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On Additive Analogues of Certain Arithmetic 
Functions 

J6zsef Sandor 
Department of Mathematics, 

Babe§-Bolyai University, 3400 Cluj-Napoca, Romania 

1. The Smarandache, Pseudo-Smarandache, resp. Smarandache-simple functions are 
defined as ([7J, [6]) 

S{n) = min{rn EN: nlm!}, 

Z(n) = min {m.E N: nl m{n~ + 1)} , 

5p (n) = min{m EN: p"lm!} for fixed primes p. 

The duals of Sand Z have been studied e.g. in (2], [5J, [6]: 

5.(n) = max{m EN: m!ln}, 

{ m(rn+1) } 
Z.(n) = max mEN: 2 In. 

(1) 

(2) 

(3) 

( 4) 

(5) 

We note here that the. dual of the Smarandache simple fnnction can be defined in a 
similar manner, namely by 

5p • ( 7!) = !II ax {lit EN: m!lp"} (6) 

This dual will be studied in a separate paper (in preparation). 
2. The additive analogues of the functions 5 and 5. are real variable functions, and 

hnve been defined nnd studied in paper [31. (See also onr book [61, pp. 171-174). These 
fnnctions hllve been recently furt.her extended, by the use of Euler's gamma function, ill 
place of the factorial (see [1]). We note that in what follows, we could define also the 
additive analogues functions by the use of Euler's gamma function. However, we shnll 
apply the more transpnrent notation of a factorial of a positive integer. 

The additive analogues of 5 and 5. from (1) ancl (4) have been introduced in. (31 as 
follows: 

S(x) = min{m EN: x::; m!}, S: (1,00) -+ JR, (7) 

resp. 
S.(.c) = mnx{m EN: m!::; x}, 5.: [1,(0) -+ 1R (8) 
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Besides of properties relating to continuity, differentiability, or Riemanri integrability 
of these functions, we have proved the following results: 

Theorem 1. 

Sx,",,~ 
.() log log x (x -+ (0) (9) 

(tile same for S(x)). 
Theorem 2. Tile series 

00 1 

f.; n(S.(n))Q 
(10) 

is convergent for a> 1 and divergent for a ~ 1 (tile same for S.(n) replaced by S(n)). 
3. The additive analogues of Z and Z. from (2), resp. (4) will be defined as 

{ m(m + 1)} 
Z(x) = min mEN: x ~ 2 ' 

Z.(x) = max {m EN: m("~ + 1) ~ x} 

In (11) we will assun;e x E (0, +(0), while in (12) x E [1, +(0). 
The two additive variants of Sp(n) of (3) will be defined as 

P(x) = Sp(x) = min{m EN: pX ~ ml}; 

(where in this case p > 1 is an arbitrary fixed real number) 

P.(x) = Sp.(x) = maxIm EN: ml ~ pEl 

From the definitions follow at once that 

Z(x)=k {:} xE Ck~lik,k(k;I)] fork:::: 1 

Z (x) = k ¢? x E [k(k + 1) (k + l)(k + 2)) 
• 2' 2 

For x :::: 1 it is immediate that 

Z.(x) + 1 ~ Z(x) :::: Z.(x) 

Therefore, it is sufficient to study the function Z.(x). 
The following theorems are easy consequences of the given definitions: 
Theorem 3. 

1 
Z.(x) '" iV8x + 1 (x -+ (0) 

Theorem 4. 
00 1 L ( () is convergent for a > 2 

n=! Z. n )" 

"" 1· 
and divergent for a ~ 2. The series f.; n(Z.(n))" is convergent for all a> O. 
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( 11) 

( 12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

. k(k+I) (k+I)(k+2) 
Proof. By (16) one call wrIt.e --2-- ~ x < 2 ' so k2 + k - 2x ~ 0 

and k 2 + 3k + 2 - 2x > O. Since the solut.ions of these quadratic equations are kl ,2 = 
-1 ± V8:c + 1 -3 ± V8x + 1 . V8x + 1 - 3 
---::---, resp. k3•1 = 2 ' and remarktng that 2 :::: 1 {:} 
x :::: 3, ~ve obtain that the solution of t,he above system of ine'lualities is: 

{ 

k [ v'1+8X-I] E 1, 2 

( VI+8:C-3 Vl+8X-l] 
k E 2 ' 2 

if XE[I,3); 

(20) 

if x E [3, +(0) 

So, for :r 2: 3 
VI + Rc - 3 Z () vI + 8:1: - 1 

2 <. x ~ "':"-'--:2:--- (21) 

implying relation (18). 
Theorem 4 now follows by (18) and the known fact that the generalized harmonic 

00 

serips L -; is convergent only for B > 1. 
n 

n~1 

The things arc slightly more complicf,lted in the case of functions P and P •. Here it is 
sufficient to consider Po, too. 

