a sample space S, where: 

S = P ∪ N (4) 

Where the cardinality is given by: 
|P| = p and |N| = n (5) 

Entropy refers to the amount of information necessary to decide whether a sample of S belongs to P or to N 

and it is defined as Equation 6, see [39, 40]: 

E(S) =
p

p + n
log2 (

p

p + n
) −

n

p + n
log2 (

n

p + n
) 

(6) 

When selecting an attribute b the sample space is divided into child subsets of b, the way to determine how 

much information an attribute b contributes in a total set of attributes A, is given by [41, 42]: 

Input(b) = E(A) − ∑(∀ the child sets of B) 
(7) 

Finally, if we have k classes, N instances in the data set, the entropy of the entire set is E, the entropy of each 

of the subsets is E1 and E2, the number of instances in one class is k1 and in the other k2, then the minimum 

contribution of information is defined as in Equation 8, see [43, 44]: 

log2 N − 1

N
+

log2 3k − 2 − KE + k ∗ E1 ∗ E2

N
 

(8) 

2.4 K-means algorithm 

K-means is one of the most widespread algorithms for grouping. Clustering represents a technique 

implemented in Data Mining. The idea of k-means is to place all objects in a certain space and given their 

characteristics to form groups of objects with similar but different features to those that make up other groups. K-

means is an unsupervised learning algorithm that has the following characteristics [45, 46]:  
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 The data set is randomly partitioned into K groups (clusters). 

 K center points are selected at random, one from each group (centroids). 

 For each data, the distance from the point to each central point of the groups is calculated and 

the data becomes part of the group whose distance is less than its center. 

 If the data is closer to its own group, it stays in its group, otherwise it becomes part of the group 

of the closest center. 

 The previous process is repeated until no point passes the group. 

However, the algorithm has some drawbacks: 

 The final grouping depends on the initial centroids. 

 Convergence in the global optimum is not guaranteed, and for problems with many specimens, 

it requires a large number of iterations to converge. 

3. Materials and methods 

This section describes the implementation scenario based on the stored dataset of the tourism sector in the City 

of Riobamba. 

 

Data set Type of data Instances Attributes 

Destination evaluation  Multivariate 1382 4 

Historical Tours Multivariate 720 6 

Hotel accommodation Univariate 1080 5 

Transportation Multivariate 2801 4 

Table 1. Data stored from the tourist sector in the City of Riobamba. 

A data set with decision attributes was used to execute the algorithms excluding this attribute and then compare 

the results obtained with those originally indicated by these attributes. 

Having data sets for which the decision attribute is known, allows determining the number of groups of the k-

means algorithm. 

Figure 1 shows a diagram of the flow of the k-means method for the case under study. 

Figure 1. Diagram of the operation of the k-means method. 

As in most data mining processes, each repository had to go through the stages of: clean, integrate, select, 

transform, mine, interpret and present [47]. Figure 1 shows the flow of the k-means method for the case under 

study. The following is a description of the different steps that describe the method: 

Step 1. Initialization: Definition of a set of objects to which the clustering process is applied, which consists of 

separating the data into groups and a centroid (geometric center of the clusters) for each one. Initial centroids can 

be determined randomly, while in other cases they process the data and centroids are determined by calculations. 

Step 2. Classification: For each data, the square Euclidean distance from the centroids is calculated, the closest 

centroid to each of the data is determined, and the object is appended to the cluster of the centroid that was selected. 

Step 3. Calculation of centroids: The centroids are recalculated for each of the clusters. 

Step 4. Verification of convergence: If one of the algorithm's conditions has been met and it must stop, this is 

called the convergence or stop condition. A set of conditions are defined for processing: 

a) The number of iterations. 

b) When the centroids obtained in two successive iterations do not change their value. 

c) When the difference between the centroids of two successive iterations does not exceed a certain threshold. 

d) When there is no transfer of objects between groups in two successive iterations. 

If any of the convergence conditions is not met, steps two, three and four of the algorithm are repeated. 

