\textbf{npn-soft sets theory and their applications}

Irfan Deli

Received 05 March 2015; Revised 11 May 2015; Accepted 27 May 2015

\textbf{Abstract.} In this paper, we firstly defined neutrosophic parameterized neutrosophic soft sets (\textit{npn-soft sets}) which is combination of a neutrosophic sets and a soft sets. Our \textit{npn-soft sets} generalizes the concept of the other soft sets such as; fuzzy soft sets, intuitionistic fuzzy soft sets, neutrosophic soft sets, fuzzy parameterized soft sets, intuitionistic fuzzy parameterized soft sets, neutrosophic parameterized soft sets and so on. Then, we introduce some definitions and operations on \textit{npn-soft sets} and some properties of the sets which are connected to operations have been established. Also, we have introduced the concept of \textit{npn-soft matrix} and their operators which are more functional to make theoretical studies in the \textit{npn-soft set} theory. Finally, we proposed the decision making method on the \textit{npn-soft set} theory which can be applied to problems of many fields that contain uncertainty and provided an example that demonstrated that this method can be successfully worked.

\textbf{2010 AMS Classification:} 03E72, 08A72

\textbf{Keywords:} Soft set, neutrosophic set, \textit{npn-soft set}, \textit{npn-soft matrix}, decision making.

\textbf{Corresponding Author:} Irfan Deli (irfandeli@kilis.edu.tr)

1. \textbf{Introduction}

In literature, a number of theories have been proposed which can be applied in many real applications to handle uncertainty, vagueness and indeterminacy. Theory of fuzzy set theory [60], theory of intuitionistic fuzzy sets [6], theory of neutrosophic theory [54, 55] are consistently being utilized as efficient tools for dealing with diverse types of uncertainties and imprecision embedded in a system.

The concept of soft sets was introduced by Molodtsov [46] for the inadequacy of the parameterization tool of the theories. Later on, many interesting results of soft set theory have been obtained by embedding the idea of fuzzy set, intuitionistic fuzzy set, neutrosophic set and so on. For example, on fuzzy soft set [38], on fuzzy
parameterized soft set \cite{17,25}, on fuzzy parameterized fuzzy soft set \cite{21}, on intuitionistic fuzzy soft set \cite{15,30}, on intuitionistic fuzzy parameterized soft set \cite{24}, on intuitionistic fuzzy parameterized fuzzy soft set \cite{22,23,36}, on neutrosophic soft set \cite{12}, on generalized neutrosophic soft set \cite{9}, on intuitionistic neutrosophic soft set \cite{10} and so on. The theories has developed in many directions and applied to wide variety of fields such as; on soft set \cite{1,2,3,13,30,31,33,34,52}, on fuzzy soft set \cite{28,29,35,42,56,57}, on fuzzy parameterized soft set \cite{19,20}, on intuitionistic fuzzy soft set \cite{26,32,37,49,50}, on neutrosophic soft set \cite{22,39} and so on. Recently Cagman et al \cite{14} proposed soft matrices and applied it in decision making problem. Then, they defined fuzzy soft matrices \cite{16}. Mondal and Roy \cite{43,45} defined intuitionistic fuzzy soft matrices. Deli and Broumi \cite{22} proposed neutrosophic soft matrices with some desired propositions. The matrices has differently developed in many directions and applied to wide variety of fields in \cite{8,11,41,43,13,44,45,48,51,53,55,53,58}. The neutrosophic parameterized neutrosophic soft sets(npn-soft sets) generalizes the following sets:

1. Soft sets,
2. Fuzzy soft sets,
3. Intuitionistic fuzzy soft sets,
4. Neutrosophic soft sets,
5. Fuzzy parameterized soft sets,
6. Fuzzy parameterized fuzzy soft sets,
7. Fuzzy parameterized intuitionistic fuzzy soft sets,
8. Fuzzy parameterized neutrosophic soft sets,
9. Intuitionistic fuzzy parameterized soft sets,
10. Intuitionistic fuzzy parameterized fuzzy soft sets,
11. Intuitionistic fuzzy parameterized intuitionistic fuzzy soft sets,
12. Intuitionistic fuzzy parameterized neutrosophic soft sets,
13. Neutrosophic parameterized soft sets,
14. Neutrosophic parameterized fuzzy soft sets,
15. Neutrosophic parameterized intuitionistic fuzzy soft sets,
16. Neutrosophic parameterized neutrosophic soft sets,

The relationship among npn-soft sets and other soft sets is showed in Figure 1.

Our objective is to present the concept of neutrosophic parameterized neutrosophic soft sets(npn-soft sets) and its applications in decision making problem. The remaining part of this paper is organized as follows. In section 2, we give basic definitions and notations that are used in the remaining parts of the paper. In section 3, we defined neutrosophic parameterized neutrosophic soft sets(npn-soft sets) which is a combination of a neutrosophic sets \cite{54} and a soft sets \cite{46}. Then we introduce some definitions and operations on npn-soft sets and some properties of the sets which are connected to operations have been established. In section 4, we have introduced the concept of npn-soft matrix and their operators which are more functional to make theoretical studies in the npn-soft set theory. In section 5, we proposed the decision making method on the npn-soft set theory which can
be applied to problems of many fields that contain uncertainty and we provided an example that demonstrated that this method can be successfully worked. In section 7, conclusion is made.

2. Preliminary

In this section, we give the basic definitions and results of neutrosophic set theory \[54\] and soft set theory \[46\] that are useful for subsequent discussions.

For more details, the reader could refer to \[4\], \[5\], \[13\], \[15\], \[47\], \[55\], \[58\].

