A Review Study on Some Properties of The Structure of Neutrosophic Ring

Adel Al-Odhari
Faculty of Education, Humanities and Applied Sciences (khawlan) and Department of Foundations of Sciences, Faculty of Engineering, Sana'a University. Box:13509, Sana'a, Yemen; e-mail: a.aleidhri@su.edu.ye
* Correspondence: a.aleidhri@su.edu.ye; ; Tel.: 00967777654885)

Abstract

Smarandache and used in structure of mathematical systems. In this article we use this concept to introduced Particular Structure of neutrosophic ring and studied some theorem and properties according to classical axiomatic ring theory.

Keywords: Neutrosophic rings; Neutrosophic rings of Integers; Neutrosophic rings of Complex; Neutrosophic rings of Integers of modulo n.

1. Introduction

Neutrosophic ring established first time by Kandasamy and Smarandache in 2006 see [19], in this paper we introduced particular neutrosophic ring depend on classical axioms of ring theory and studied some theorems and properties of neutrosophic ring theory.

2. Neutrosophic Rings and Their Examples

In this section we introduced the concept of neutrosophic ring was introduced in 2006 by Kandasamy and Smarandache see [19] with examples, but by applying the axioms of
classical ring theory with concept of indeterminate. The neutrosophic element as I where I is an indeterminate and I is such that $I^{2}=I$. If $\quad I^{2}=I \nRightarrow I(I-1)=0$ or any relation is just saying $I^{2}=I$

Definition 2.1. [19] Let R be any ring. The neutrosophic ring $\langle R \cup I\rangle$ is also a ring generated by R and I under the operations of R.

Theorem 2.2. [19] Let $\langle R \cup I\rangle$ be a neutrosophic ring. $\langle R \cup I\rangle$ is a ring.
Note. In sated of notation $\langle R \cup I\rangle$ and $\langle R \backslash\{0\} \cup I\rangle$, we use notation $R[I]$ and $R^{*}[I]$ respectively.

Definition 2.2. Let R be a nonempty set and the triple $(R,+, \bullet)$ be a ring, and consider the neutrosophic (NS):R[I] = \{a+bI:a,b $\in R\}$, then the neutrosophic algebra structure (NAS):
$N(R)=\langle R[I],+, \bullet\rangle$ is called the neutrosophic associative ring which is a generated by I and R under operations + " addition "and • " multiplications" respectively if satisfies the axiomatic conditions of ring:

NR1: For all x, y and $z \in N(R), N(R)=\langle R[I],+\rangle$ is a neutrosophic an abelian group under addition;

NR2: For all x, y and $z \in N\left(R^{*}\right), N\left(R^{*}\right)=\left\langle R^{*}[I], \bullet\right\rangle \quad$ is a mathematical associative neutrosophic system under multiplications, that is, $N\left(R^{*}\right)=\left\langle R^{*}[I], \bullet\right\rangle$ is neutrosophic semi group and

NR3: $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$ and $(y+z) \bullet x=(y \cdot x)+(z \bullet x) "$ left and right distribution laws".

Observations.

- If $N\left(R^{*}\right)=\left\langle R^{*}[I], \bullet\right\rangle$ has neutrosophic identity (or unit), then $N(R)=\langle R[I],+, \bullet\rangle$ is called a neutrosophic ring with a neutrosophic identity (or neutrosophic unit).
- If $N\left(R^{*}\right)=\left\langle R^{*}[I], \bullet\right\rangle$ has neutrosophic inverse, then $N(R)=\langle R[I],+, \bullet\rangle$ is called a neutrosophic ring with a neutrosophic inverse and the neutrosophic structure $N\left(R^{*}\right)=\left\langle R^{*}[I], \bullet\right\rangle$ is called neutrosophic group.
- If $N\left(R^{*}\right)=\left\langle R^{*}[I], \bullet\right\rangle$ is a neutrosophic abelian, that is, all $x, y \in N(R)$, we have
$x . y=y \cdot x$, in addition, $N\left(R^{*}\right)=\left\langle R^{*}[I], \bullet\right\rangle$ is called a neutrosophic abelian group, consequently, the $N(R)=\langle R[I],+, \bullet\rangle$ is called a filed and denoted by $N(F)=$ $\langle F[I],+, \bullet\rangle$.

Definition 2.3. Let R be a finite set and the triple $(R,+, \bullet)$ be a finite ring, then $N(R)=\langle R[I],+, \bullet\rangle$ is called a finite neutrosophic ring, otherwise, $N(R)=\langle R[I],+, \bullet\rangle$ is called is an infinite neutrosophic ring.

Definition 2.4. Let $N(R)=\langle R[I],+, \bullet\rangle$ be a neutrosophic ring. Define the neutrosophic set: $N(C(R)=\{x \in N(R): x y=y x, \forall y \in N(R)\}$ which is called the neutrosophic center of $N(R)$. Also, $N(R)$ is abelian iff $N(R)=N(C(R)$.

Definition 2.5.[19] Let \mathbb{Z} be a set of integer numbers and $\mathbb{Z}[I]=\{a+b I: a, b \in \mathbb{Z}\}$ be a neutrosophic- integer set, where $a+b I$ is a neutrosophic integer number.

Preposition 2.1. Let $(\mathbb{Z},+, \bullet)$ be a ring of integers under usual addition and multiplication, then the neutrosophic algebra structure (NAS): $N(\mathbb{Z})=\langle\mathbb{Z}[I],+, \bullet\rangle$ is called the neutrosophic integer ring which is generated by I and \mathbb{Z}.

Proof. Let $(\mathbb{Z},+, \bullet)$ be a ring of integers under usual addition and multiplication and $\langle\mathbb{Z} \cup I\rangle=\{a+b I: a, b \in \mathbb{Z}\}$ be a neutrosophic- integer set, where $a+b I$ is a neutrosophic integer number. Then by proposition 2.1 in $[5], N(\mathbb{Z})=\langle\mathbb{Z}[I],+\rangle$ is a neutrosophic abelian group, so NR1 axioms is hold. Now Let,$N(\mathbb{Z})=\langle\mathbb{Z}[I], \bullet\rangle$ such that all $x, y \in N(\mathbb{Z})$, then:

$$
\begin{aligned}
x \cdot y & =\left(\left(x_{1}+x_{2} I\right)+\left(y_{1}+y_{2} I\right)\right) \\
& =\left(\left(x_{1} \cdot y_{1}\right)+\left(\left(\left(x_{1} \cdot y_{2}\right)+\left(x_{2} \cdot y_{1}\right)\right)+\left(x_{2} \cdot y_{2}\right)\right) I\right) \in, N(\mathbb{Z})=\langle\mathbb{Z}[I] \cdot \cdot\rangle, \text { it's a closure, }
\end{aligned}
$$