First remark t.hat 

[ IOgm! 10g(m+I)I) 
P.(x) = Tn {:} x E --, . 

logp logp 
(22) 

The following asymptot.ic results have been proved in [31 (Lemma 2) (see also [61, p. 
172) 

log TIl! ~ m log 7I!, 

By (22) one can write 

TIl log log m! 
-,...::..-:;- ~ 1, 

logm! 
log log m! ~.1 (m -+ (0) 

log log(m + I)! 

mloglogm.! Tn' I mlogxmloglog(m+l)! (I I ) m 
-~---';;--- - --log ogp < --- < - og ogp --, 

log TIl! log 111! - log m! - log m! log TTl! 

• II! log:l: d b ( ) I I TI . h gi vlllg ---I -+ 1 (111 -+ (0), an y 23 onc gets og x '" og m. liS means tat: 
logm. 

Theorem 5. 
log P.(.!:) '" log.7: (x -+ (0) 

(23) 

(24) 

Thc following theorem is a consequence of (24), and a convergence theorem established 
in [31: 

Theorem 6. Tile series f ~ ( log log ~)" is convergent for a > 1 and divergent 
n=1 n log P.(n 

for (t ~ 1. 

L"" 1 (IOgIOgn)" Indeed. bv (24) it is sufficient to study the series - -I -- (where no E N 
. " n ogn 

n>nn 

is a fixed positive integer). This series has been proved to be convergent for a > 1 and 
divergent for n ~ 1 (see [61, p. 174). 
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ONSOMESMARANDACHEPROBLEMS 

Edited by M. Perez 

1. PROPOSED PROBLEfvI 

Let II ~ 2. As a genera lization of the illteger part of a number one defines the Inferior 
Slll<lrandache Prime Part as: IS P P( 1/) is the largest prime less than or equal to II. For 
ex~mple: ISPPUJ) = j because 7 < 9 < II. "Iso ISPP(13) = 13. Similarly the Superior 
Smara.ndilche Prime Part is defined M: SSP P(II) is sma.liest prime grei\ter thi\n or equi\l to 
II. For example: SSPP(9) = 11 beci\use 7 < 9 < II, also SSPP(13) = 13. Questions: 
I) Show that i\ number I' is prime if i\nd only if 

IS'P?(!,) = SSPP(p). 

2) Let k > 0 be a given integer. Solve the Uiophantine equi\tion: 

ISP?(.r) + SSPP(;r) = k. 

Solution by Hans Gunter, Koln (Germany) 

The Iliferior Snwrilndache Prime Part., ISPP(n). does not exist for n < 2. 
I) The first quest.ion is obvious (Carlos Hi\·era). 
2) The secolHl question: 

iI) If l· = 21' <lnd i' =pri'rne (i.e., l· is the double of i\ prime), then the Smi\fi\ndache 
diophantine equation 

ISPP(.r) + SS?P(.r) = 2p 

hilS on<" solutiou only: .r = I' (Carlos Ri\·era). 
b) If l, is equal to the sum of two cOllsecutive primes, l' = pIn) + p(n. + I), where p(m) 

is t.he m-th prime. t.hen the above Smilrandilche diophi\ntine equation has many solutions: 
ilil t.1H? illl.rgrr~ Iwl.lI'rrn 1'(11) ilud 1'(11 + 1) [or courSE', I.he <:'xtrr.IIIE'~ 1'(11) and fJ('~ + 1) arc 
E'xclndedl. Excepl. t,hf.' casf.' k = !j = 2+ :3. wilell this' eqlli\tion has no solution. The slIb-cilses 
whr.n this eqnat.ion has one solution only is when p(,,) and p( n. + 1) are twin primes', i.e. 
p(,,+I)-p(") =:!, amI then the solution isp("Hl. Forexi\mple: ISPP(;r)+SSPP(,r) = 24 
has t.he only solution .r = 12 because 11 < 12 < 13 a.nd 24 = 11 + 13 (Teresinha DaCosta). 

Let's consider an example: 

ISPP(.l'j + SSPP(.I') = 100, 



because 100=-l i +i:l (t.wo consecuti\'e primes), then .1' = -IS, -I'}, !'i0,!'i I, and 52 (all the int.egers 
between -li and ;j:l). 