Definition 2.1. \[54\] Let U be a space of points (objects), with a generic element in U denoted by u. A neutrosophic sets(N-sets) A in U is characterized by a truth-membership function \(T_A\), an indeterminacy-membership function \(I_A\) and a falsity-membership function \(F_A\). \(T_A(u), I_A(u), F_A(u)\) are real standard or nonstandard subsets of \([0,1]\). It can be written as

\[
A = \{ < u, (T_A(u), I_A(u), F_A(u)) > : u \in U, T_A(u), I_A(u), F_A(u) \in [0,1] \}.
\]

There is no restriction on the sum of \(T_A(u)\), \(I_A(u)\) and \(F_A(u)\), so \(0 \leq \sup T_A(u) + \sup I_A(u) + \sup F_A(u) \leq 3\).

Definition 2.2. \[46\] Let U be an initial universe, \(P(U)\) be the power set of U, \(E\) be a set of all parameters and \(X \subseteq E\). Then a soft set \(F_X\) over U is a set defined by a function representing a mapping

\[
f_X : E \rightarrow P(U) such that f_X(x) = \emptyset \text{ if } x \notin X
\]
Here, \(f_X \) is called approximate function of the soft set \(F_X \), and the value \(f_X(x) \) is a set called \(x \)-element of the soft set for all \(x \in E \). It is worth noting that the sets is worth noting that the sets \(f_X(x) \) may be arbitrary. Some of them may be empty, some may have nonempty intersection. Thus, a soft set over \(U \) can be represented by the set of ordered pairs

\[
F_X = \{(x, f_X(x)) : x \in E, f_X(x) \in P(U)\}
\]

Definition 2.3. [27] \(t \)-norms are associative, monotonic and commutative two valued functions \(t \) that map from \([0, 1] \times [0, 1]\) into \([0, 1]\). These properties are formulated with the following conditions: \(\forall a, b, c, d \in [0, 1] \),

1. \(t(0, 0) = 0 \) and \(t(a, 1) = t(1, a) = a \),
2. If \(a \leq c \) and \(b \leq d \), then \(t(a, b) \leq t(c, d) \)
3. \(t(a, b) = t(b, a) \)
4. \(t(t(a, b), c) = t(t(a, c), b) \)

Definition 2.4. [27] \(t \)-conorms (\(s \)-norm) are associative, monotonic and commutative two placed functions \(s \) which map from \([0, 1] \times [0, 1]\) into \([0, 1]\). These properties are formulated with the following conditions: \(\forall a, b, c, d \in [0, 1] \),

1. \(s(1, 1) = 1 \) and \(s(a, 0) = s(0, a) = a \),
2. If \(a \leq c \) and \(b \leq d \), then \(s(a, b) \leq s(c, d) \)
3. \(s(a, b) = s(b, a) \)
4. \(s(s(a, b), c) = s(s(a, c), b) \)

\(t \)-norm and \(t \)-conorm are related in a sense of logical duality. Typical dual pairs of non parametrized \(t \)-norm and \(t \)-conorm are complied below:

1. Drastic product:
 \[
t_w(a, b) = \begin{cases}
 \min\{a, b\}, & \text{if } \max\{ab\} = 1 \\
 0, & \text{otherwise}
 \end{cases}
 \]

2. Drastic sum:
 \[
s_w(a, b) = \begin{cases}
 \max\{a, b\}, & \text{if } \min\{ab\} = 0 \\
 1, & \text{otherwise}
 \end{cases}
 \]

3. Bounded product:
 \[
t_1(a, b) = \max\{0, a + b - 1\}
 \]

4. Bounded sum:
 \[
s_1(a, b) = \min\{1, a + b\}
 \]

5. Einstein product:
 \[
t_{1.5}(a, b) = \frac{ab}{2 - [a + b - ab]}
 \]

6. Einstein sum:
 \[
s_{1.5}(a, b) = \frac{a + b}{1 + ab}
 \]

7. Algebraic product:
 \[
t_2(a, b) = ab
 \]
(8) Algebraic sum:
\[s_2(a, b) = a + b - a.b \]

(9) Hamacher product:
\[t_{2.5}(a, b) = \frac{a.b}{a + b - a.b} \]

(10) Hamacher sum:
\[s_{2.5}(a, b) = \frac{a + b - 2a.b}{1 - a.b} \]

(11) Minimum:
\[t_3(a, b) = \min\{a, b\} \]

(12) Maximum:
\[s_3(a, b) = \max\{a, b\} \]

3. npn—soft sets

In this section, we present neutrosophic parameterized neutrosophic soft sets which is generalized the concept of the sets by given Figure 1. Then, we introduce some definitions and operations on neutrosophic parameterized neutrosophic soft sets and some properties of the sets which are connected to operations have been established. The method and application on neutrosophic soft set defined in \[23\] are extended to the case of neutrosophic parameterized neutrosophic soft sets.

Definition 3.1. Let \(U \) be a universe, \(N(U) \) be the set of all neutrosophic sets on \(U \), \(E \) be a set of parameters that are describe the elements of \(U \) and \(K \) be a neutrosophic set over \(E \). Then, a neutrosophic parameterized neutrosophic soft set \(npn-soft \) set \(N \) over \(U \) is a set defined by a set valued function \(f_N \) representing a mapping

\[f_N : K \rightarrow N(U) \]

where \(f_N \) is called approximate function of the \(npn-soft \) set \(N \). For \(x \in E \), the set \(f_N(x) \) is called \(x \)-approximation of the \(npn-soft \) set \(N \) which may be arbitrary, some of them may be empty and some may have a nonempty intersection. It can be written a set of ordered pairs,

\[N = \left\{ (x, T_N(x), I_N(x), F_N(x)), \right\} \]

where

\[F_N(x), I_N(x), T_N(x), T_{f_N(x)}(u), I_{f_N(x)}(u), F_{f_N(x)}(u) \in [0, 1] \]