moreover,

$$
\begin{aligned}
&(x \cdot y) \cdot z=\left(\left(x_{1}+x_{2} I\right)+\left(y_{1}+y_{2} I\right)\right) \cdot\left(z_{1}+z_{2} I\right) \\
&=\left(\left(x_{1} \cdot y_{1}\right)+\left(\left(\left(x_{1} \cdot y_{2}\right)+\left(x_{2} \cdot y_{1}\right)\right)+\left(x_{2} \cdot y_{2}\right)\right) I\right) \cdot\left(z_{1}+z_{2} I\right) \\
&= \\
&\left(\begin{array}{c}
\left(x_{1} \cdot y_{1}\right) \cdot z_{1} \\
+ \\
\left(\left(x_{1} \cdot y_{1}\right) \cdot z_{2}+\left(\left(x_{1} \cdot y_{2}\right)+\left(x_{2} \cdot y_{1}\right)+\left(x_{2} \cdot y_{2}\right)\right) \cdot z_{1}+\left(\left(x_{1} \cdot y_{2}\right)+\left(x_{2} \cdot y_{1}\right)+\left(x_{2} \cdot y_{2}\right)\right) \cdot z_{2}\right) I
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { = } \\
& \left(\begin{array}{c}
x_{1} \cdot\left(y_{1} \cdot z_{1}\right) \\
+ \\
\left(\left(x_{1} \cdot y_{1}\right) \cdot z_{2}+\left(\left(x_{1} \cdot y_{2}\right)+\left(x_{2} \cdot y_{1}\right)+\left(x_{2} \cdot y_{2}\right)\right) \cdot z_{1}+\left(\left(x_{1} \cdot y_{2}\right)+\left(x_{2} \cdot y_{1}\right)+\left(x_{2} \cdot y_{2}\right)\right) \cdot z_{2}\right) I
\end{array}\right) \\
& =\left(\begin{array}{c}
x_{1} \cdot\left(y_{1} \cdot z_{1}\right) \\
+ \\
\left(\left(x_{1} \cdot y_{1}\right) \cdot z_{2}+\left(\left(x_{1} \cdot y_{2}\right) \cdot z_{1}+\left(x_{2} \cdot y_{1}\right) \cdot z_{1}+\left(x_{2} \cdot y_{2}\right) \cdot z_{1}\right)+\left(\left(x_{1} \cdot y_{2}\right) \cdot z_{2}+\left(x_{2} \cdot y_{1}\right) \cdot z_{2}+\left(x_{2} \cdot y_{2}\right) \cdot z_{2}\right)\right) I
\end{array}\right) \\
& =\left(\begin{array}{c}
x_{1} \cdot\left(y_{1} \cdot z_{1}\right) \\
+ \\
\left(x_{1} \cdot\left(y_{1} \cdot z_{2}\right)+\left(x_{1} \cdot\left(y_{2} \cdot z_{1}\right)+x_{2} \cdot\left(y_{1} \cdot z_{1}\right)+x_{2} \cdot\left(y_{2} \cdot z_{1}\right)\right)+\left(x_{1} \cdot\left(y_{2} \cdot z_{2}\right)+x_{2} \cdot\left(y_{1} \cdot z_{2}\right)+x_{2} \cdot\left(y_{2} \cdot z_{2}\right)\right)\right) I
\end{array}\right) \\
& =\left(x_{1}+x_{2} I\right)\left(\left(y_{1} \cdot z_{1}\right)+\left(\left(\left(y_{1} \cdot z_{2}\right)+\left(y_{2} \cdot z_{1}\right)\right)+\left(y_{2} \cdot z_{2}\right)\right) I\right)=x .(y \cdot z) .
\end{aligned}
$$

Hence the associative law is hold.
Finally, $x \cdot(y+\mathrm{z})=\left(x_{1}+x_{2} I\right) \cdot\left(\left(y_{1}+y_{2} I\right)+\left(z_{1}+z_{2} I\right)\right)$

$$
\begin{aligned}
&=\left(x_{1}+x_{2} I\right) \cdot\left(\left(y_{1}+z_{1}\right)+\left(y_{2}+z_{2}\right) I\right) \\
&=\left(x_{1} \cdot\left(y_{1}+z_{1}\right)+\left(x_{1} \cdot\left(y_{2}+z_{2}\right)+x_{2} \cdot\left(y_{1}+z_{1}\right)+x_{2} \cdot\left(y_{2}+z_{2}\right)\right) I\right) \\
&=\left(\left(\left(x_{1} \cdot y_{1}\right)+\left(x_{1} \cdot+z_{1}\right)\right)+\left(\left(\left(x_{1} \cdot y_{2}\right)+\left(x_{1} \cdot z_{2}\right)\right)+\left(\left(x_{2} \cdot y_{1}\right)+\left(x_{2} \cdot z_{1}\right)\right)+\left(\left(x_{2} \cdot y_{2}\right)+\right.\right.\right.
\end{aligned}
$$ $\left.\left.\left.\left(x_{2} \cdot z_{2}\right)\right)\right) I\right)$

$$
=\left(\left(x_{1} \cdot y_{1}\right)+\left(\left(x_{1} \cdot y_{2}\right)+\left(x_{2} \cdot y_{1}\right)+\left(x_{2} \cdot y_{2}\right)\right) I\right)+\left(\left(x_{1} \cdot+z_{1}\right)+\left(\left(x_{1} \cdot z_{2}\right)+\left(x_{2} \cdot z_{1}\right)+\right.\right.
$$

$\left.\left.\left(x_{2} \cdot z_{2}\right)\right) I\right)$

$$
=\left(\left(x_{1}+x_{2} I\right) \cdot\left(y_{1}+y_{2} I\right)\right)+\left(\left(y_{1}+y_{2} I\right) \cdot\left(z_{1}+z_{2} I\right)\right)=(x \cdot y)+(x . z) . \quad \text { By } \quad \text { similar }
$$ procedure, we can deduce that: $(y+z) \cdot x=(y \cdot x)+(z \cdot x)$. Moreover there exists $1 \in$,$N(\mathbb{Z})=\langle\mathbb{Z}[I], \bullet\rangle$ such that $1 . x=x .1=x$. Hence $N(\mathbb{Z})=\langle\mathbb{Z}[I],+, \bullet\rangle$ is neutrosophic integer ring with identity. The neutrosophic integer ring will plays an important role in the study of neutrosophic ring theory.

Example 2.1. Let ($\mathbb{Z}^{+} \cup\{0\},+, \bullet$) be a unit ring of positive integers under neutrosophic addition and multiplication, then the neutrosophic algebra structure (NAS): $N\left(\mathbb{Z}^{+}\right)=$ $\left\{\left\langle\mathbb{Z}^{+} \cup\{0\} \cup I\right\rangle,+, ;\right\}$ is called the neutrosophic unit integer ring which is a generated by I and $\mathbb{Z}^{+} \cup\{0\}$.

Defintione2.6. (Number theory) Let \mathbb{Z} be the set of integers and $x \in \mathbb{Z}$, then x is called even number if there exists $k \in \mathbb{Z}$ such that $x=2 k$. If $x, y \in \mathbb{Z}$ and both are even
numbers, then $x+y$ and $x . y$ are even numbers. Because, $x+y=2 k_{1}+2 k_{2}=2\left(k_{1}+\right.$ $\left.k_{2}\right)=2 k_{3}$, where,
$k_{3}=\left(k_{1}+k_{2}\right) \in \mathbb{Z}$. Also, $x \cdot y=\left(2 k_{1}\right) \cdot\left(2 k_{2}\right)=2\left(k_{1} \cdot\left(2 k_{2}\right)\right)=2 k_{3}$, where, $k_{3}=\left(k_{1} \cdot\left(2 k_{2}\right)\right) \in$ \mathbb{Z}.

