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Abstract

The main aim of this thesis is to provide a comprehensive overview of a neutrosophic
approach for mathematical morphology. The new approach is considered to be an
extension of the binary mathematical morphology and the fuzzy mathematical
morphology, and proposed as a new tool for binary and gray images processing and
analysis. We apply the concepts of the neutrosophic crisp sets and its operations as well
as the neutrosophic fuzzy sets to the classical mathematical morphological operations;
introducing what we call "Neutrosophic Crisp Mathematical Morphology” and
"Neutrosophic Mathematical Morphology"”. Several operators are to be developed,
including the neutrosophic (crisp) dilation, the neutrosophic (crisp) erosion, the
neutrosophic (crisp) opening and the neutrosophic (crisp) closing. Moreover, we extend
the definition of some morphological filters using the neutrosophic (crisp) sets concept.
For instance, we introduce the neutrosophic (crisp) boundary extraction, the
neutrosophic (crisp) Top-hat and the neutrosophic (crisp) Bottom-hat filters. The idea
behind the new introduced operators and filters is to act on the image in the
neutrosophic (crisp) domain instead of the spatial domain. Moreover, we introduce an
investigation for some algebraic properties of the introduced operations and we use
some different combinations of these basic operations to produce some more advanced
neutrosophic filters for boundary extraction. Explanation of the proposed operations is
also provided through several examples and experimental results conducted over real
life binary and grayscale images. Furthermore, we demonstrate the efficiency of the
proposed operator in one of the most important image processing application. "lImage
threshold" the experimental results show a slight improvement when we used the new
operators when comparing with the operators from both the classical and fuzzy

mathematical morphology.
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Chapter 1 Introduction

Chapter 1

Introduction

1. Introduction

Mathematical Morphology (in short MM) has been formalized since the 1960°s by
Georges Matheron [47] and Jean Serra at the Centre de Morphologie Mathematique on
the campus of the Paris School of Mines at Fontainebleau, France, for studying
geometric and milling properties. In 1967, Matheron and Serra introduced a set
formalism for analyzing binary images, which led them to work on image analysis.
Their work led to the development of the theory of MM. Later Petros Maragos
contributed to enrich the theory by introducing theory of lattices. Firstly the theory is
purely based on set theory and operators which are defined for binary cases only, later,
the theory was extended to grayscale images as well. MM gained a wide recognition
after the publication of the books "Image Analysis and Mathematical Morphology" by
Serra [67] and "Image Analysis and Mathematical Morphology, Theoretical Advances"
edited by Serra [69]. From the mid-1970’s to mid-1980’s [29], MM was generalized to
grayscale images and functions, this generalization yielded new operators, such as
morphological gradients and hat filters. In the 1980°s and 1990’s, MM started to be
applied to a large number of imaging problems and applications. In 1986, Serra further
generalized MM [68], this time to a theoretical framework based on set theory. This
generalization brought flexibility to the theory, enabling its application to a much larger
number of structures, including color images, video, graphs, etc. The 1990°s and 2000’s
also saw further theoretical advancements, including the concepts of connections and
leveling, where Heink J. Heijmans gave an algebraic basis for the theory and extended
the theory to Signal Processing [30, 31]. More advances in the field was presented by:

the International Symposium on Mathematical Morphology (ISMM); its first six venues
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were held in Barcelona (1993), Fontainebleau (1994), Atlanta (1996), Amsterdam
(1998), Palo Alto (2000) and Sydney (2002). MM is now part of the basic body of
techniques taught to any students of image processing courses anywhere. Far from
being an academic pursuit, morphology is used in industry and businesses at many
levels, for instance: quality control in industrial production, medical imaging, document
processing and much more. As morphology is the study of shapes, MM mostly deals
with the mathematical theory of describing shapes using set theory. MM denotes a
branch of biology that deals with the forms and structures of animals and plants. It
analyzes the shapes and forms of objects. In computer vision, it is used as a tool to
extract image components that are useful in the representation and description of object
shape. MM is a non-linear theory of image processing. Its geometry- oriented nature
provides an efficient method for analyzing object shape characteristics such as size and
connectivity, which are not easily accessed by linear approaches. MM has taken
concepts and tools from different branches of mathematics like algebra (lattice theory),
topology, discrete geometry, integral geometry, geometrical probability, partial
differential equations, etc.. Early work in this discipline includes the work of
Minkowski [49], Kirsch [40] and Preston [58].