Definition 3.2. Let \(N \) be an \(npn-soft \) set. Then, the complement of an \(npn-soft \) set \(N \) denoted by \(N^c \) and is defined by

\[N^c = \left\{ (x, F_N(x), 1 - I_N(x), T_N(x)), \right\} \]

where

\[F_N(x), I_N(x), T_N(x), T_{f_N(x)}(u), I_{f_N(x)}(u), F_{f_N(x)}(u) \in [0, 1] \]
Let N_1 and N_2 be two nnp–soft sets. Then, the union of N_1 and N_2 is denoted by $N_3 = N_1 \cup N_2$ and is defined by

$$N_3 = \left\{ (x, T_{N_3}(x), I_{N_3}(x), F_{N_3}(x)) : x \in E \right\}$$

where

$$T_{N_3}(x) = \mu(T_{N_1}(x), T_{N_2}(x)), \quad T_{f_{N_3}(u)}(x) = \mu(T_{f_{N_1}(u)}(x), T_{f_{N_2}(u)}(x)),$$

$$I_{N_3}(x) = \tau(I_{N_1}(x), I_{N_2}(x)), \quad I_{f_{N_3}(u)}(x) = \tau(I_{f_{N_1}(u)}(x), I_{f_{N_2}(u)}(x)),$$

$$F_{N_3}(x) = \kappa(F_{N_1}(x), F_{N_2}(x)), \quad F_{f_{N_3}(u)}(x) = \kappa(F_{f_{N_1}(u)}(x), F_{f_{N_2}(u)}(x))$$

Definition 3.3. Let N_1 and N_2 be two nnp–soft sets. Then, the intersection of N_1 and N_2 is denoted by $N_4 = N_1 \cap N_2$ and is defined by

$$N_4 = \left\{ (x, T_{N_4}(x), I_{N_4}(x), F_{N_4}(x)) : x \in E \right\}$$

where

$$T_{N_4}(x) = \delta(T_{N_1}(x), T_{N_2}(x)), \quad T_{f_{N_4}(u)}(x) = \delta(T_{f_{N_1}(u)}(x), T_{f_{N_2}(u)}(x)),$$

$$I_{N_4}(x) = \rho(I_{N_1}(x), I_{N_2}(x)), \quad I_{f_{N_4}(u)}(x) = \rho(I_{f_{N_1}(u)}(x), I_{f_{N_2}(u)}(x)),$$

$$F_{N_4}(x) = \sigma(F_{N_1}(x), F_{N_2}(x)), \quad F_{f_{N_4}(u)}(x) = \sigma(F_{f_{N_1}(u)}(x), F_{f_{N_2}(u)}(x))$$

Definition 3.4. Let N_1 and N_2 be two nnp–soft sets. Then, the intersection of N_1 and N_2 is denoted by $N_4 = N_1 \cap N_2$ and is defined by

$$N_4 = \left\{ (x, T_{N_4}(x), I_{N_4}(x), F_{N_4}(x)) : x \in E \right\}$$

where

$$T_{N_4}(x) = \mu(T_{N_1}(x), T_{N_2}(x)), \quad T_{f_{N_4}(u)}(x) = \mu(T_{f_{N_1}(u)}(x), T_{f_{N_2}(u)}(x)),$$

$$I_{N_4}(x) = \tau(I_{N_1}(x), I_{N_2}(x)), \quad I_{f_{N_4}(u)}(x) = \tau(I_{f_{N_1}(u)}(x), I_{f_{N_2}(u)}(x)),$$

$$F_{N_4}(x) = \kappa(F_{N_1}(x), F_{N_2}(x)), \quad F_{f_{N_4}(u)}(x) = \kappa(F_{f_{N_1}(u)}(x), F_{f_{N_2}(u)}(x))$$

Example 3.5. Let $U = \{u_1, u_2, u_3\}, E = \{x_1, x_2, x_3\}$. N_1 and N_2 be two nnp–soft sets as

$$N_1 = \left\{ (x_1, (0,6,0,7,0,8)), (x_2, (0,4,0,5,0,6)), (x_3, (0,6,0,1,0,1)), \right\}$$

and

$$N_2 = \left\{ (x_1, (0,9,0,7,0,8)), (x_2, (0,4,0,5,0,8)), (x_3, (0,6,0,3,0,9)), \right\}$$

here:

$$N_3 = \left\{ (x_1, (0,6,0,7,0,8)), (x_2, (0,6,0,5,0,6)), (x_3, (0,1,0,9,0,6)), \right\}$$

and

$$N_4 = \left\{ (x_1, (0,6,0,5,0,6)), (x_2, (0,1,0,5,0,6)), (x_3, (0,8,0,9,0,4)), \right\}$$

and

$$N_5 = \left\{ (x_1, (0,8,0,3,0,6)), (x_2, (0,6,0,5,0,4)), (x_3, (0,8,0,9,0,2)), \right\}$$
Let us consider the t-norm \(\min\{a, b\} \) and s-norm \(\max\{a, b\} \). Then,

\[
N_1 \cup N_2 = \left\{ \begin{array}{l}
(x_1, (0.9, 0.7, 0.8) >, \{ u_1, (0.4, 0.5, 0.6) >, u_2, (0.6, 0.1, 0.1) >,
\end{array}
\right.
\]

\[
< u_3, (0.9, 0.4, 0.4) >), (x_2, (0.4, 0.1, 0.2) >, < u_1, (0.5, 0.7, 0.1) >,
\]

\[
< u_2, (0.5, 0.6, 0.3) >, < u_3, (0.6, 0.6, 0.5) >), (x_3, (0.4, 0.1, 0.5) >,
\]

\[
\{ u_1, (0.7, 0.4, 0.6) >, u_2, (0.6, 0.6, 0.3) >, u_3, (0.7, 0.1, 0.8) > \}
\]

and

\[
N_1 \cap N_2 = \left\{ \begin{array}{l}
(x_1, (0.6, 0.7, 0.8) >, \{ u_1, (0.3, 0.6, 0.8) >, u_2, (0.2, 0.3, 0.1) >,
\end{array}
\right.
\]

\[
< u_3, (0.4, 0.7, 0.4) >), (x_2, (0.4, 0.5, 0.8) >, u_1, (0.5, 0.8, 0.5) >,
\]

\[
< u_2, (0.1, 0.6, 0.8) >, u_3, (0.1, 0.7, 0.9) >), (x_3, (0.2, 0.8, 0.9) >,
\]

\[
\{ u_1, (0.5, 0.9, 0.6) >, u_2, (0.5, 0.6, 0.7) >, u_3, (0.2, 0.5, 0.8) > \}
\]