Defintione2.7. (Neutrosophic Number Theory) Let $\mathbb{Z}[I]=\{a+b I: a, b \in \mathbb{Z}\}$ be the set of neutrosophic integers and $x \in \mathbb{Z}[I]$, then $x=x_{1}+x_{2} I$ is called the neutrosophic even number if, x_{1} and x_{2} are even number. So, $0,2 I, 4 I, \ldots, 2+2 I, 2+4 I, \ldots$ etc, are neutrosophic even integers.

Example 2.2. Let ($\mathbb{Z}_{\text {even }},+, \bullet$) be a ring of even integers without unit under neutrosophic addition and multiplication, then the neutrosophic algebra structure (NAS): $N\left(\mathbb{Z}_{\text {even }}\right)=$ $\left\{\left\langle\mathbb{Z}_{\text {even }} \cup I\right\rangle,+, \bullet\right\}$ is called the neutrosophic integer ring which is a generated by I and $\mathbb{Z}_{\text {even }}$. This is a neutrosophic integer ring without neutrosophic unit elements.

Definition 2.8.[19] Let \mathbb{R} be a set of real numbers and $\langle\mathbb{R} \cup I\rangle=\{a+b I: a, b \in \mathbb{R}\}$ be a neutrosophic- real set, where $a+b I$ is a neutrosophic real number.

Preposition 2.2. Let ($\mathbb{R},+$,) be a ring of real numbers under usual addition, then the neutrosophic algebra structure (NAS): $N(\mathbb{R})=\langle\mathbb{R}[I],+$,$\rangle is called the neutrosophic real$ ring with identity which is a generated by I and \mathbb{R}. In addition, $N(\mathbb{R})=\langle\mathbb{R}[I],+$,$\rangle is a$ neutrosophic real field.

Proof. By the same argument of preceding preposition 2.1. In addition, $N\left(\mathbb{R}^{*}\right)=\left\langle\mathbb{R}^{*}[I],\right\rangle$ is a commutative group. consider $a=a_{1}+a_{2} I \in \mathbb{R}(I)$. Suppose that $x=x_{1}+x_{2} I \in \mathbb{R}(I)$ is the neutrosophic inverse of a, that is,

$$
\begin{aligned}
a \cdot x=1 & \Leftrightarrow\left(a_{1}+a_{2} I\right) \cdot\left(x_{1}+x_{2} I\right)=1+0 I \\
& \Leftrightarrow\left(\left(a_{1} \cdot x_{1}\right)+\left(\left(a_{1} \cdot x_{2}\right)+\left(a_{2} \cdot x_{1}\right)+\left(a_{2} \cdot x_{2}\right)\right) I\right)=1+0 I . \\
& \Rightarrow a_{1} \cdot x_{1}=1 \text { and }\left(a_{1} \cdot x_{2}\right)+\left(a_{2} \cdot x_{1}\right)+\left(a_{2} \cdot x_{2}\right)=0 . \\
& \Rightarrow x_{1}=\frac{1}{a_{1}} \text { and }\left(a_{1}+a_{2}\right) x_{2}+a_{2} \cdot \frac{1}{a_{1}}=0 \Rightarrow x_{1}=\frac{1}{a_{1}} \text { and } x_{2}=-\frac{a_{2}}{a_{1\left(a_{1}+a_{2}\right)}} . \text { To check }
\end{aligned}
$$

the axiom of inverse, $a \cdot x=\left(a_{1}+a_{2} I\right) \cdot\left(\frac{1}{a_{1}}-\frac{a_{2}}{a_{1\left(a_{1}+a_{2}\right)}} I\right)$

$$
=\left(\left(a_{1} \cdot \frac{1}{a_{1}}\right)+\left(-\frac{a_{1} \cdot a_{2}}{a_{1\left(a_{1}+a_{2}\right)}}\right)+\left(a_{2} \cdot \frac{1}{a_{1}}\right)-\left(\frac{a_{2}^{2}}{a_{1}\left(a_{1}+a_{2}\right)}\right) I\right)
$$

$$
\begin{aligned}
& =1+\left(\frac{-a_{1} \cdot a_{2}+a_{2} \cdot\left(a_{1}+a_{2}\right)-a_{2}{ }^{2}}{\left.a_{1\left(a_{1}+a_{2}\right)}\right) I .}\right. \\
& =1+\left(\frac{-a_{1} \cdot a_{2}+a_{2} \cdot a_{1}+a_{2}^{2}-a_{2}^{2}}{a_{1\left(a_{1}+a_{2}\right)}}\right) I . \\
& =1+0 I=1 . \text { By similar way we have } x \cdot a=1 . \text { Also for all } a, b \in \mathbb{R}(I) \text {,we }
\end{aligned}
$$

have
$a b=b a$. Hence $N(\mathbb{R})=\langle\mathbb{R}[I],+$,$\rangle is the neutrosophic field of real$
Definition 2.9.[19] Let \mathbb{C} be a set of complex numbers and $\mathbb{C}[I]=\{a+b I: a, b \in \mathbb{C}\}$ be a neutrosophic- complex set, where $a+b I$ is a neutrosophic complex number.

Preposition 2.3. Let $(\mathbb{C},+. \cdot)$ be a ring of complex numbers under usual addition, then the neutrosophic algebra structure (NAS): $N(\mathbb{C})=\langle\mathbb{C}[I],+, \cdot\rangle$ is called the neutrosophic complex ring with identity which is a generated by I and \mathbb{C}. Moreover, $N(\mathbb{C})=\langle\mathbb{C}[I],+$, is the neutrosophic field of complex numbers.

Proof. Let $N(\mathbb{C})=\langle\mathbb{C}[I],+$,$\rangle be the neutrosophic algebra structure and let$ $a=a_{1}+a_{2} I, b=b_{1}+b_{2} I$ and $c=c_{1}+c_{2} I$ be three elements in $\mathbb{C}[I]$ Then $N(\mathbb{C})=$ $\langle\mathbb{C}[I],+\rangle$ is a neutrosophic complex abelian group by prop2.3 in [5]. Also, $\left.N\left(\mathbb{C}^{*}\right)=\left\langle\mathbb{C}^{*}[I],\right\rangle\right\rangle$ is a neutrosophic commutative complex group, 1 is the neutrosophic identity element, now if we consider
$a=a_{1}+a_{2} I \in \mathbb{C}(I), a_{1}, a_{2} \in \mathbb{C}$, then suppose that $a^{-1}=\frac{1}{a_{1}}-\left(\frac{a_{2}}{a_{1\left(a_{1}+a_{2}\right)}}\right) I$ is the neutrosophic inverse element of a by the same argument in pervious proposition 2.2.Hence $N\left(\mathbb{C}^{*}\right)=\left\langle\mathbb{C}^{*}[I],\right\rangle$ is a commutative neutrosophic complex group and consequently,$N(\mathbb{C})=$ $\langle\mathbb{C}[I],+$,$\rangle is neutrosophic field of complex$.

Theorem 2.2.Condiser $N\left(\mathbb{Z}_{n}\right)=\left\{\mathbb{Z}_{n} \cup I, \oplus_{n}, \otimes_{n}\right\}$ is a finite neutrosophic ring under addition and multiplication with modulo n. Moreover $N\left(\mathbb{Z}_{n}\right)=\left\{\mathbb{Z}_{n} \cup I, \oplus_{n}, \otimes_{n}\right\}$ is a finite neutrosophic ring under addition and multiplication with modulo n.In addition it is a field. Proof. See theorems 2.4 and 2.5. in [5].