For computational processing the algorithms were coded in Python 3.8.12 and it was run on the following 

platform: 

 Intel(r) core(tm) i3-2100 CPU @ 3.10ghzprocessor. 
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 Operating system: Ubuntu/Linux. 

From the k-means algorithm comparison criteria, the one was chosen to maximize the number of success cases, 

since the last interest is to determine how well the grouping did. 

In order to compare the results, three processes were run with the same data sets under the following conditions: 

 90 iterations were made with random processes in order to determine the average effect of the 

algorithm. 

 When ranges were used, there was no point in repeating it more than once as the algorithm is 

deterministic for a given data set. 

3.1 Classic k-means with random centroids 

K-means was used as a grouping algorithm so that the resulting groups were then used to label the objects in 

their decision attribute (D); using the group number in which the object was grouped as the value of the decision 

attribute (D). 

K-means using only the attributes with a contribution of information superior to a border. The entropy of each 

of the attributes and its information gain were calculated. The method used was as follows: 

 Let E (C) be the entropy of the entire set of attributes. 

 How much information is provided by the entropy of each of the c condition attributes (C) is 

calculated. 

 Let E(ci) be the entropy of the condition attribute ci.  

 Since the selection of the criterion in which value, of the Vc values, to divide the attribute c to 

calculate the entropy can be very different for each attribute, it is decided to order the Vc values 

from least to greatest and take the mean as the division criterion. 

 The information input of attribute c is equal to: C − ∑(∀ the child sets of C) 

 The condition attributes that provide the greatest amount of information such as those selected are 

used to choose the initial centers for the k-means algorithm from them. 

Once the attributes to be considered have been chosen, if it is desired that the decision attribute (D) take 

different values from it, then k-means is run to form groups, using as distances only the attributes selected for their 

greatest contribution of information. The centers can either be initialized randomly or divide the total range of the 

values of attribute c into k uniform pieces and take these values as initial centers of the k-means algorithm. 

Given that they are the attributes that provide the most information, it was decided to initialize the centers with 

uniform ranges. 

3.2 k-means using only attributes selected by rough neutrosophic sets 

We used the theory of rough neutrosophic sets to determine which condition attributes are indispensable and 

which are dispensable and therefore, proceed to the reduction of attributes, calculating the relation of 

indispensableness of each one of them. 

Being P the set of attributes, a P, the attribute a is dispensable in P if:  

IND(P) = IND(p{a}) (9) 

Similarly, once the attributes to be considered have been chosen, if it is desired that the decision attribute (D) 

take Vd different values, then k-means is run to form Vd groups using only the indispensable attributes for the 

calculation of distances. The centers can be initialized randomly or the total range can be divided into k uniform 

pieces. In order to compare the results, the centers with uniform ranges were initialized. 

4. Results 

From the data recovered from the tourist sector in the City of Riobamba are processed. After applying the 

previously proposed experiments, we obtained the results that are pr in Table 2. 

 

Characteristic/Data sets Valuation 

of fate 

Historical 

Tours 

Hotel 

accommodation 

Transport job 

Total records 1382 720 1080 2001 

Total attributes including 

decision 

4 6 5 4 

k-means classic 

Classic k-means success rate 

mean 

63.40 35.20 53.20 54.50 
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Standard deviation of the 

classic k-means success rate 

3.80 7.38 3.01 8.45 

Variation coefficient of the 

classic k-means success rate 

0.08 0.43 0.07 0.15 

k-means using information gain 

Number of attributes removed 

due to information gain 

1 1 1 1 

Average success rate using the 

remaining attributes 

56.80 30.40 56.20 48.30 

Standard deviation of success 

rate using only the remaining 

attributes 

0.00 0.00 0.00 0.00 

Variation coefficient of success 

rate using only the remaining 

attributes 

0.00 0.00 0.00 0.00 

Rough neutrosophic sets 

Number of attributes removed 

by rough sets 

2 1 0.00 0.00 

Average success rate using the 

remaining attributes 

57.6 32.32 54.20 42.40 

Standard deviation of success 

rate using only the remaining 

attributes 

0.00 0.00 0.00 0.00 

Variation coefficient of success 

rate using only the remaining 

attributes 

0.00 0.00 0.00 0.00 

Table 2. Results obtained for the different data sets. 