Proposition 3.6. Let \(N_1, N_2 \) and \(N_3 \) be any three npn—soft sets. Then,

1. \(N_1 \cup N_2 = N_2 \cup N_3 \)
2. \(N_1 \cap N_2 = N_2 \cap N_3 \)
3. \(N_1 \cup (N_2 \cup N_3) = (N_1 \cup N_2) \cup N_3 \)
4. \(N_1 \cap (N_2 \cap N_3) = (N_1 \cap N_2) \cap N_3 \)

Proof: The proofs can be easily obtained since the t-norm function and s-norm functions are commutative and associative.

4. **More on npn—Soft sets with npn—Soft Matrices**

In this section, we presented npn—soft matrices which are representative of the npn—soft sets. Some of it is quoted from [7, 14, 16, 23, 36, 41, 43, 44, 45, 48, 51, 55, 58, 63, 65, 69, 71].

Definition 4.1. Let \(U = \{ u_1, u_2, \ldots, u_m \} \), \(E = \{ x_1, x_2, \ldots, x_n \} \) and \(N \) be an npn—soft set over \(N(U) \) as;

\[
N = \left\{ \begin{array}{l}
(x_i, T_N(x_i), I_N(x_i), F_N(x_i) >, \end{array}
\right.
\]

\[
\{ u_j, T_{f_N(x_i)}(u_j), I_{f_N(x_i)}(u_j), F_{f_N(x_i)}(u_j) >, u_j \in U \} : x_i \in E \}
\]

If \(k_i = < x_i, T_N(x_i), I_N(x_i), F_N(x_i) > \) and

\[
a_{ij} = < u_j, T_{f_N(x_i)}(u_j), I_{f_N(x_i)}(u_j), F_{f_N(x_i)}(u_j) >, \]

then we can define a matrix

\[
[k_i | a_{ij}] = \begin{bmatrix}
\begin{array}{cccc}
& & & \\
k_1 & a_{11} & a_{12} & \cdots \\
k_2 & a_{21} & a_{22} & \cdots \\
& \vdots & \vdots & \ddots \\
k_n & a_{n1} & a_{n2} & \cdots & a_{nm}
\end{array}
\end{bmatrix}
\]

such that \(k_i = (T_N(x_i), I_N(x_i), F_N(x_i)) = (T^a, I^f, F^v) \) and \(a = (T_{f_N(x_i)}(u_i), I_{f_N(x_i)}(u_i), F_{f_N(x_i)}(u_i)) \), which is called an \(n \times m \) npn—soft matrix (or namely NPNS-matrix) of the npn—soft set \(N \) over \(U \).
According to this definition, an an npn--soft set N is uniquely characterized by matrix $[k_i|a_{ij}]_{n \times m}$. Therefore, we shall identify any npn--soft set with its NPNS-matrix and use these two concepts as interchangeable. The set of all $n \times m$ NPNS-matrix over U will be denoted by $\tilde{N}_{n \times m}$. From now on we shall delete the subscripts $n \times m$ of $[k_i|a_{ij}]_{n \times m}$, we use $[k_i|a_{ij}]$ instead of $[k_i|a_{ij}]_{n \times m}$, since $[k_i|a_{ij}] \in \tilde{N}_{n \times m}$ means that $[k_i|a_{ij}]$ is an $n \times m$ NPNS-matrix for $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$.

Example 4.2. Let $U = \{u_1, u_2, u_3, \} \subset E = \{x_1, x_2, x_3\}$. N be an npn--soft sets over U as

$$N = \{< x_1, (0.5, 0.3, 0.8) >, < u_1, (0.2, 0.5, 0.1) >, < u_2, (0.7, 0.1, 0.6) >,$$

$$< u_3, (0.8, 0.4, 0.1) > \}, \{< x_2, (0.1, 0.6, 0.2) >, < u_1, (0.5, 0.8, 0.5) >,$$

$$< u_2, (0.7, 0.2, 0.8) >, < u_3, (0.7, 0.6, 0.9) > \}, \{< x_3, (0.5, 0.1, 0.3) >,$$

$$< u_1, (0.6, 0.4, 0.2) >, < u_2, (0.9, 0.6, 0.4) >, < u_3, (0.7, 0.1, 0.6) > \}\}

Then, the NPNS-matrix $[k_i|a_{ij}]$ is written by

$$[k_i|a_{ij}] = \begin{bmatrix}
(0.5, 0.3, 0.8) & (0.2, 0.5, 0.1) & (0.7, 0.1, 0.6) & (0.8, 0.4, 0.1) \\
(0.1, 0.6, 0.2) & (0.5, 0.8, 0.5) & (0.7, 0.2, 0.8) & (0.7, 0.6, 0.9) \\
(0.5, 0.1, 0.3) & (0.6, 0.4, 0.2) & (0.9, 0.6, 0.4) & (0.7, 0.1, 0.6)
\end{bmatrix}
$$

Definition 4.3. An npn--soft matrix of order $m \times n$ is said to be a square npn--soft matrix if $m = n$ i.e., the number of rows and the number of columns are equal. That means a square-npn--soft matrix is formally equal to an npn--soft set having the same number of objects and parameters.

Example 4.4. Consider the Example [4.2] Here since the npn--soft matrix contains three rows and three columns, so it is a square-npn--soft matrix.