ISPP(-lS) + SSPP(-IS) = -Ii + .5:3 = 100. 

Another example: 
ISPP(.r) + SSPP(.r) = 99 

has no solution, because if .r = -Ii then 

ISPP(-li) + SSPP(-li) = -li + -li < 99, 

and if .r = -IS then 

ISPP(-l8) + SSPP(-I8) = -IT + .5:3 = 100> 99. 

If .1' :S -li then 
ISPP(.r) + SSPP(.r) < 99, 

while if .1' ~ ·18 then 
ISPP(.r) + SSPP(.r) > 99. 

c) If k is not equal to the double of a prime, or k is not equal to the sum of two consecutive 
primes, then the above SllIarandache diophantine equation has no solution. 

A remark: \Ve can consider the equation more general: Find the real nUlllber .1' (not 
necessa.rily integer number) SIKh that 

/.':o'PP(.I') + :3S'J'['(.I') = k, 

where l. > O. 
Example: Then if l· = 100 then ,(0 is any real uumber in the open interval (-17, !'i:3), 

therefore infinitely llIany real solutions. \Vhile iilteger solutions are only five: ·18, -19, ::;0, .51, 
.52. 

A criterion o[ primality: The integers I' and ]' + 2 are twin primes if and only if the 
diophantine smarandacheiau equation 

ISPP(.r) + SSPP(.r) = 2], + 2 

has only the solution .1' = I' + 1. 
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2. PROPOSED PROBLEM 

Prove that. in the infinite Smarandache Prime Base 1,2,:3,.5,i,l1,1:1,... (defined as all 
prime 1ll11l1bers proceeded by 1) any positive integer ca.n be uniquely written with only two 
digits: 0 and 1 (a linear combination of distinct primes and integer 1, whose coefficients are 
o and 1 only). 

Unsolved question: \Vhat, is the integer with the largest number of digits 1 in this 
base? 

Solution by Maria T. Marcos, Manila, Philippines 

For example: 12 is between 11 and 1:3 t,hen 12=11+1 in SPB. or 

12 = 1 x 11 + 0 x i + 0 x .'j + 0 x :3 + 0 x 2 + 1 x 1 = 100001 

in SPB. Similarly a.~ 
·102 = -I x 100 + 0 x 10 + ., x 1 = -102 

in base 10 (t.he infinit.e base 10 is: 

1, 10. 100.1000, 10000, 100000, ... ). 

0=0 in SPB 

1 = 1 in SPB 

2 = 1 x 2 + 0 x 1 = 10 in SPB 

:3 == 1 x :3 + 0 x 2 + 0 x 1 == 100 in SPB 

-I = 1 x :3 + 0 x 2 + 1 x 1 = 101 in SPB 

;j = :3 + 2 = 1 x :3 + 1 x 2 + 0 x 1 = 110 in SPB 

l::; = l:l + 2 = 1 x J:l + 0 x 11 + 0 x T + 0 x ::; + 0 x :3 + 1 x 2 + 0 x 1 = 1000010 in SPU 

This base is it part.icula.r case of the Smarandache general ba.5e - see (3). 
Let's COllvert backwards: If 1001 is a llumher in the SPS, then this is in base ten: 

1 x .'j + 0 x :3 + 0 x 2 + I x I = ::; + 0 + 0 + 1 == 6, 

We do not. get digit.s greater than 1 because of Chebyshev's theorem. 
It is only it unique writing. 

10 = i +:3, t.hat is it. \Ve do not decol11pose:3 anymore because:3 belongs to the Sm3ralldache 
prime bi\.~e. . 
11 = i + -I = T + 3 + I, because -I did not. helong t.o t.he SPB we had to decompose 4 M well. 
11 has a unique representat.ion: 11 = T + 3 + 1, 

The rule is: 
- any number" is between p( k) and p( l· + 1) l11i1lHlat.ory: 

[I(l-) :S " < p( k + 1), 



where I'(k) is t.he ~·-t.h prime; I mean any nUlllber is between'two consecuti\·eyrimes. 

For another example; 
2i is bet.ween nand 29. thus 2i =2:}+·1, but -! is between :3 and ·5 therefore -!=:l+ 1, therefore 
2i=:2:l+:3+1 in the SPB (a unique representation). 

Not allowed to say that. 2i = 19 + ;) because 2i is not between 19 and 29 but between 

2:3 and 29. 
The proof that all digits are 0 01' 1 relies on the Chebyshev's theorem that between a 

number II and 211 there is at least a prime. Thus, between a prime q and 2'1 there is as least 
a prime. Thus 21'(~') > p(~. + 1) where p(k) means the k-th prime. 