 
From the analysis of the results presented in Table 2, the following discussions are presented: 

1. The classical k-means algorithm is highly dependent on the selection of the initial centers. 

Random center initialization tends to have high standard deviations, therefore high coefficients of 

variation. 

2. Using entropy and information gain, only the attributes that provide more information are used, 

uniform ranges are used for centroids instead of random centers. The process becomes deterministic for 

the same data set; therefore, the standard deviation and coefficient of variation are displayed at zero. 

3. Once the data has been labeled, or if already labeled data sets are available, and although the 

determination of the indispensable and dispensable attributes using rough sets is an expensive process in 

computational time, once determined, the reduction of attributes benefits likewise the future classification 

process. 

4. The classic k-means with random centers showed that in some cases it obtained a higher success 

rate than the others. The problem being that its standard deviation is high and, therefore, as the average 

case will not always occur, it can perfectly yield the worst case, or cases close to it, and in these scenarios 

its performance is lower than when using information gain or rough sets. 

Conclusions 

This investigation proposed a machine learning method for dealing with unlabeled data sets which bases its 

operation on: 

To use entropy and information gain to select from which attributes calculate the k-means centers. 
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Use k-means only with the attributes selected from the previous step to label the data in your decision 

attribute. 

Once the objects have been labeled with the previous steps, approximate sets can be used to determine which 

attributes are dispensable and which are indispensable and, therefore, proceed to the reduction of attributes. 

The calculation of entropy, the information gain and the neutrosophic approximate sets requires a 

computational effort before calculating the k-means. 

By implementing the k-means algorithm on the stored data set of the tourism sector in the City of Riobamba, 

a classification of the information is obtained from relevant data. The proposal provides a tool for decision-

making based on achieving better opportunities for the sector. 

References 

1. M. V. Brachtl, J. L. Durant, C. P. Perez, J. Oviedo, F. Sempertegui, E. N. Naumova, and J. K. Griffiths, 

“Spatial and temporal variations and mobile source emissions of polycyclic aromatic hydrocarbons in 

Quito, Ecuador,” Environmental Pollution, vol. 157, no. 2, pp. 528-536, 2009. 
2. K. R. Lomas, and C. A. Trujillo, “Environmental educational model for community tourism of fakcha 

llakta community-Ecuador,” International Journal of Professional Business Review: Int. J. Prof. Bus. 

Rev., vol. 3, no. 1, pp. 95-110, 2018. 

3. J. C. Sierra, “Estimating road transport fuel consumption in Ecuador,” Energy Policy, vol. 92, pp. 359-

368, 2016. 

4. F. Pizzitutti, S. J. Walsh, R. R. Rindfuss, R. Gunter, D. Quiroga, R. Tippett, and C. F. Mena, “Scenario 

planning for tourism management: a participatory and system dynamics model applied to the Galapagos 

Islands of Ecuador,” Journal of Sustainable Tourism, vol. 25, no. 8, pp. 1117-1137, 2017. 
5. J. E. Ricardo, M. L. Poma, A. A. Pazmiño, A. A. Navarro, L. M. Estévez, and N. B. Hernandez, 

“Neutrosophic model to determine the degree of comprehension of higher education students in Ecuador,” 

Neutrosophic Sets & Systems, vol. 26, 2019. 

6. J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive data sets: Cambridge university press, 
2020. 

7. P. Shi, and J. M. Goodson, “A Data Mining Approach Identified Salivary Biomarkers That Discriminate 

between Two Obesity Measures,” Journal of Obesity, vol. 2019, 2019. 

8. K. Baalaji, and V. Khanaa, “A Review on Process of Data Mining Approaches in Healthcare Sectors,” 
Indian Journal of Public Health Research & Development, vol. 11, no. 1, 2020. 

9. E. Alpaydin, Introduction to machine learning: MIT press, 2020. 

10. M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning: MIT press, 2018. 

11. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” 
Nature, vol. 549, no. 7671, pp. 195-202, 2017. 