Definition 4.5. The transpose of a square npn--soft matrix $[k_i|a_{ij}]$ of order $m \times n$ is another square npn--soft matrix of order $n \times m$ obtained from $[k_i|a_{ij}]$ by interchanging its rows and columns. It is denoted by $[k_i|a_{ij}]^T$. Therefore the npn--soft set associated with $[k_i|a_{ij}]^T$ becomes a new npn--soft set over the same universe and over the same set of parameters.

Example 4.6. Consider the Example [4.2] If the NPNS-matrix $[k_i|a_{ij}]$ is written by

$$[k_i|a_{ij}] = \begin{bmatrix}
(0.5, 0.3, 0.8) & (0.2, 0.5, 0.1) & (0.7, 0.1, 0.6) & (0.8, 0.4, 0.1) \\
(0.1, 0.6, 0.2) & (0.5, 0.8, 0.5) & (0.7, 0.2, 0.8) & (0.7, 0.6, 0.9) \\
(0.5, 0.1, 0.3) & (0.6, 0.4, 0.2) & (0.9, 0.6, 0.4) & (0.7, 0.1, 0.6)
\end{bmatrix}
$$

then, its transpose npn--soft matrix as;

$$[k_i|a_{ij}]^T = \begin{bmatrix}
(0.5, 0.3, 0.8) & (0.2, 0.5, 0.1) & (0.5, 0.8, 0.5) & (0.6, 0.4, 0.2) \\
(0.1, 0.6, 0.2) & (0.7, 0.1, 0.6) & (0.7, 0.2, 0.8) & (0.9, 0.6, 0.4) \\
(0.5, 0.1, 0.3) & (0.8, 0.4, 0.1) & (0.7, 0.6, 0.9) & (0.7, 0.1, 0.6)
\end{bmatrix}
$$

Definition 4.7. A square npn--soft matrix $[k_i|a_{ij}]$ of order $n \times n$ is said to be a symmetric npn--soft matrix, if its transpose be equal to it, i.e., if $[k_i|a_{ij}]^T = [k_i|a_{ij}]$. Hence the npn--soft matrix $[k_i|a_{ij}]$ is symmetric, if $[k_i|a_{ij}] = [k_i|a_{ji}] \forall i, j.$
Example 4.8. Let \(U = \{u_1, u_2, u_3\} \), \(E = \{x_1, x_2, x_3\} \). \(N \) be an \(n p n \)-soft sets as
\[
N = \left\{ \left< x_1, (0.5, 0.3, 0.8) \right>, \left< x_1, (0.2, 0.5, 0.1) \right>, \left< u_2, (0.5, 0.8, 0.5) \right>, \left< u_3, (0.6, 0.4, 0.2) \right>, \left< x_2, (0.1, 0.6, 0.2) \right>, \left< u_1, (0.5, 0.8, 0.5) \right>, \left< u_2, (0.7, 0.2, 0.8) \right>, \left< u_3, (0.9, 0.6, 0.4) \right> \right\}, \left< x_3, (0.5, 0.1, 0.3) \right>, \left< u_1, (0.6, 0.4, 0.2) \right>, \left< u_2, (0.9, 0.6, 0.4) \right>, \left< u_3, (0.7, 0.1, 0.6) \right> \right\}
\]
Then, the symmetric neutrosophic matrix \([k_i|a_{ij}]\) is written by
\[
[k_i|a_{ij}] = \begin{bmatrix}
(0.5, 0.3, 0.8) & (0.2, 0.5, 0.1) & (0.5, 0.8, 0.5) & (0.6, 0.4, 0.2) \\
(0.1, 0.6, 0.2) & (0.5, 0.8, 0.5) & (0.7, 0.2, 0.8) & (0.9, 0.6, 0.4) \\
(0.5, 0.1, 0.3) & (0.6, 0.4, 0.2) & (0.9, 0.6, 0.4) & (0.7, 0.1, 0.6)
\end{bmatrix}
\]

Definition 4.9. Let \([k_i|a_{ij}] \in \tilde{N}_{n \times m} \). Then \([k_i|a_{ij}]\) is called
1. A zero \(npn \)-soft matrix, denoted by \([\tilde{0}]\), if \(k_i = (0, 1, 1) \) and \(a_{ij} = (0, 1, 1) \) for all \(i \) and \(j \).
2. A universal \(npn \)-soft matrix, denoted by \([\tilde{1}]\), if \(k_i = (1, 0, 0) \) and \(a_{ij} = (1, 0, 0) \) for all \(i \) and \(j \).

Example 4.10. Let \(U = \{u_1, u_2, u_3\} \), \(E = \{x_1, x_2, x_3\} \). Then, a zero \(npn \)-soft matrix \([k_i|a_{ij}]\) is written by
\[
[\tilde{0}] = \begin{bmatrix}
(0, 1, 1) & (0, 1, 1) & (0, 1, 1) & (0, 1, 1) \\
(0, 1, 1) & (0, 1, 1) & (0, 1, 1) & (0, 1, 1) \\
(0, 1, 1) & (0, 1, 1) & (0, 1, 1) & (0, 1, 1)
\end{bmatrix}
\]
and a universal \(npn \)-soft matrix \([k_i|a_{ij}]\) is written by
\[
[\tilde{1}] = \begin{bmatrix}
(1, 0, 0) & (1, 0, 0) & (1, 0, 0) & (1, 0, 0) \\
(1, 0, 0) & (1, 0, 0) & (1, 0, 0) & (1, 0, 0) \\
(1, 0, 0) & (1, 0, 0) & (1, 0, 0) & (1, 0, 0)
\end{bmatrix}
\]