References 

[1] DUlIlitrescu, C., Seleacu, V., "Sollie notions and questions in 1!llmber theory", Xiquan Publ. 
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3. PROPOSED PROBLEM 

Let p be a posi ti ve prime, anti S( II) the Smarantiache Function, clefined as the slllallest 
integer such that SIn)! be divisible by 11. The factorial of III is the product of all integers 

from 1 to 111. Pro\"e that 

Solution by Alecu Stuparu, 0945 Balcesti, Valcea, Romania 

Because I' is prime and S{JI') IllUSt be divisihle hy 1', one gets that S(IY') = /" or 21'. or 

:11', etc. 
~Iore. S{JI') must be divisible by pI!, therefore 

S'V') = I' ~ p, 01' I' ~ (1' + 1), or p ~ (I' + 2), etc. 

But the smallest one is p ~ I' [because I' ~ (I' - I)! is not divisihle by IY', hut by IY'-I]. 
Therefore 
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4. PROPOSED PROBLEJ"! 

Let S:l.f( II) be the triple SmariindacIJe function. i.e. the smallest integer III such that mil! 
is divisible hy II. Here m!!! is t.he triple factoriaL i.e. IlI!1! = m( rn - :3)( III - 6) ... the product. 
of all such positin' 1I01l-Zero integers. For example 8!1! = 8(8 - 3)(8 - 6) = 8(.5)(2) = 80. 
S:}},( 10) = 5 lwcnuse 5!!! = 5(5 - :3) = 5(2) = 10, which is divisible by 10, and it is t.he 
sllIalbt, olle with this propert.y, S:jf(:JO) = 15,S:jfP)) = 6.S:3.f(21) = 21. 

Question: Pron~ that if II is divisible hy :3 then S:I/(II) is also divisible by 3. 

Solution by K. L. Ral11sharall, Madras, India 

Let, 5'3/(11) = m. 
S:l/(JI)!I! = mil! ha.'5 t,o be divisible by n nccording to t.he definition of this function, i.e. 

III hilS to he a. llIult,ipl(' of :.1. b(,(,Mlse " i.'5 a Illlllt.iple of:3. In lIP is 1I0t, a multiple of 3, then 
no farlor of mil! = m(1II - :3)(111 - 6) ... will be a mult.iple of:}, therefore m!!! 1V0uid not be 
divisible by II. Ahsurd. 

5. PROPOSED PROBLEM 

Let Sri/(,,) represent the Smarandache double factorial function, i.e. the s~allest positive 
integer such t.hill. 5'(~f(II)'! is divisible by 11, where double factorialm!! == 1 x 3 x 5 x ... x m 
if 111 is odd, <1n,\ III!! = 2 x ·1 x 6 x ... X 111 if m is e\·en. Soh'e the diophantine equation 
S,lf(,!') = /I, when p is prime. How many solutions are there? 

Solution by Carlos Gustavo Moreira, Rio de Janeiro, Brazil 

For the (',,,rat.ion S,(f(,!') = I' =prillle, the nUlllber of solutions is ;::: 2k, where k = 
(J.- :1)/2. The g('neml .,olnt.ion of t.he equat.ion SrI}'(.!') = I' =prillle is /' x Ill, where m is any 
di\'i,or of (J. - 2)!!. 

Let us consider the example for the Smarandache double factorial function SrI!(.r) = 1 i. 
The SOIUt.io1l5 are 1 i x 111. where III is any divisot: of ( Ii - 2)!! which is equal to 3 x .J x 7 x 9 x 
II x I:l x 15 = (:3 1 ) x (52) x i x 11 x [:J which has (~+ l) x (2 + I) x ( 1 + 1) x (1+ 1) x ( I + I) = 120 
di visor, therefore 120 solutions < 2' = 128. 

The nllmber of solutions is not 2' == 128 because sOllie solutions were counted twice, for 
example: Ii x:3 x 5 is the same as Ii x 15 or Ii x 3 x 15 is the same as Ii x,J x 9. 

COlllment by Gilbert Johnson, 
Red Rock State Park. Church Rock, Box 1228, NM 87311, USA 
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How t.o det.,rmine the soilltions and how to find a sup.,rior limit for the number of 
solutions. 