Example2.3. $N\left(\mathbb{Z}_{3}\right)=\left\langle\mathbb{Z}_{3}[I], \oplus_{3}, \otimes_{3}\right\rangle$ is a finite neutrosophic ring under addition and multiplication with modulo 3 . Moreover, it's a finite neutrosophic field. As we know, $\mathbb{Z}_{3}=$ $\{0,1,2\}$ and,
$Z_{3}[I]=\left\{a+b I: a, b \in Z_{3}\right\}=\{0,1,2, I, 2 I, 1+I, 1+2 I, 2+I, 2+2 I\}$, to construct then the neutrosophic algebra structure (NAS): $N\left(Z_{3}\right)=\left\langle Z_{3}[I], \oplus_{3}\right\rangle$ by the visualizing table as shown in table.2.1.

Table.2.1, of (NAS of $N\left(Z_{3}\right)=\left\langle Z_{3}[I], \oplus_{3}\right\rangle$.

\oplus_{3}	0	1	2	I	$2 I$	$1+I$	$1+2 I$	$2+I$	$2+2 I$
0	0	1	2	I	$2 I$	$1+I$	$1+2 I$	$2+I$	$2+2 I$
1	1	2	0	$1+I$	$1+2 I$	$2+I$	$2+2 I$	I	$2 I$
2	2	0	1	$2+I$	$2+2 I$	I	$2 I$	$1+I$	$1+$
I	I	$1+I$	$2+I$	$2 I$	0	$1+$	1	$2+$	2
$2 I$	$2 I$	1	$2+2 I$	0	I	1	$2+$	2	$2+I$
$1+I$	$1+I$	$2+I$	I	$1+$	1	$2+2 I$	2	$2 I$	0
1	1	2	$2 I$	1	$1+$	2	$2+I$	0	I
$+2 I$	$+2 I$	$+2 I$			I				
$2+I$	$2+I$	I	$1+I$	$2+2 I$	2	$2 I$	0	$1+2 I$	1
2	2	$2 I$	$1+$	2	$2+I$	0	I		$1+I$
$+2 I$	$+2 I$								

The (NAS) is a closure under operation \oplus_{3} modulo 3 and associative, there exists identity element is zero and for any elements in x has inverse as shown in the table 2.2.

Table 2.2, of inverse element.

x	0	1	2	I	$2 I$	$1+I$	$1+2 I$	$2+I$	$2+2 I$
x^{-1}	0	2	1	$2 I$	I	$2+2 I$	$2+I$	$1+2 I$	$1+I$

The (NAS) $N\left(Z_{3}\right)=\left\langle Z_{3}[I], \oplus_{3}\right\rangle$ is represents a neutrosophic commutative group (NS). In addition,
$\mathbb{Z}_{3}{ }^{*}=\{1,2\}$ and $\mathbb{Z}_{3}{ }^{*}[I]=\left\{a+b I: a, b \in Z_{3}\right\}=\{1+I, 1+2 I, 2+I, 2+2 I\}$, to construct the neutrosophic algebra structure (NAS): $N\left(\mathbb{Z}_{3}{ }^{*}\right)=\left\langle\mathbb{Z}_{3}{ }^{*}[I], \otimes_{3}\right\rangle$ by the visualizing table as shown in table.2.3.

Table.2.3, of (NAS of $N\left(\mathbb{Z}_{3}{ }^{*}\right)=\left\langle\mathbb{Z}_{3}{ }^{*}[I], \otimes_{3}\right\rangle$.

\otimes_{3}	$1+I$	$1+2 I$	$2+I$	$2+2 I$
$1+I$	1	$1+2 I$	$2+I$	2
$1+2 I$	$1+2 I$	$1+2 I$	$2+I$	2
$2+I$	$2+I$	$2+I$	$1+2 I$	$1+2 I$
$2+2 I$	2	$2+I$	$1+2 I$	1

We see that $N\left(\mathbb{Z}_{3}{ }^{*}\right)=\left\langle\mathbb{Z}_{3}{ }^{*}[I], \otimes_{3}\right\rangle$ is a neutrosophic semigroup, but in classical ring theory $\left\langle\mathbb{Z}_{3}{ }^{*}, \otimes_{3}\right\rangle$ is a group. Also, this table is a correction of table 2.1 in [5]. Moreover, NR3 is hold, for instance, $(1+I) \cdot((2+I)+(2+2 I))=(1+I) \cdot(4+3 I)=4+$ 10Iand, $(1+I) \cdot(2+I)+(1+I) \cdot(2+2 I)=(2+4 I)+(2+6 I)=4+10 I$. Hence $N\left(\mathbb{Z}_{3}\right)=$ $\left\langle\mathbb{Z}_{3}[I], \oplus_{3}, \otimes_{3}\right\rangle$ is a neutrosophic ring.

Theorem2.3. [6] Let A, B, and C be three neutrosophic matrices of the same capacity, and consider x and y are two neutrosophic scalars, then:
i. $\quad A+B=B+A$;
ii. $\quad(A+B)+C=A+(B+C)$ " " associative law";
iii. $\quad A+0=A$;
iv. $x(A+B)=x A+x B$;
v. $\quad(x+y) A=x A+y A$;
vi. $\quad x(y A)=(x y) A$, and
vii. $\quad 1 . A=A$

Theorem2.4.[6]. Let A, B, and C be three neutrosophic matrices which are defined under multiplication, with x is a neutrosophic scalars, then:
i. $\quad(A B) C=A(B C)$ " associative law";
ii. $\quad A(B+C)=A B+A C$ " left distributive law";
iii. $\quad(B+C) A=B A+C A \quad$ "right distributive law" and
iv. $\quad x(A B)=(x A) B=A(x B)$.
v. $0 A .=0, B .0=0$. Where 0 is a neutrosophic zero matrix.

Theorem 2.5. Consider the n-square neutrosophic matrix set
$M_{n \times n}=\left\{a_{i j}+b_{i j} I: a_{i j}, b_{i j} \in \mathbb{R}, 0 I=0 \& I^{2}=I\right\}$, such that $M_{n \times n}$ has inverse, that is $\operatorname{det}\left(\left[a_{i j}+b_{i j} I\right]\right) \neq 0$, then $N\left(M_{n \times n}\right)=\left\{\left[a_{i j}+b_{i j} I\right],+, \times\right\}$, where $"+"$ defined as definition 2.11 and " \times " defined as definition 2.13 respectively in [4,6]. Then $N\left(M_{n \times n}\right)=$ $\left\{\left[a_{i j}+b_{i j} I\right],+, \times\right\}$ is non- commutative neutrosophic ring with unit.

Proof.

NR1: $N(M)=\left\{\left[a_{i j}+b_{i j} I\right],+\right\}$ is a commutative group under + . By theorem2.2.[6].
From (i) to(iii) the neutrosophic inverse element:

$$
\begin{aligned}
A+(-A) & =\left[a_{i j}+b_{i j} I\right]+\left[\left(-a_{i j}\right)+\left(-b_{i j}\right) I\right] \\
& =\left[a_{i j}+\left(-a_{i j}\right)+\left(b_{i j}+\left(-b_{i j}\right)\right) I\right], \text { for } i, j=1,2,3, \ldots, n \\
& =[0+0 I]=0 . \text { By the same argument we have }-A+A=0 . \text { Hence, } \\
N\left(M_{n \times n}\right)= & \left\{\left[a_{i j}+b_{i j} I\right],+\right\} \text { is a neutrosophic abelian group. }
\end{aligned}
$$

NR2: $N(M)=\left\{\left[a_{i j}+b_{i j} I\right], \times\right\}$ is monoid according to theorems 2.2.and 2.3.[6].
NR3: From part (ii) and (iii) in theorem 2.4, the neutrosophic distributive law is hold. Hence
$N\left(M_{n \times n}\right)=\left\{\left[a_{i j}+b_{i j} I\right],+, \times\right\}$ is non- commutative neutrosophic ring with unit

Example 2.4. Consider the following two matrices: $A=\left[\begin{array}{ll}1+0 I & 1+0 I \\ 0+0 I & 1+0 I\end{array}\right]$ and $B=$ $\left[\begin{array}{ll}1+0 I & 0+0 I \\ 1+0 I & 1+0 I\end{array}\right]$.