Definition 4.11. Let \([k_i|a_{ij}], [\tilde{k}_i|b_{ij}] \in \tilde{N}_{n \times m} \). Then
1. \([k_i|a_{ij}]\) is an NS-submatrix of \([\tilde{k}_i|b_{ij}]\), denoted, \([k_i|a_{ij}] \subseteq [\tilde{k}_i|b_{ij}]\), if \(T_i^b \geq T_i^a \), \(T_i^a \geq T_i^b \), \(I_i^a \geq I_i^b \), \(I_i^b \geq I_i^a \) and \(F_i^a \geq F_i^b \), \(F_i^b \geq F_i^a \), for all \(i \) and \(j \).
2. \([k_i|a_{ij}]\) is a proper NS-submatrix of \([\tilde{k}_i|b_{ij}]\), denoted, \([k_i|a_{ij}] \subset [\tilde{k}_i|b_{ij}]\), if \(T_i^a \geq T_i^b \), \(T_i^b \leq T_i^a \), \(T_i^a \geq T_i^b \), \(I_i^a \geq I_i^b \) and \(I_i^b \leq I_i^a \) and \(F_i^a \leq F_i^b \), \(F_i^b \leq F_i^a \) for at least \(T_i^a > T_i^b \) and \(T_i^b < T_i^a \), \(F_i^a < F_i^b \), \(F_i^b < F_i^a \), \(F_i^a \leq F_i^b \) and \(F_i^b \leq F_i^a \) for all \(i \) and \(j \).
3. \([k_i|a_{ij}]\) and \([\tilde{k}_i|b_{ij}]\) are IFS equal matrices, denoted by \([k_i|a_{ij}] = [\tilde{k}_i|b_{ij}]\), if \(k_i = \tilde{k}_i \) and \(a_{ij} = b_{ij} \) for all \(i \) and \(j \).

Definition 4.12. Let \([k_i|a_{ij}], [\tilde{k}_i|b_{ij}] \in \tilde{N}_{n \times m} \). Then
1. Union of \([k_i|a_{ij}]\) and \([\tilde{k}_i|b_{ij}]\), denoted, \([\tilde{k}_i|c_{ij}] = [k_i|a_{ij}] \cup [\tilde{k}_i|b_{ij}]\), such that \(([T_i^a, T_i^b, F_i^a, F_i^b]) \cap ([T_j^a, T_j^b, F_j^a, F_j^b]) \) where \(T_i^c = s(T_i^a, T_i^b), T_i^c = t(T_i^a, T_i^b), F_i^c = \min\{F_i^a, F_i^b\}, T_j^c = s(T_j^a, T_j^b), T_j^c = t(T_j^a, T_j^b) \) and \(F_j^c = t(F_j^a, F_j^b) \) for all \(i \) and \(j \).
(2) Intersection of $[k_i |a_{ij}]$ and $[k_i |b_{ij}]$, denoted $\hat{i} [k_i |d_{ij}] = [k_i |a_{ij}] \cap [k_i |b_{ij}]$, such that $\left(\left([T_i^a, I_i^a, F_i^a]\right) \cap \left([T_i^b, I_i^b, F_i^b]\right)\right)$ where $T_i^d = t(T_i^a, T_i^b)$, $I_i^d = s(I_i^a, I_i^b)$, $F_i^d = s(F_i^a, F_i^b)$, $T_i^d = t(T_i^a, T_i^b)$, $I_i^d = s(I_i^a, I_i^b)$ and $F_i^d = s(F_i^a, F_i^b)$ for all i and j.

(3) Complement of $[k_i |a_{ij}]$, denoted $\hat{i} [k_i |e_{ij}] = [k_i |a_{ij}]^c$, such that $\left(\left([T_i^c, I_i^c, F_i^c]\right) \cap \left([T_i^c, I_i^c, F_i^c]\right)\right)$ where $T_i^c = F_i^a$, $I_i^c = 1 - I_i^a$, $F_i^c = T_i^a$, $I_i^c = F_i^a$, $I_i^c = 1 - I_i^a$ and $F_i^c = T_i^a$ for all i and j.

Example 4.13. Consider the Example [3,5] and the t-norm $\min\{a, b\}$ and s-norm $\max\{a, b\}$. Then,

$$[k_i |a_{ij}] \cup [k_i |b_{ij}] = \begin{bmatrix} (0.9,0.7,0.8) & (0.4,0.5,0.6) & (0.6,0.1,0.1) & (0.9,0.4,0.4) \\ (0.4,0.1,0.2) & (0.5,0.7,0.1) & (0.5,0.6,0.3) & (0.6,0.6,0.5) \\ (0.4,0.1,0.5) & (0.7,0.4,0.6) & (0.6,0.6,0.3) & (0.7,0.1,0.8) \end{bmatrix}$$

$$[k_i |a_{ij}] \cap [k_i |b_{ij}] = \begin{bmatrix} (0.6,0.7,0.8) & (0.3,0.6,0.8) & (0.2,0.3,0.1) & (0.4,0.7,0.4) \\ (0.4,0.5,0.8) & (0.5,0.8,0.5) & (0.1,0.6,0.8) & (0.1,0.7,0.9) \\ (0.2,0.8,0.9) & (0.5,0.9,0.6) & (0.5,0.6,0.7) & (0.2,0.5,0.8) \end{bmatrix}$$

and

$$[k_i |a_{ij}]^c = \begin{bmatrix} (0.8,0.3,0.6) & (0.6,0.5,0.4) & (0.1,0.9,0.6) & (0.4,0.6,0.3) \\ (0.2,0.9,0.4) & (0.5,0.2,0.5) & (0.8,0.4,0.5) & (0.9,0.4,0.6) \\ (0.5,0.9,0.4) & (0.6,0.6,0.5) & (0.7,0.4,0.6) & (0.8,0.9,0.2) \end{bmatrix}.$$
Proposition 4.19. Let $[k_i|a_{ij}],[k_i|b_{ij}],[k_i|c_{ij}] \in \tilde{N}_{n\times m}$. Then