Using the definition of Slif. II'" filal that: I'll is dil'isible by .1', and I' is the slllall.,st positi\'f~ 
integer with this property. Because p is prime, .r should be a multiple of p (otherwise J' 
would not be the smallest posit.il·e int.eger with that property). pi! is a multiple of .r. 
a) If p = 2, then .r = 2. 
b) If p > 2, then p is odd and I'!! = 1 x :3 x 5 x ... x ]J = "1.1' (multiple of .1'). 

Solutions are formed by all combinations of p, times none, one, 01' more factors from .'3, 
5, .. " p- 2. 

Let (p- :3)/2 = k and ,.C." represent combinations of s elements taken by r. 
So: 

- for one factor: p. we hal'e 1 solution: ;r = p; i.e. DC k solution; 
- for two factors; 

II'!.' IlI\I'e ~. Hollll.ionH: 

i.e. lCk solutions; 
- for three factors: 

J' x 3, p x 5, .. , p x (p - 2), 

.r = p x :3,1' x .j, ... ,I} x (I' - 2); 

/' x :3 x .5, p x :3 x 7 ..... p x :3 x (p - 2); I} X 5 x 7, ... , P x 5 X (I, - 2); ... , P x (p - 4) x (p - 2), 

\I'e have 2C~' solutions; etc. and so on: - for k factors; 

p x :3 x :') x ... x (p- 2), 

we hal'e kC~' solutions. 
Thus, the general solution has the form; 

.1' = P X CI X Cj X ... X Cj, 

with all Cj distinct integers and helonging to p, 5, ... 0/'- 2}, 0 S j S k, and k = (I' - :3)/2. 
The smallest solution is .r = I', the largest solution is .r = I}!!. 

The totalnumher of solut.ions is less than or equal to DC k + ICk + 2C k + ... + kC k = 2k, 
where he = (I' - 3)/2. 

Therefore. the I1Ilmber of solutions of this equat.ion is equal to the number of divisors of 
(I' - 2)ll. : 

as 

NNTDM 9 (2003) 2, 39-40 

ON SOlVIE PROBLEMS RELATED TO 
SMARANDACHE NOTIONS 

Edited by M. Perez 

1. Problem of Number Theory by L. Seagull, Glendale Community College 
Let. /I be a composite integer> 4. Prove that in betwe.,n /I and S(II) there exists at least 

a prime nUlllber. 

Solution: 

T. Yau proved that the Smarandache Function has the foliowing property: S( /I) S ~ for 
any composite number II, because: if II = pq, with p < q and (p,q) = 1, then ~ 

n 11. 
S(rl)max(S'(p),S(q)) = S(q) S 'I = - S 7)' 

p -

NolV, using Bertrand-Tchehichev's theorem, we get thilt. in between 1} and n there exists at 
least a prime number. -

2. Proposed Problem by Antony Begay 

Let. S( n) he the smallest int.eger nUlllber such t.hat S( II)! is divisihle by II. where Ill! = 
1.2.:1. .... 111 (factoriel of III ). ami S( 1) = I (Smaramlache Function). Prol'e that. if p is 
prillle then S(I') = I'. Cakulat.e S(·12). 

Solotion: 

8(1') cannot he less than p, because if 8(1')' = 11 < fJ then H! = 1.2.3 ..... 11 is not dil'isible 
by I' (1' being prime). Thus 8(1') :::: 1" But p! = 1.2.:I. .... p is divisible by p. a.nd is the 
smallest. one with this propert.y. Th .. refore 8(1') = /,. 

·12 = 2.:3.7,7! = I.:U.·1.5.6.7 which i~ divisihle \'y 2. by :1, ~1Il1 by·7. Thlls S(12) S 7. 
Bllt. S(·12) can not he less than T, hecause for ex'ample 6! = 1.2.:3.·1..5.6 is not di\'isible by 7. 
Hence 8(42) = 7. ' 

3. Proposed Problem by Leonardo Motta 

Let" be a sqllare free integer, and p the largest prime which devides II. SholV t.hat 
S( II) = 1', when' 8( II) is the Smaranda.che Funct.ion, i.e. t.he smallest integer sHch that. 
S(Il)! is divisihle by II. 

;l!) 