Then: $A B=\left[\begin{array}{ll}1+0 I & 1+0 I \\ 0+0 I & 1+0 I\end{array}\right]\left[\begin{array}{ll}1+0 I & 0+0 I \\ 1+0 I & 1+0 I\end{array}\right]=\left[\begin{array}{ll}2+0 I & 1+0 I \\ 1+0 I & 1+0 I\end{array}\right]$, and, $B A=\left[\begin{array}{lll}1+0 I & 0+0 I \\ 1+0 I & 1+0 I\end{array}\right]\left[\begin{array}{ll}1+0 I & 1+0 I \\ 0+0 I & 1+0 I\end{array}\right]=\left[\begin{array}{ll}1+0 I & 1+0 I \\ 1+0 I & 2+0 I\end{array}\right]$, we see that $A B \neq B A$.

Definition 2.10. Let $N(R)=\langle\mathrm{R}[I],,+$,$\rangle be a neutrosophic ring contains a neutrosophic unit$ element and $x=\left(x_{1}+x_{2} I\right) \neq 0 \in N(R)$ (not necessarily to be a commutative neutrosophic ring), then x is called a neutrosophic unit in $N(\mathrm{R})$ if there exists a multiplication inverse y such that
$x y=\mathrm{y} x=1$ and y denoted by x^{-1}.
Theorem 2.6. Consider $N(R)=\langle\mathrm{R}[I],,+$,$\rangle is a neutrosophic ring contains a neutrosophic$ unit Let $U(N(R))=\{x \in N(R): \exists y \in N(R) \ni x y=y x=1\}$ be the set of all units. Then:
$\langle U(N(R)), \cdot\rangle$ is a neutrosophic group under multiplication.
Proof. Since $1 \in N(R)$, then $1 \in U(N(R))$ and $U(N(R)) \neq \emptyset$. Suppose that $x, y \in$ $U(N(R))$, then there exists $x^{-1}, y^{-1} \in N(\mathrm{R})$ such that $x x^{-1}=x^{-1} x=1$ and $y y^{-1}=$ $y^{-1} y=1$. Now,
$\left(y^{-1} x^{-1}\right)(x y)=1$ and $(x y)\left(y^{-1} x^{-1}\right)=1$ by theorem 3.2. part. 2 in [5], hence $x . y \in$ $U(N(R))$. Also, if $x \in U(N(R))$, then $x^{-1} \in U(N(R))$, therefore for all if $x \in U(N(R))$, there is a multiplication neutrosophic inverse $x^{-1} \in U(N(R))$. Moreover, $N(R)=$ $\langle\mathrm{R}[I],,+$,$\rangle is a neutrosophic ring, then the multiplication is associative in particular of$ elements of $U(N(R))$ and consequently, $\langle U(N(R))$,$\rangle is a neutrosophic group.$

Definition 2.9.[19]: Let $\langle R \cup I\rangle$ be a neutrosophic ring. A proper subset P of $\langle R \cup I\rangle$ is said to be a neutrosophic subring if P itself is a neutrosophic ring under the operations of $\langle R \cup I\rangle$. It is essential that $P=\langle S \cup n I\rangle, n$ a positive integer where S is a subring of R. i.e. $\{P$ is generated by the subring S together with $n I .(n \in Z+)\}$. Note: Even if P is a ring and cannot be represented as $\langle S \cup n I\rangle$ where S is a subring of R then we do not call P a neutrosophic subring of $\langle R \cup I\rangle$.

Theorem 2.7. Consider $N(R)=\langle R[I],+, \bullet\rangle$ is neutrosophic ring and $N(S) \neq \emptyset \subseteq N(R)$, then $N(S)$ is called a neutrosophic subring of $N(R)$ iff :

1. $\forall a, b \in N(S) \Rightarrow a-b \in N(S)$, and,
2. $\forall a, b \in N(S) \Rightarrow a b \in N(S)$.

Note. If $N(S)$ is a neutrosophic subring of $N(R)$, then denoted by: $N(S) \leqslant N(R)$.
Proof. Frist direction, consider $N(R)=\langle R[I],+, \bullet\rangle$ is neutrosophic ring and $N(S) \neq \emptyset \subseteq$ $N(R)$. Assume that $a, b \in N(S)=\{a+b I: a, b \in S\}$
$\Rightarrow a-b=\left(a_{1}+a_{2} I\right)-\left(b_{1}+b_{2} I\right)=\left(\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right) I\right) \in N(S)$. Also,
$\Rightarrow a \cdot b=\left(a_{1}+a_{2} I\right) .\left(b_{1}+b_{2} I\right)=\left(a_{1} \cdot b_{1}\right)+\left(\left(a_{1} \cdot b_{2}\right)+\left(a_{2} \cdot b_{1}\right)+\left(a_{2} \cdot b_{2}\right)\right) I \in N(S)$.
Conversely,
Suppose that $a+b$ and $a b \in N(S)$ for all $a, b \in N(S)$,then $N(S)$ its closure under addition, since $N(R)=\langle R[I],+\rangle$ is a commutative neutrosophic group,, then $N(S)=\langle R[I],+\rangle$ in particular elements is commutative neutrosophic group. Also, $N(R)=\langle R[I], \bullet\rangle$ is a neutrosophic semigroup, so
$N(S)=\langle S[I], \bullet\rangle$ is a neutrosophic semigroup in particular elements of $N(S)$. Finally, $N(R)=\langle R[I],+, \bullet\rangle$ has the property of NR3, so NR3 is hold in $N(S)=\langle S[I],+, \bullet\rangle$ for particular elements, therefore $N(S)=\langle S[I],+, \bullet\rangle$ is a neutrosophic ring■.

Example 2.5. Consider $N\left(\mathrm{Z}_{6}\right)=\left\langle\mathrm{Z}_{6}[I], \oplus_{6}, \otimes_{6}\right\rangle$ is a finite neutrosophic ring under addition and multiplication with modulo 6 ,where $\mathbb{Z}_{6}[I]=\left\{a+b I: a, b \in \mathbb{Z}_{6}\right\}$, that is, $\mathbb{Z}_{6}[I]=\{0,1,2,3,4,5,1+I, \ldots, 1+5 I, 2+I, \ldots, 2+5 I, 3+I, \ldots, 3+5 I, 4+I, \ldots, 4+5 I, 5+$ $I, \ldots, 5+5 I\}$, and

Take $S[I]=\{0,2 I, 4 I\} \subseteq \mathbb{Z}_{6}[I]$. Then $S[I] \preccurlyeq \mathbb{Z}_{6}[I]$.
Table.2.4, of $\left(\mathrm{NAS}\right.$ of $N(S[I])=\left\langle S[I], \oplus_{6}\right\rangle$.