Smarandache [74] introduced another concept of imprecise data called
"Neutrosophic Sets". Neutrosophic set is a part of neutrosophy which studies the origin,
nature and scope of neutralities, as well as their interactions with different ideational
spectra. Neutrosophic set is a powerful general formal framework which generalizes the
concept of the classic set, fuzzy set [85]. The fundamental concepts of neutrosophic set
introduced by Smarandache in [74], neutrosophic theories generalizing both their
classical and fuzzy counterparts. A neutrosophic linguistic variable has neutrosophic
linguistic values which defined by interval neutrosophic sets characterized by three

membership degrees: truth-membership, falsity-membership and indeterminacy-
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membership. Each field has a neutrosophic part, i.e. that part that has indeterminacy.
Thus, the neutrosophic logic was established as well as [75], neutrosophic set theory,
neutrosophic  probability, neutrosophic statistics, neutrosophic measure [76],
neutrosophic calculus, etc. Maji, P. K. introduced the neutrosophic concept for soft sets
defining "Neutrosophic Soft Set" (in short NSS) [46]. Salama, A. A [64, 65], introduced
the basic properties of the concept of neutrosophic crisp set and investigated some new
neutrosophic concepts. In this thesis, we are utilizing a neutrosophic approach for
mathematical morphology and image processing that has become increasingly
important. Neutrosophic category is the development of a crisp sets and fuzzy sets this
category is more general and comprehensive. Here, we present an overview of the
operations and properties of mathematical morphology, crisp sets, fuzzy sets and
neutrosophic sets. In our thesis we demonstrate that neutrosophic morphological
operations inherit properties and restrictions of fuzzy mathematical morphology and
crisp mathematical morphology.

1.3 The thesis structure:

The remaining of this thesis consists of six chapters in addition to a list of references
and structured as follows:

Chapter 1: Introduction

In this chapter we introduce a survey for both the mathematical morphology, fuzzy
mathematical morphology disperse, as well as a review for the theory of neutrosophic
sets.

Chapter 2: Types of Sets

The chapter was divided into three sections: the first section presents a survey of some
definitions and operators from the crisp sets theory. The second section we introduces
the definitions from the fuzzy sets theory. Finally, the third sections is devoted for

intruding the concepts of "Neutrosophic Fuzzy Sets"” and "Neutrosophic Crisp Sets".

( 2 )
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Chapter 3: Mathematical Morphology

I’s a revision for the basic definitions and properties of the binary mathematical
morphology in the first section, the grayscale mathematical morphology in the second
section and finally, fuzzy mathematical morphology in the third section.

Chapter 4: Neutrosophic Crisp Mathematical Morphology

The aim of this chapter is to apply the concepts of the neutrosophic crisp sets and its
operations to the classical mathematical morphological operations; introducing what we
call "Neutrosophic Crisp Mathematical Morphology”. Several operators are to be
developed, including the neutrosophic crisp dilation, the neutrosophic crisp erosion, the
neutrosophic crisp opening and the neutrosophic crisp closing. Moreover, we extend the
definition of some morphological filters using the neutrosophic crisp sets concept. For
instance, we introduce the neutrosophic crisp boundary extraction, the neutrosophic crisp
top-hat and the neutrosophic crisp bottom-hat filters.

Chapter 5: Neutrosophic Fuzzy Mathematical Morphology

In this chapter, we propose a generalization for the fuzzy morphology, as a new tool for
gray image processing and analysis, using the concepts of neutrosophy. The main
operations of the proposed neutrosophic morphology are introduced; namely, the
neutrosophic dilation, neutrosophic erosion, neutrosophic opening and neutrosophic
closing. Some algebraic properties of the introduced operations are to be investigated.
Furthermore, we use different combinations of these basic operation to produce some
more advanced neutrosophic boundary filters.