Solution: 

Because 11 is a. square free number. there is no prime q such that q2 divides n. Thus n is 
a product of dist.inct prime numbers, each one to the first power only. For example 105 is 
square free because 10!'i=:J.~j.7 . i.e. 105 is a. product of distinct prime numbers. each of them 
to t.he power 1 only. \Vhile 9·1!'i is not a· square free number because 9·15 = 33 .5.7, therefore 
~)r) i, ,li"isible by :1' (which is 9, i.e. a squarl"). No\\,. if we compul.e t.he Smarand".che 
Funct.ion S( 1(J!'i) = T because T!=1.2.:JA.!'i.6.7 which is divisible by :3,5. and T in the same 
tillle. and T is slllallesl, number with this property. But 8(9·15) = 9, not T. Therefore, if 
/I = a.b ..... p, where all a < b < ... < pare dist.inct. I,wo by two primes, then 8(n) = 
IIlax( a. b, .. , • p = I), because the faclorial of p, the largest prime which divides Il, includes 
t.he fac!.ors (/, b, .. . in it.s development: p! = L .... (/ ..... /) ..... /,. 

,I. Proposed Problem by Gilbert Johnson 

Let S'df(,,) be the Smarandil.che Double Factorial Function, i.e. the smallest integer stich 
th".I. S(({(II)!! is divisible by II, where m!! = 1.3.5 ..... m if 111 is odd and m!! = 2.4.6 ..... 711 

if III is eWll. If /I is all even square free lllllllber ilnd I' the largest prime which divides n, 
t.hE'n S(({(,,) = 2/,. 

Solution: 

Because II is even and square free, then I/. = 2.((.b .. ... J! where all 2 < (I < b < .. , < I' 
are dist.inct. primes two by two. oecming to the power 1 only. Sdf(n) cannot be lE'sS that 2[1 
hICCaU8p. if it is 2/, - l'. wit.h 1 S l: < 21', then (21' - l')!! would llot be divisible by p. 

(2,,)!! = 2..1 ..... (2(1) ..... (2") .... . (21') 

is I.li\·isible by 11 and it is the smallest lllllnber wit.lI t.his property. 
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GENERALIZED SMARANDACHE PALINDR01VIE 

Edited by George Gregory, New York, USA 

A C:eneralized Smarandache Palindrome is a nnmber of the form: (l1(l2 •.. (ln(ln ... (l·~(l1 or 
(l1(l2···(ln_I(I .. (ln_I .. ·(l2(11> where all (II> (12, ..•• (In are positive integers of various number of 
digits. 

Examples: 
a) 1:!:J5656:111 is a C:SP because we can group it as (11)(:3)(.56)(56)(:3)(12), i.e. ABCCBA. 
b) or comse, any integer can be consider a C:SP because we lIlay consider the entire number 
as equal to (II. which is smarandachely palindromic; say N = 17629:3 is C:SP because we 
may take III = 17629:3 and thus N = (1\. But one disregards this trivial case. 

Very interesting GSP are formed from smarandacheian sequences. 
Let us consider this one: 

11, 1121,12:n:H, ... , l2:3-156T899876.5H2l, 

12:ll!'i678910 1098765-1:32 1, l2:J.\:j6T891O l1l1 1098765-1:321, ... 

all of them are GSP. 
It has been proven that 1:!:J.156i891Ol098765-1:321 is a prime'(see 

hilI': / /wwwJ·uttl·f,u"[J/llulf.~/OlO:3.hlml, 

and the Prillle Curios site). 
A question: How many other GSP are in tllf" above sequence? 
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ON 15-TH SMARANDACHE'S PROBLEM 

TvIladen V. Vassilev - Missana 

5. V. Hugo St.r .. Sofia-liZ",. Bulgaria, e-mail: /1Ii~.~(I1w.iJJab(l.bg 

Introduction 

The 15-t.h SlIIarandache's problem [1'0111 [lJ is the following: "Smarandache's simple 

numbers: 

2. ·3, -I, 5, 6. 7. S, 9,10, ll, 1:3, [·1, 15,17, 19, 21, 22, 2:3, 25, 26, 27, 2!). 31, :n, ... 

A 11\11111,,1'1' 1/ is called "Smaralldaclw's simple number" i[ the prolluct of its propel' divisors 

is Ie:;s than 01' equal to /I. Generally speaking, /I ha_~ the form /I = p. or n = p2, 01' n = /'\ 

01' /I = /I'{, where p and q are distinct primes". 

Let us denote: by S - the sequence o[ all Sma.randache's simple numbers and by s. -

the II-t.h term o[ $; by P - t.he sequence o[ all primes and by p. - the n-th term of P; by 

P! - the sequence {I':'}',~;;'I: by 'P:1 - the sequence {I'~}'~I; by 'PeJ. - the sequence {p·q}p.'IEr, 

where p < '{. 
For an iI.bit.rary illueilsing sequence o[ natmal numbers C == {Cn}~l we denote by 

;rc!,,) the nllmber of terms of C, II'hich are not greater that 11. When 11 < CI we must put 

;rc(II) = O. 