\oplus_{6}	0	$2 I$	$4 I$
0	0	$2 I$	$4 I$
$2 I$	$2 I$	$4 I$	0
$4 I$	$4 I$	0	$2 I$

We see that $S[I]$ is closed under addition modulo 6 .

Table.2.5, of $($ NAS of $N S[I])=\left\langle S[I], \otimes_{6}\right\rangle$.

\oplus_{6}	0	$2 I$	$4 I$
0	0	0	0
$2 I$	0	$4 I$	2 I
$4 I$	0	2 I	$4 I$

Since $S[I]$ is closed under multiplication modulo 6.
If $S[I]=\{0,2,4,2 I, 4 I, 2+2 I, 2+4 I, 4+2 I, 4+4 I\}$, then $S[I] \preccurlyeq \mathbb{Z}_{6}[I]$, because $S[I]$ is closed under addition and multiplication of modulo 6 .

Defintion2.11. Let $N(R)=\langle R[I],+, \bullet\rangle$ is neutrosophic ring, then the center of neutrosophic ring is denoted by $C(N(R))$ and defined by: $C(N(R))=\{x \in R[I]: x y=$ $y x, \forall y \in R[I]\}$.

Proposition 2.5. If $N(R)=\langle R[I],+, \bullet\rangle$ is neutrosophic ring contains a neutrosophic unit element, then $C(N(R)) \preccurlyeq R[I]$.

Proof. Since $1=1+0 I \in C(N(R))$, then $C(N(R)) \neq \emptyset$. Suppose that $a, b \in C(N(R))$, now, since

$$
a \in C(N(R)) \Rightarrow a x=x a, \forall x \in R[I]
$$

$$
\Leftrightarrow\left(a_{1}+a_{2} I\right)\left(x_{1}+x_{2} I\right)=\left(x_{1}+x_{2} I\right)\left(a_{1}+a_{2} I\right), \forall x \in R[I]
$$

$$
\Leftrightarrow\left(a_{1} \cdot x_{1}\right)+\left(\left(a_{1} \cdot x_{2}\right)+\left(a_{2} \cdot x_{1}\right)+\left(a_{2} \cdot x_{2}\right) I\right)=\left(x_{1} \cdot a_{1}\right)+\left(\left(x_{2} \cdot a_{1}\right)+\left(x_{1} \cdot a_{2}\right)+\right.
$$

$\left.\left(x_{2} \cdot a_{2}\right) I\right), \forall x \in R[I]$.
Also, $b \in C(N(R)) \Rightarrow b x=x b, \forall x \in R[I]$

$$
\begin{aligned}
& \Leftrightarrow\left(b_{1}+b_{2} I\right)\left(x_{1}+x_{2} I\right)=\left(x_{1}+x_{2} I\right)\left(b_{1}+b_{2} I\right), \forall x \in R[I] \\
& \Leftrightarrow\left(b_{1} \cdot x_{1}\right)+\left(\left(b_{1} \cdot x_{2}\right)+\left(b_{2} \cdot x_{1}\right)+\left(b_{2} \cdot x_{2}\right) I\right)=\left(x_{1} \cdot b_{1}\right)+\left(\left(x_{2} \cdot b_{1}\right)+\left(x_{1} \cdot b_{2}\right)+\right. \\
& \left.\left(x_{2} \cdot b_{2}\right) I\right), \forall x \in R[I] .
\end{aligned}
$$

Hence $(a-b) x=\left(\left(a_{1}+a_{2} I\right)-\left(b_{1}+b_{2} I\right)\right) \cdot\left(x_{1}+x_{2} I\right)$

$$
\begin{aligned}
& =\left(\left(a_{1}+a_{2} I\right) \cdot\left(x_{1}+x_{2} I\right)-\left(b_{1}+b_{2} I\right)\right) \cdot\left(x_{1}+x_{2} I\right) \\
& =\left(a_{1} \cdot x_{1}\right)+\left(\left(a_{1} \cdot x_{2}\right)+\left(a_{2} \cdot x_{1}\right)+\left(a_{2} \cdot x_{2}\right) I\right)-\left(x_{1} \cdot b_{1}\right)+\left(\left(x_{2} \cdot b_{1}\right)+\left(x_{1} \cdot b_{2}\right)+\right.
\end{aligned}
$$

$\left.\left(x_{2} \cdot b_{2}\right) I\right)$

$$
\begin{aligned}
& \quad=\left(x_{1} \cdot a_{1}\right)+\left(\left(x_{2} \cdot a_{1}\right)+\left(x_{1} \cdot a_{2}\right)+\left(x_{2} \cdot a_{2}\right) I\right)-\left(x_{1} \cdot b_{1}\right)+\left(\left(x_{2} \cdot b_{1}\right)+\left(x_{1} \cdot b_{2}\right)+\right. \\
& \left.\left(x_{2} \cdot b_{2}\right) I\right) \\
& =\left(x_{1}+x_{2} I\right)\left(a_{1}+a_{2} I\right)-\left(x_{1}+x_{2} I\right)\left(b_{1}+b_{2} I\right) \\
& =\left(x_{1}+x_{2} I\right)\left(\left(a_{1}+a_{2} I\right)-\left(b_{1}+b_{2} I\right)\right) \\
& \quad=x(a-b) . \text { Hence }(a-b) \in C(N(R)) . \text { Moreover, } \\
& (a b) x=\left(a_{1}+a_{2} I\right)\left(\left(b_{1}+b_{2} I\right) \cdot\left(x_{1}+x_{2} I\right)\right) . \\
& =\left(a_{1}+a_{2} I\right)\left(\left(x_{1}+x_{2} I\right) \cdot\left(b_{1}+b_{2} I\right)\right) . \\
& =\left(\left(a_{1}+a_{2} I\right) \cdot\left(x_{1}+x_{2} I\right)\right) \cdot\left(b_{1}+b_{2} I\right) . \\
& =\left(\left(x_{1}+x_{2} I\right) \cdot\left(a_{1}+a_{2} I\right)\right) \cdot\left(b_{1}+b_{2} I\right) . \\
& =\left(x_{1}+x_{2} I\right) \cdot\left(\left(a_{1}+a_{2} I\right) \cdot\left(b_{1}+b_{2} I\right) .\right) \\
& =x(a b) . \text { Therefore } a b \in C(N(R)) . \text { By theorem 2.6.C } C(N(R)) \leqslant R[I] .
\end{aligned}
$$

Example 2.6. Consider $N\left(\mathrm{Z}_{3}\right)=\left\langle\mathrm{Z}_{3}[I], \oplus_{3}, \otimes_{3}\right\rangle$ is a finite neutrosophic ring under addition and multiplication with modulo 3 , where $\mathrm{Z}_{3}[I]=\left\{a+b I: a, b \in \mathrm{Z}_{3}\right\}$, then $C\left(N\left(\mathrm{Z}_{3}\right)=\right.$ $\mathrm{Z}_{3}[I]$, because $\mathrm{Z}_{3}[I]$ is a commutative neutrosophic ring. Also $U\left(N\left(\mathrm{Z}_{3}\right)\right)=\{1+I, 2+2 I\}$.

3. Properties of Neutrosophic Elements in Neutrosophic Ring

Definition3.1. Let $N(\mathrm{R})=\langle\mathrm{R}[I],+, \bullet\rangle$ be a neutrosophic commutative ring and $x \neq 0 \in$ $N(\mathrm{R})$, then x is said to be a zero-divisor, if there exists $y \neq 0 \in N(R)$ such that $x . y=0$.