1. $[k_i|a_{ij}] \cap [k_i|a_{ij}] = [k_i|a_{ij}]$
2. $[k_i|a_{ij}] \cap [0] = [0]$
3. $[k_i|a_{ij}] \cap [1] = [k_i|a_{ij}]$
4. $[k_i|a_{ij}] \cap [k_i|b_{ij}] = [k_i|b_{ij}] \cap [k_i|a_{ij}]$
5. $([k_i|a_{ij}] \cap [k_i|b_{ij}]) \cap [k_i|c_{ij}] = [k_i|a_{ij}] \cap ([k_i|b_{ij}] \cap [k_i|c_{ij}])$

Proposition 4.20. Let $[k_i|a_{ij}],[k_i|b_{ij}] \in \tilde{N}_{n\times m}$. Then De Morgan’s laws are valid

1. $([k_i|a_{ij}] \cup [k_i|b_{ij}])^c = [k_i|a_{ij}]^c \cap [k_i|b_{ij}]^c$
2. $([k_i|a_{ij}] \cap [k_i|b_{ij}])^c = [k_i|a_{ij}]^c \cup [k_i|b_{ij}]^c$

Proof: i.

$([k_i|a_{ij}] \cup [k_i|b_{ij}])^c = \left(\left([T_i^d, I_i^d, F_i^d]\right)^c \land \left([T_i^d, I_i^d, F_i^d]\right)^c\right)^c$

$= \left(\left([s(T_i^d, T_i^d), t(I_i^d, I_i^d), t(F_i^d, F_i^d)]\right)^c \land \left([s(T_i^d, T_i^d), t(I_i^d, I_i^d), t(F_i^d, F_i^d)]\right)^c\right)^c$

$= \left(\left([s(F_i^d, F_i^d), 1 - t(I_i^d, I_i^d), t(T_i^d, T_i^d)]\right)^c \land \left([s(F_i^d, F_i^d), 1 - t(I_i^d, I_i^d), t(T_i^d, T_i^d)]\right)^c\right)^c$

$= \left(\left(t(F_i^d, F_i^d), s(1 - I_i^d, 1 - I_i^d), s(T_i^d, T_i^d)\right)^c \land \left(t(F_i^d, F_i^d), s(1 - I_i^d, 1 - I_i^d), s(T_i^d, T_i^d)\right)^c\right)^c$

$= \left([T_i^d, I_i^d, F_i^d]^c \land [T_i^d, I_i^d, F_i^d]^c\right)^c$

$= [k_i|a_{ij}]^c \cap [k_i|b_{ij}]^c$

i.

$([k_i|a_{ij}] \cap [k_i|b_{ij}])^c = \left(\left([T_i^d, I_i^d, F_i^d]^c \land ([T_i^d, I_i^d, F_i^d]^c)\right)^c$

$= \left(\left([s(T_i^d, T_i^d), t(I_i^d, I_i^d), s(F_i^d, F_i^d)]\right)^c \land \left([s(T_i^d, T_i^d), t(I_i^d, I_i^d), s(F_i^d, F_i^d)]\right)^c\right)^c$

$= \left(\left([s(F_i^d, F_i^d), 1 - s(I_i^d, I_i^d), s(T_i^d, T_i^d)]\right)^c \land \left([s(F_i^d, F_i^d), 1 - s(I_i^d, I_i^d), s(T_i^d, T_i^d)]\right)^c\right)^c$

$= \left(\left([t(F_i^d, F_i^d), 1 - s(I_i^d, I_i^d), s(T_i^d, T_i^d)]\right)^c \land \left([t(F_i^d, F_i^d), 1 - s(I_i^d, I_i^d), s(T_i^d, T_i^d)]\right)^c\right)^c$

$= \left([s(F_i^d, F_i^d), t(1 - I_i^d, 1 - I_i^d), t(T_i^d, T_i^d)]\right)^c$

$= \left([T_i^d, I_i^d, F_i^d]^c \land [T_i^d, I_i^d, F_i^d]^c\right)^c$

$= [k_i|a_{ij}]^c \cup [k_i|b_{ij}]^c$

Proposition 4.21. Let $[k_i|a_{ij}],[k_i|b_{ij}],[k_i|c_{ij}] \in \tilde{N}_{n\times m}$. Then

1. $[k_i|a_{ij}] \cap ([k_i|b_{ij}] \cup [k_i|c_{ij}]) = ([k_i|a_{ij}] \cap [k_i|b_{ij}]) \cup ([k_i|a_{ij}] \cap [k_i|c_{ij}])$
2. $[k_i|a_{ij}] \cup ([k_i|b_{ij}] \cap [k_i|c_{ij}]) = ([k_i|a_{ij}] \cup [k_i|b_{ij}]) \cap ([k_i|a_{ij}] \cup [k_i|c_{ij}])$
Definition 4.22. Let \([k_i]_{a_{ij}}, [k_i]_{b_{ik}} \in \tilde{N}_{m \times n}\). Then And-product of \([k_i]_{a_{ij}}\) and \([k_i]_{b_{ik}}\), denoted by \([k_i]_{a_{ij}} \land [k_i]_{b_{ik}}\), is defined by

\[
\land : \tilde{N}_{m \times n} \times \tilde{N}_{m \times n} \rightarrow \tilde{N}_{m \times n^2}
\]

where

\[
[k_i]_{a_{ij}} \land [k_i]_{b_{ik}} = \left[\begin{array}{c} < T^c_i, I^c_i, F^c_i > | < T^c_{ip}, I^c_{ip}, F^c_{ip} > \end{array} \right]
\]

and where

\[
T^c_i = t(T^a_i, T^b_i), I^c_i = s(I^a_i, I^b_i) \quad \text{and} \quad F^c_i = s(F^a_i, F^b_i)
\]