12. J. González, “Genetic classification algorithm proposal,” RCI, vol. Vol. 4 no. No.2, pp. 37-42, 2013. 

13. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, and M. 

Isard, "Tensorflow: A system for large-scale machine learning." pp. 265-283. 
14. S. Mullainathan, and J. Spiess, “Machine learning: an applied econometric approach,” Journal of 

Economic Perspectives, vol. 31, no. 2, pp. 87-106, 2017. 

15. R. Shokri, M. Stronati, C. Song, and V. Shmatikov, "Membership inference attacks against machine 

learning models." pp. 3-18. 
16. M. Leyva-Vázquez, F. Smarandache, and J. E. Ricardo, “Artificial intelligence: challenges, perspectives 

and neutrosophy role.(Master Conference),” Dilemas Contemporáneos: Educación, Política y Valore, vol. 

6, no. Special, 2018. 

17. H.-Y. Zhang, and S.-Y. Yang, “Feature selection and approximate reasoning of large-scale set-valued 
decision tables based on α-dominance-based quantitative rough sets,” Information sciences, vol. 378, pp. 

328-347, 2017. 

18. E. Eiben, D. Hermelin, and M. Ramanujan, “On approximate preprocessing for domination and hitting 

subgraphs with connected deletion sets,” Journal of Computer and System Sciences, vol. 105, pp. 158-
170, 2019. 

19. J. M. Fraser, and H. Yu, “Approximate arithmetic structure in large sets of integers,” arXiv preprint 

arXiv:1905.05034, 2019. 

20. L. K. Á. Gómez, D. A. V. Intriago, A. M. I. Morán, L. R. M. Gómez, J. A. A. Armas, M. A. M. Alcívar, 
and L. K. B. Villanueva, “Use of neutrosophy for the detection of operational risk in corporate financial 

management for administrative,” Neutrosophic Sets and Systems, Book Series, Vol. 26, 2019: An 

International Book Series in Information Science and Engineering, vol. 26, pp. 75, 2019. 

21. S. Machado, “Approximate lattices and Meyer sets in nilpotent Lie groups,” arXiv preprint 
arXiv:1810.10870, 2018. 

22. N. Van Hung, D. H. Hoang, and V. M. Tam, “Painlevé-Kuratowski convergences of the approximate 

solution sets for vector quasiequilibrium problems,” Carpathian Journal of Mathematics, vol. 34, no. 1, 

pp. 115-122, 2018. 
23. T. Popescu, P. Georgelin, F. Smarandache, and L. Popescu, “The aesthetics of paradoxism,” 2002. 

24. F. Smarandache, Paradoxism’s Manifestos and International Folklore: Infinite Study, 2010. 

25. F. Smarandache, and S. Pramanik, New trends in neutrosophic theory and applications: Infinite Study, 

2016. 



Neutrosophic Sets and Systems, {Special Issue: Impact of Neutrosophy in solving the Latin American's social problems}, Vol. 37, 2020 

 

Ned Vito Quevedo Arnaiz, Nemis Garcia Arias, Leny Cecilia Campaña Muñoz. Neutrosophic K-means Based Method for Handling Unlabeled 

Data 

315 

 
26. M. L. Vázquez, and F. Smarandache, Neutrosofía: Nuevos avances en el tratamiento de la incertidumbre: 

Infinite Study, 2018. 

27. F. Smarandache, and M. Leyva-Vázquez, Fundamentos de la lógica y los conjuntos neutrosóficos y su 

papel en la inteligencia artificial: Infinite Study, 2018. 

28. O. Mar, I. Santana, and J. Gulín, “Algoritmo para determinar y eliminar nodos neutrales en Mapa 

Cognitivo Neutrosófico,” Neutrosophic Computing and Machine Learning, vol. 8, pp. 4-11, 2019. 
29. F. Smarandache, and T. Paroiu, Neutrosofia ca reflectarea a realităţii neconvenţionale: Infinite Study, 

2012. 

30. F. Smarandache, J. E. Ricardo, E. G. Caballero, M. Y. L. Vasquez, and N. B. Hernández, “Delphi method 

for evaluating scientific research proposals in a neutrosophic environment,” Neutrosophic Sets and 
Systems, pp. 204, 2020. 