Example 3.1. $N(\mathbb{Z})=\langle\mathbb{Z}[I],+, \bullet\rangle, N(\mathbb{Q})=\langle\mathbb{Q}[I],+, \bullet\rangle, N(\mathbb{R})=\langle\mathbb{R}[I],+, \bullet\rangle$ and $\quad N(\mathbb{C})=$ $\langle\mathbb{C}[I],+, \bullet\rangle$ has no zero divisor. Also $N\left(\mathrm{Z}_{4}\right)=\left\langle\mathrm{Z}_{4}[I], \oplus_{4}, \otimes_{4}\right\rangle$ and $N\left(\mathrm{Z}_{6}\right)=\left\langle\mathrm{Z}_{6}[I], \oplus_{6}, \otimes_{6}\right\rangle$ has no zero divisor, but
$\left\langle\mathrm{Z}_{4}, \oplus_{4}, \otimes_{4}\right\rangle$ and $\left\langle\mathrm{Z}_{6}, \oplus_{6}, \otimes_{6}\right\rangle$ in classical ring theory has zero divisor.
Definition3.2. Let $N(\mathrm{R})=\langle\mathrm{R}[I],+, \bullet\rangle$ be a neutrosophic commutative ring, then $N(\mathrm{R})$ is called a neutrosophic integral domain, if $N(\mathrm{R})$ it has no zero divisor.

Example 3.2. All neutrosophic ring structure in pervious example are neutrosophic integral domain.

Theorem3.1. Consider $N\left(\mathrm{Z}_{p}\right)=\left\langle\mathrm{Z}_{p}[I], \oplus_{p}, \otimes_{\mathrm{p}}\right\rangle$ is a neutrosophic ring, then $N\left(\mathrm{Z}_{p}\right)=$ $\left\langle\mathrm{Z}_{p}[I], \oplus_{p}, \otimes_{\mathrm{p}}\right\rangle$

Is not a neutrosophic field.
Proof. By pervious example 2.3.
Example 3.3. Consider the $N\left(M_{n \times n}\right)=\left\{\left[a_{i j}+b_{i j} I\right],+, \times\right\}$ is non- commutative neutrosophic ring with unit. Take $A=\left[\begin{array}{ll}0 & 2 I \\ 0 & 4 I\end{array}\right] \neq 0$ and $B=\left[\begin{array}{cc}0 & 2+2 I \\ 0 & 0\end{array}\right] \neq 0$, then: $A B=$ $\left[\begin{array}{cc}0 & 2 I \\ 0 & 4 I\end{array}\right]\left[\begin{array}{cc}0 & 2+2 I \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$,

Hence A and B are zero dvisors.
Definition3.3.[19] Let $N(\mathrm{R})=\langle\mathrm{R}[I],+, \bullet\rangle$ be a neutrosophic ring. A characteristic of $N(\mathrm{R})$ is the smallest positive integer n (if there is one) such that $n x=0, \forall x \in \mathrm{R}[I]$. If there is no such integer, we say that neutrosophic ring $\mathrm{R}[I]$ has characteristic zero, otherwise $\mathrm{R}[I]$ has characteristic n and denoted by $N(\operatorname{chR}[I])=n$.

Example 3.4. $N(\mathbb{Z})=\langle\mathbb{Z}[I],+, \bullet\rangle, N(\mathbb{Q})=\langle\mathbb{Q}[I],+, \bullet\rangle, N(\mathbb{R})=\langle\mathbb{R}[I],+, \bullet\rangle$ and $\quad N(\mathbb{C})=$ $\langle\mathbb{C}[I],+, \bullet\rangle$ have characteristic zero.

Proposition 3.1. Let $N\left(\mathrm{Z}_{n}\right)=\left\langle\mathrm{Z}_{n}[I],, \oplus_{n}, \otimes_{\mathrm{n}}\right\rangle$ be a neutrosophic ring. Then $N\left(\operatorname{ch} \mathrm{Z}_{n}[I]\right)=$ n.

Proof. By Principle of Mathematical Induction.
First, If $n=1$, then $\mathrm{Z}_{1}[I]=\left\{a+b I: a, b \in \mathrm{Z}_{1}\right\}=\{0+0 I\}$ and $1 .(0+0 I)=0$, hence $N\left(\operatorname{ch} \mathrm{Z}_{1}[I]\right)=1$. Hence is true statement when $n=1$.If $n=2$, then $\mathrm{Z}_{2}[I]=\{a+b I: a, b \in$ $\left.\mathrm{Z}_{2}\right\}=\{0,1, I+1+I\} \quad$ and $\quad 2.0=0,2.1=0(\bmod 2), 2 . I=2 I=0(\bmod 2), 2 .(1+I)=2+$ $2 I=0(\bmod 2)$.herefore $N\left(\operatorname{ch} \mathrm{Z}_{2}[I]\right)=2$. Hence is true statement when $n=2$.

Second. Suppose that, $n=k$, then $\mathrm{Z}_{k}[I]=\left\{a+b I: a, b \in \mathrm{Z}_{k}\right\}$
$\mathrm{Z}_{k}[I]=\{0,1,2, \ldots, k-1, I, 2 I, \ldots,(k-1) I, 1+I, 1+2 I, \ldots, 1+(k-1) I, 2+I, 2+2 I, \ldots, 2+$
$(k-1) I, \ldots,(k-1)+I,(k-1)+2 I, \ldots,(k-1)+(k-1) I\}$. Such that $k . x=0, \forall x \in Z_{k}[I]$ is true stamen.

Third, to show that the statement $n=k+1$ is also true, that is $(k+1) \cdot x=0, \forall x \in$ $Z_{k+1}[I]$.Now
$(k+1) \cdot x=k \cdot x+1 \cdot x=0+x=x(\bmod (k+1)) \Rightarrow(k+1) \cdot x=0(\bmod (k+1)$. Hence,
$N\left(\operatorname{ch} \mathrm{Z}_{k+1}[I]\right)=k+1$. Is also true, we deduced that $N\left(\operatorname{ch} \mathrm{Z}_{n}[I]\right)=n, \forall n \in \mathbb{N} \boldsymbol{\square}$
Theorem3.2. Let $N(R)$ be a neutrosophic ring and x, y and $z \in N(R)$.Then:

1. $x .0=0 . x=0$;
2. $x \cdot(-y)=(-x) \cdot y=-(x y)$;
3. $(-x) \cdot(-y)=x y$, and,

Proof.

1. $x \cdot 0=\left(x_{1}+x_{2} I\right) \cdot(0+0 I)=\left(x_{1}+x_{2} I\right) \cdot(0+0 I)$

$$
\begin{aligned}
& =\left(x_{1} \cdot 0+\left(x_{1} \cdot 0+x_{2} \cdot 0+x_{2} \cdot 0\right) I\right) \\
& \quad=0+0 I=0 . \text { By similar way } 0 \cdot x=0 .
\end{aligned}
$$

2. We have from (1) $0=x .0=\left(x_{1}+x_{2} I\right)\left(\left(-y_{1}-y_{2} I\right)+\left(y_{1}+y_{2} I\right)\right)$

$$
=\left(x_{1}+x_{2} I\right) \cdot\left(-y_{1}-y_{2} I\right)+\left(x_{1}+x_{2} I\right) \cdot\left(y_{1}+y_{2} I\right)
$$

(1).

$$
\text { Also, } \quad 0=-(x y)+(x y)=-\left(\left(x_{1}+x_{2} I\right) \cdot\left(y_{1}+y_{2} I\right)\right)+\left(\left(x_{1}+x_{2} I\right) \cdot\left(y_{1}+y_{2} I\right)\right)
$$

(2).