In the present. paper we find 7rs( 1/) in an explicit [orlll and using this, we Find the II-th 

t('rm o[ $ ill ~xplicit form. too. 

1. 7rs( 1/ )-representatiol1 

First. we mllst not.e thi\.t instei\.d o[ 7rp(n) we shall use the well known denotation 7r(n). 

Il~lIc(, 

Thns.-lIsing t.he definit.ion of S, we get 

(l) 

Our first aim is to express 11'5(11) in an explicit form. For 7r(n) some explicit formulae 

are proposed in [2J. Ot.ller explicit formulae for 11'(/1) are contained in [:3J. One of them is 

known as i\lina("s [ol'lllula .. It is given below 

I:" [(~. - I)! + I [(~. - I)!II 
;r(/I) = . - --- . 

k ~, 
(2) 

k=Z 

where [_I denotes the function integer part. Therefore, the question about explicit formulae 

for functions 11'( 1/). 11'( JiI), 1I'(.y;I) is soh'e,l successfully. It remains only to express 11' r~( 1/) 

in an explicit form. 

Let k E {l, 2, ... , 11'( JiI)} be fixed. We consider all numbers of the kind /,k.q. II'here 

'I E P, 'I> /'k for which /'k.'1 S; 1/. The number of these numbers is 7r(?,;-) - 7r(l'd, or which 

is the same 

When ~, = 1,2, ... , 11'( Jill. numbers /,k.q, that lVere defined above, describe all nllmbers 

of the kind 1'.'1, where I',q E P,p < '1,p.'1 S; 11. But the III I III bel' of the last numbers is equal 

to 11'1".;>(11). HelIce 
"I.fiil 

7rN(II) = I:(7r(~)-k), 
k=1 /'k 

( 4) 

because of (:1). The equality (-I), after a simple computation yields the formula 

<I.fiil r.: r.: 
'" II 11'( vn).(11'( VII) + 1) 

7rrlJl n ) = L 11'(-) - .} 
Pk -

(5) 
k=1 

In [-II the ideutity 

1/ 
;r(--) (Ii) 

P<Ij;)+k 

is proved, under the condition b ~ 2 (b is a real number). \Vhen 7r(i) = 1I'(I)' the right 

hand-side of (6) reduces to 11'( %).11'(11). In the case II = JiI and /I ~ -I equality (6) yields 

/I 
11'(--). (7) 

P<I.fii)+k 

If we compare (.5) with (7) we obtain [or n ~ ·1 

11 
11'(--). (8) 

fI.TI.fiiIH 

Thus, we ha\'f~ two different explicit representations for 7rrlJln). These are formulae 

(5) and (8). We lIIust note that the right hanel-side of (S) reduces to "1.;n1-I~IvIfl)-II, when 

11'( 1) = 11'( JiI). 
Finally. \l'e ohsel'\'e that (1) gives an explicit representat.ion for 11'5(11), siuce we may use 

forllluia (2) [or 11'(11) (or other explicit formulae [or 11'(/1)) and (5), or (S) for 7rrlJll/). 



2. Explicit formulae for .~" 

'I'll<' [ollOll"ing ~ss<:'rtion d<:,cidc~ t.he qUI"stion about. explicit repreRental.ion o[ .s". 

Theorem: 'I'll<:' /1-th t.erm .~" of S admits the following three differcnt. explicit rcpreRcnta-

t.ionR: 
8(tl) 

1 
"" = L( 1I',(k) ]i (9) 

k=O 1 + [---11-] 

Of .. ) ~ 
__ 'J \' O( _.J[ 1I's( ')]). ( 10) Sn - .... L....; ... 11. 1 

k=O 

Of,,) 
I 

S" = L ' (11 ) 
k=O f( 1 _ [1I'S,\k) j) 

where 
_ [,,2 + :In +.\] 

0(/1) = , 
.\ 

n = 1,2, ... , (12) 

( is niemann's [unction zet.a and r is Euler's [ulld,ion gamma. 

Remark. \Ye must note thaI. in (9)-(1l) 1I's(k) is given by (1), ro(~') is given by (2) (or by 

otlH'rs [onnulae like (::!)) and rordn) is giH~n by (!i), or by (8). Therefore, formulae (9)-(11) 

arc explicit .. 