31. N. B. Hernandez, M. B. Ruilova Cueva, and B. N. Mazacón, “Prospective analysis of public management 

scenarios modeled by the Fuzzy Delphi method,” Neutrosophic Sets and Systems, vol. 26, no. 1, pp. 17, 

2019. 
32. H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, “Single valued neutrosophic sets,” Review of 

the Air Force Academy, no. 1, pp. 10, 2010. 

33. M. Y. L. Vázquez, K. Y. P. Teurel, A. F. Estrada, and J. G. González, “Modelo para el análisis de 

escenarios basados en mapas cognitivos difusos: estudio de caso en software biomédico,” Ingenieria y 
Universidad: Engineering for Development, vol. 17, no. 2, pp. 375-390, 2013. 

34. S. Broumi, F. Smarandache, and M. Dhar, “Rough Neutrosophic Sets,” Neutrosophic Sets and Systems,, 

vol. 3, pp. 60-65, 2014. 

35. M. Abdel-Basset, and M. Mohamed, “The role of single valued neutrosophic sets and rough sets in smart 
city: Imperfect and incomplete information systems,” Measurement,, vol. 124, pp. 47-55, 2018. 

36. [36] G. U. Crevecoeur, “Entropy growth and information gain in operating organized systems,” AIP 

Advances, vol. 9, no. 12, pp. 125041, 2019. 

37. O. Mar, I. Ching, and J. Gulín, “Competency assessment model for a virtual laboratory system at distance 
using fuzzy cognitive map,” Investigación Operacional, vol. 38, no. 2, pp. 169-177, 2018. 

38. M. Naghiloo, J. Alonso, A. Romito, E. Lutz, and K. Murch, “Information gain and loss for a quantum 

maxwell’s demon,” Physical review letters, vol. 121, no. 3, pp. 030604, 2018. 

39. S. Isler, R. Sabzevari, J. Delmerico, and D. Scaramuzza, "An information gain formulation for active 
volumetric 3D reconstruction." pp. 3477-3484. 

40. H. Carrillo, P. Dames, V. Kumar, and J. A. Castellanos, “Autonomous robotic exploration using a utility 

function based on Rényi’s general theory of entropy,” Autonomous Robots, vol. 42, no. 2, pp. 235-256, 

2018. 
41. A. Sadri, Y. Ren, and F. D. Salim, “Information gain-based metric for recognizing transitions in human 

activities,” Pervasive and Mobile Computing, vol. 38, pp. 92-109, 2017. 

42. S.-B. LIU, “Information-theoretic approach in density functional reactivity theory,” Acta Physico-Chimica 

Sinica, vol. 32, no. 1, pp. 98-118, 2016. 
43. A. Ben Jaafar, and Z. Bargaoui, “Generalized Split-Sample Test Interpretation Using Rainfall Runoff 

Information Gain,” Journal of Hydrologic Engineering, vol. 25, no. 1, pp. 04019057, 2020. 

44. J. B. Kalmbach, J. T. VanderPlas, and A. J. Connolly, “Applying Information Theory to Design Optimal 

Filters for Photometric Redshifts,” arXiv preprint arXiv:2001.01372, 2020. 
45. L. Bai, X. Cheng, J. Liang, H. Shen, and Y. Guo, “Fast density clustering strategies based on the k-means 

algorithm,” Pattern Recognition, vol. 71, pp. 375-386, 2017. 

46. H. Yang, H. Peng, J. Zhu, and F. Nie, “Co-Clustering Ensemble Based on Bilateral K-Means Algorithm,” 

IEEE Access, vol. 8, pp. 51285-51294, 2020. 
47. R. G. Ortega, M. Rodríguez, M. L. Vázquez, and J. E. Ricardo, “Pestel analysis based on neutrosophic 

cognitive maps and neutrosophic numbers for the sinos river basin management,” Neutrosophic Sets and 

Systems, vol. 26, no. 1, pp. 16, 2019. 

 

Received: April 13, 2020. Accepted: August 15, 2020 