From (1) and (2), we get:

$$
\begin{aligned}
& \left(x_{1}+x_{2} I\right) \cdot\left(-y_{1}-y_{2} I\right)+\left(x_{1}+x_{2} I\right) \cdot\left(y_{1}+y_{2} I\right) \\
& =-\left(\left(x_{1}+x_{2} I\right) \cdot\left(y_{1}+y_{2} I\right)\right)+\left(\left(x_{1}+x_{2} I\right) \cdot\left(y_{1}+y_{2} I\right)\right) . \text { By theorem 3.2, part 3in [5], }
\end{aligned}
$$

this is
implying that, $\left(x_{1}+x_{2} I\right) \cdot\left(-y_{1}-y_{2} I\right)=-\left(\left(x_{1}+x_{2} I\right) \cdot\left(y_{1}+y_{2} I\right)\right) \Leftrightarrow x \cdot(-y)=$ $-(x y)$.
3. By the same procedure we can deduced that $(-x) \cdot y=-(x y)$. From (2), we have

$$
(-x) \cdot y=-(x y) \Rightarrow(-x) \cdot(-y)=-(x(-y))=-((-x) \cdot y)=x y
$$

References

1. M. Abobala, Foundations of Neutrosophic Number Theory, Neutrosophic Sets and Systems, Vol. 39, 2021.
2. M. Abobala,"On Some Special Substructures of Neutrosophic Rings and Their Properties", International Journal of Neutrosophic Science", Vol. 4, pp. 72-81, 2020.
3. Merkepci, H., and Ahmad, K., " On The Conditions Of Imperfect Neutrosophic Duplets and Imperfect Neutrosophic Triplets", Galoitica Journal Of Mathematical Structures And Applications, Vol.2, 2022..
4. A. Al-Odhari, Some Algebraic Structure of Neutrosophic Matrices, Prospects for Applied Mathematics and data Analysis (PAMDA), Vol. 01, No. 02, PP. 37-44, 2023.
5. A. Al-odhari, Particular Structure of Neutrosophic Group, Neutrosophic Sets and Systems, Vol. 54, pp. 2023.
A. Al-odhari, The Computations of Algebraic Structure of Neutrosophic Determinants , Neutrosophic Sets and Systems, Vol. 54, pp. 2023.
6. A.A.A. Agboola, A.D. Akwu and Y.T. Oyebo, Neutrosophic Groups and Subgroups, International Math. Combine. Vol.3(2012), 1-9.
7. R. Ali, A Review Study On Neutrosophic Groups and Their Generalizations, Hall open Science,2021, https:/ /hal.archives-ouvertes.fr/hal-03232679.
8. Y. A. Alhasan, Concepts of Neutrosophic Complex Numbers, International Journal of Neutrosophic Science (IJNS), Vol. 8 No. 1, PP. 9-18, 2020.
9. M. Ali, and F. Smarandache. Complex neutrosophic set. Neural Computing \& Applications,28(7) (2021,1-18.
10. K.T. Atanassov, Intuitionistic fuzzy sets, VII ITKR's Session, Sofia, 1983.
11. K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
12. J. B. Fraleigh, A first Course in Abstract Algebra, third edition, Addson Wesley Publishing. Company 1982.
13. Eyal Z. Gooren, Group theory, Notes for the course Algebra 3, Math 370, MCGILL UNIVERSITY,Fal2003,Version:Novmber,2003,https://www.math.mcgill.ca/goren/Alge bra3/Groups.pdf.
14. J. J. Rotman, Advanced Modern Algebra, Pearson Education 2002.
15. J. J. Rotman, An Introduction to Theory of Group Theory, Fourth Edition, SpringerVerlag New York. NC 1995.
16. D. L. Kreher, March 18, 2020, Group theory notes, https://pages.mtu.edu/~kreher/ABOUTME/syllabus/GTN.pdf
17. W.B. V. Kandasamy and F. Smarandache, Basic Neutrosophic and their Applications to Fuzzy and Neutrosophic models, Hexis, Church Rock, 2004.
http://fs.unm.edu/NAS.pdf
18. W.B. V. Kandasamy and F. Smarandache, Some Neutrosophic Algebraic Structures and Neutrosophic N-Algebraic Structures, Hexis, Phoenix, Arizona 2006. https://arxiv.org/ftp/math/papers/0603/0603581.pdf.
19. W.B. V. Kandasamy and F. Smarandache, Neutrosophic Rings, Hexis, Phoenix,Arizona, 2006.https://www.researchgate.net/publication/308949184_NEUTROSOPHIC_RINGS.
20. W.B. V. Kandasamy and F. Smarandache, Finite Neutrosophic Complex Numbers, Ohio: Zip Publishing, 2011.
21. Abobala, M., "On The Characterization of Maximal and Minimal Ideals In Several Neutrosophic Rings", Neutrosophic Sets and Systems, Vol. 45, 2021.
22. Abobala, M., "A Study Of Nil Ideals and Kothe's Conjecture In Neutrosophic Rings", International Journal of Mathematics and Mathematical Sciences, hindawi, 2021
23. Merkepci, H., and Abobala, M., " On The Symbolic 2-Plithogenic Rings", International Journal of Neutrosophic Science, 2023.
24. Abobala, M., and Zeina, M.B., " A Study Of Neutrosophic Real Analysis By Using One Dimensional Geometric AH-Isometry", Galoitica Journal Of Mathematical Structures And Applications, Vol.3, 2023.
25. J.S. Milne, Group theory, Version 3.10, September 24, 2010, https://fdocuments.in/document/group-theory-js-milnepdf.html.
26. G. Malinowski, Kleene logic and inference, Bulletin of the Section of Logic, Volume 43:1/2 (2014), pp. 43-52. https://www.researchgate.net/publication/267133321
27. A. S. Karpenko, ŁUKASIEWICZ LOGICS AND PRIME NUMBERS, Luniver Press, Beckington,(2006).
28. F. Smarandache (2002a), A Unifying Field in Logics: Neutrosophic Logic, in MultipleValued Logic / An International Journal, Vol. 8, No. 3, 385-438, 2002, www.gallup.unm.edu/~smarandache/eBook-neutrosophics4.pdf.
29. F. Smarandache (2002b), Neutrosophy, A New Branch of Philosophy, in MultipleValued Logic / An International Journal, Vol. 8, No. 3, 297-384, 2002. This whole issue of this journal is dedicated to Neutrosophy and Neutrosophic Logic.
30. F. Smarandache, Neutrosophic Set, A Generalization of The Intuitionistic Fuzzy Sets, Inter. J. Pure Appl. Math., 24, pp. 287 - 297, 2005.
31. Abobala, M., Hatip, A., Bal,M.," A Study Of Some Neutrosophic Clean Rings", International journal of neutrosophic science, 2022.
32. F. Smarandache, n-Valued Refined Neutrosophic Logic and Its Applications to
33. L. A. Zadeh (1965). Fuzzy sets. Information and Control, 8:338-353.