Definition 4.23. Let \([k_i]_{a_{ij}}, [k_i]_{b_{ik}} \in \tilde{N}_{m \times n}\). Then Or-product of \([k_i]_{a_{ij}}\) and \([k_i]_{b_{ik}}\), denoted by \([k_i]_{a_{ij}} \lor [k_i]_{b_{ik}}\), is defined by

\[
\lor : \tilde{N}_{m \times n} \times \tilde{N}_{m \times n} \rightarrow \tilde{N}_{m \times n^2}
\]

where

\[
[k_i]_{a_{ij}} \lor [k_i]_{b_{ik}} = \left[\begin{array}{c} < T^c_i, I^c_i, F^c_i > | < T^c_{ip}, I^c_{ip}, F^c_{ip} > \end{array} \right]
\]

and where

\[
T^c_i = t(T^a_i, T^b_i), I^c_i = s(I^a_i, I^b_i) \quad \text{and} \quad F^c_i = s(F^a_i, F^b_i)
\]

Proposition 4.24. Let \([a_{ij}], [b_{ij}], [c_{ij}] \in \tilde{N}_{m \times n}\). Then the De Morgan’s types of results are true.

1. \([a_{ij}] \lor [b_{ij}]\)^c = \([a_{ij}]^c \land [b_{ij}]^c\)
2. \([a_{ij}] \land [b_{ij}]\)^c = \([a_{ij}]^c \lor [b_{ij}]^c\)

5. NPNSS-aggregation operator

In this section, we propose an aggregate fuzzy set of an nmp–soft set. We also define NPNSS-aggregation operator that produce an aggregate fuzzy set from an nmp–soft set and its neurostochastic parameter set. Some of it is quoted from [14; 16; 23; 36].

Definition 5.1. Let \(N_1\) be any an nmp–soft sets. Then NPNSS-aggregation operator, denoted by \(NPNSS_{agg}\), is defined by

\[
NPNSS_{agg} : N(E) \times NPNSS(U) \rightarrow F(U)
\]

\[
NPNSS_{agg}(X, N_1) = N_1^*
\]

where

\[
N_1^* = \{ \mu_N(x)/u : u \in U \}
\]

which is a fuzzy set over \(U\). The value \(N_1^*\) is called aggregate fuzzy set of the \(N_1\).

Here, the membership degree \(\mu_{N_1^*}(u)\) of \(u\) is defined as follows

\[
\mu_{N_1^*}(u) = \frac{1}{|E|} \sum_{x \in E} R_{N_1}(x)I_{N_1}(x)\}

where \(|E|\) is the cardinality of \(E\).
Algorithm
The algorithm for the solution is given below

Step 1: Choose feasible an npn–soft set N_1 over U,

Step 2: Find the aggregate fuzzy set N_1^* of N_1,

Step 3: Find the largest membership grade $\max\{\mu_{N_1^*}(u)\}$.

Case study: In this study, we have proposed a numerical application for the method. Let $U = \{u_1, u_2, u_3\}$, $E = \{x_1, x_2, x_3\}$. Then,

Step 1: We choose feasible an npn–soft set N_1 over U as,

$$N_1 = \left\{ \langle x_1, (0.6, 0.7, 0.8) \rangle, \langle u_1, (0.4, 0.5, 0.6) \rangle, \langle u_2, (0.6, 0.1, 0.1) \rangle, \langle u_3, (0.3, 0.4, 0.4) \rangle \right\} \cup \left\{ \langle x_2, (0.4, 0.1, 0.2) \rangle, \langle u_1, (0.5, 0.8, 0.5) \rangle, \langle u_2, (0.5, 0.6, 0.8) \rangle, \langle u_3, (0.6, 0.6, 0.9) \rangle \right\} \cup \left\{ \langle x_3, (0.4, 0.7, 0.5) \rangle \right\} \cup \left\{ \langle u_1, (0.5, 0.4, 0.6) \rangle, \langle u_2, (0.6, 0.6, 0.7) \rangle, \langle u_3, (0.2, 0.1, 0.8) \rangle \right\}$$

Step 2: We found the aggregate fuzzy set N_1^* of N_1 as,

$$N_1^* = \{u_1/0.13, u_2/0.13, u_3/0.16\}$$

Step 3: Finally, the largest membership grade can be chosen by $\max\{\mu_{N_1^*}(u)\}$ which means that the u_3 has the largest membership grade, hence it is selected for decision making.

6. Conclusion

In this paper we define the notion of soft sets, is called npn–soft sets, in a new way by using neutrosophic sets. The npn–soft sets generalizes the concept of the other soft sets such as; fuzzy soft sets, intuitionistic fuzzy soft sets, neutrosophic soft sets, fuzzy parameterized soft sets, intuitionistic fuzzy parameterized soft sets, neutrosophic parameterized soft sets,... Then, we introduce some definitions and operations on npn–soft sets and propose the concept of npn–soft matrix and their operators which are more functional to make theoretical studies in the npn–soft set theory. Finally, we proposed the decision making method on the npn–soft set theory and provided an example that demonstrated that this method can be successfully worked. The approach should be more comprehensive in the future to solve the problems that contain uncertainty. Researchers, can be just study on npn–soft sets instead of similar work on separately other soft sets that is in Figure 1. npn–soft set can be expanding with new research subjects as; neutrosophic metric spaces and smooth topological spaces, neutrosophic numbers and arithmetical operations, relational structures, relational equations, similarity relations, orderings, probability, logical operations, implicators, multi-valued mappings, algebraic structures and models, cognitive maps, matrix, graph, fusion rules, relational maps, relational databases, image processing, linguistic variables, decision making and preference structures, expert systems, reliability theory, soft computing techniques and so on.

References

N. Çağman and S. Enginoğlu, Soft set theory and uni-int decision making, European Journal of Operational Research, DOI: 10.1016/j.ejor.2010.05.004.

Irfan Deli (irfandeli@kilis.edu.tr)
Muallim Rifat Faculty of Education, 7 Aralik University, 79000 Kilis, Turkey.