Proof of the Theorem. In [2] the following three universal formula.e are proposed, using 

1I'cf~·) (~. = 0, 1 .... ). which one could apply to represent e". They a.re the following 

'X, 1 
c" = I) ~ ]i 

k-o 1 + [1I'd eJ] 
- 11 

(13) 

( 1·1) 

(1!i) 

[n [:j] is shown that. t,he ineqna.lit.y 

1'" :s: IJ(,,), " = 1. '2, .... ( IG) 

holds. Hence 

.s" = 0(/1).11 = 1,2, ... , (Ii) 

,q" :s: /I ... 11 = 1. '2 ..... ( 18) 

Then t.o pl'O"e t.he Theorem it remains ollly to apply (I:3)-(I!i) ill the case C' = S, i.e., for 

c" = s". putting there ;;s(~·) instead of 1I'c(~.) and 0(,,) inst.ead of 'Xl. 
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ON THE SECOND SMARANDACHE'S PROBLEM 

Krassimir T. Atanassov 

CLBME - Bulg. Academy of ScL, and MRL, P.O.Box 12, Sofia-I113, Bulgaria, 

e-mail: krat@bas.bg. 

The s<:'col1(1 problC'm f\'Oll! [1J (see <~Iso IG·th problf'1n [rom [2]) is the following: 

Smal'll/l.dache circulal' .5((II1'-/l.ce: 

1·~:\15. 2:1·1!) I. :1I'i 12. I'd:n.!) 12:11, 1 :nl!i6. :tl4!)(i 1. :W',G 12. ·1:'612:1, 5612:1·1. G 12:lI:j, ... 
.... "'" ...... .I 

; tJ 

Let. J.r[ be the largest natural uumber st.rongly smaller thall real (positive) IItllnber .r. 

For example. Ji.I[= i, but Ji[: G. 

Let .f( /1) is tllP. 1I·t.h member o[ t.he ahove sequence. "VI' sha.1I prove the following 

Theorem: For ('I'rry naturalnumlwr II: 

where 

and 

f(/1) = .~($ + 1) ... U2...(.j - I). 

k(~' + I) 
.j == .j(lI) = II - ---. 

, 2 

(1) 

(2) 

(3) 

Proof: \Vheu /1 = 1. then [rom (I) n!HI (2) it follows that k = 0, c' = I alld frol11 (3) - I,hat 

.f( I) = 1. Ld. us assume that the assertion is valid for sOl\1e nat mal number II. Theil for 

II + I 11'1' ha\'e the folloll'ing t.wo possibilities: 

1. A,( 11 + 1) = k( 11). i.e .. A, is the same as above. Then 

( + I) I k( n + 1)( k( II + I) + I) k( 11)( k( /I) + 1) 
$11 =11+ - =11+1- =s(n)+1 

2 2' 

I.E' .• 

f(1I + I) = (.< + 1) ... klLs. 
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2. k(II + I) = A'(II) + 1. Then 

.~(II + I) = 11 + 1 _ A'(n + l)(k(1I + I) + I) 
2 . (-!) 

On the ot.her hand, it is seen directly, that in (2) numher ~-I is an integer if a!HI 
I 'f 111(",+1) 'I f on y 1 II: -l-' n so, or every natural \Iumhers II and III 2 I such that 

(m -1)111 l1I(m + I) 
2 <11< 2 (.5) 

it will be valid that 

lvsn;-I[:J 
n'("~+t) + 1 - I 

2 [ = III. 
Therefore, when k(1I + I) : k(II) -+- I, t.hen 

111(111+ I) 
/1.= 2 +1 

and for it from (-I) we obtain: 

"'(1/+1)=1, 

i.e., 

f(/1 + I) = I:'L.(/1 + I). 

Therefore, the assertion is valid. 

Let 
n 

SIn) : L J(i). 
;=1 

Theil, we shall use again formulae (2) and (:3). Therefore, 

P n 

S(I/) : L f(i) + L I(i). 
;=1 i=p+l 

where 
m(m+l) 

p= . 
2 

It. ca\l be seen directly, that 

I' II. • m .. 

"/(') - "-1') . + ~3 '1 ·t·) (. 'V"(' + 1) L I - L _ ... 1 ...... 1 + I .... , 1 -I) = L --.)-.Il...1 
;=1 ;=1 i=l J i 

011 the other hnlld,'if s : II - p, then 

" L I(i) = 12...(m + I) + 2:1. .. (m + 1)1 + ",(s + 1) ... m(m + 1)11...(.5 - I) 
i=I)+1 



'~ (.'+;)($+i+ 1) ;(;+ I)) 10"'-; 
= ~( 'J -'J' . 

;=0 -' oJ 
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