Chapter 6: Application

In this chapter, we experiment our operator for thresholding images, proposing in
section 6.4 an algorithm for thresholding images in the neutrosophic domain instead of
the spatial domain. While section 6.5 is devoted for introducing the experimental

results.
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Chapter 7: Conclusions
This chapter, gives conclusions and focuses on the advantage and shortcoming of our

proposed techniques through this thesis. We also point out some promising directions

for future research.
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Chapter 2
Type of Sets

2.1 Introduction:

In many complicated problems such as, engineering problems, social, economic,
computer science, medical science...etc., the data associated are not necessarily crisp,
precise and deterministic because of their vague nature. Most of these problem were
solved by different theories. One of these theories was the fuzzy set theory discovered
by Lotfi Zadeh in 1965 [85]. In many real applications to handle uncertainty, fuzzy set
is very much useful and in this one real value u,(x) € [0,1] is used to represent the
grade of membership of a fuzzy set A defined on the universe of X. Atanassov [3]
introduced another type of fuzzy sets that is called "Intuitionistic Fuzzy Set" (in short
IFS) which is more practical in real life situations. Intuitionistic fuzzy sets handle
incomplete information i.e., the membership degree and non-membership degree, but
not the indeterminacy and inconsistent data which exists obviously in real life systems.
In 1991, Samarandache initiated the theory of neutrosophic set as new mathematical
tool for handling problems involving imprecise indeterminacy and inconsistent data
[74]; where he introduced the neutrosophic components (T, I, F) which represent the
membership, indeterminacy and non-membership values respectively. Later on, several
researchers such as Bhowmik and Pal [6], and Salama [63, 65], studied the concept of
neutrosophic crisp set. Neutrosophy introduces a new concept which represents
indeterminacy with respect to some event, which can solve certain problems that cannot
be solved by fuzzy logic.

The Remaining of This Chapter is Structured as Follows:

Firstly, We present a breif revission for the concept of crisp sets with its operations and

properties in §2.2.
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Secondly, our goal in § 2.3, we give some definitions, for the fuzzy sets and its
operations and properties.

Thirdly, Definition of the intuitionistic fuzzy sets is to be introduced in §2.4.

Finally, The purpose of § 2.5, is to explain the concepts of both neutrosophic sets and
neutrosophic crisp sets.

2.2 Crisp Sets:

The concept of crisp sets is the core of most branches of mathematics, that is the
concept of the group of unknown preliminary concepts. A crisp set is an unordered
collection of objects, called elements or members, of the set. We write a € A to denote
that a is an element of the crisp set A. The notation a ¢ A denotes that a is not an

element of the crisp set A. The crisp set A is to be defined using the following

characteristic function p,:X — {0,1}, u, (x) = {10 ' 9;

(2.1)
where 14 (x) is the membership degree of any in the universal set X.

2.2.1 Operations on Crisp Sets:

In this section we review some basic operations which are defined on the crisp sets. To
commence, we consider two crisp sets A and B, to be defined on the universe set X.
Hence, we have the following operations.

The Union of Crisp Sets:

The union of two crisp sets A and B is denoted by A U B [61]. It represents all the
elements in the universe that reside in either the set A, the set B or both sets A and B;
and to be defined as the crisp set: AU B = {x|x € A or x € B}. (2.2)
The Intersection of Crisp Sets:

The intersection of two crisp sets A and B is denoted AN B [61]. It represents all those

elements in the universe X that simultaneously reside in both sets A and B; and to be

defined as the crisp set: AN B = {x|x € A and x € B}. (2.3)
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The Complement of a Crisp Sets:

The complement of any crisp set A denoted by (coA or A€) [61], is defined as the

collection of all elements in the universe that do not reside in the crisp set A; and to be

defined as the crisp set: A = {x|x ¢ 4, x € X}. (2.4)

The Difference between Crisp Sets:

The difference of a crisp set A with respect to B, denoted by A — B, is defined as the

collection of all elements in the universe set that reside in A and that do not reside in B

simultaneously; and to be defined as the crisp set: A — B = {x|x € Aand x & B}. (2.5)

2.2.2 Properties of Crisp Sets’ Operations:

For the operations defined in the previous section, the following properties are true

[26, 37, 61].

The Commutativity: AUB=BUA, ANB=BNA.

The Associativity of a Crisp Sets:
AUBUC)=(AUB)UC,AN(BNC)=(ANB)nC.

The Distributivity: Au (BNC) = (AUB)N(AuUC), AN(BUC) = (ANB) U (ANC).

The Idempotency: AUA =4, ANA=A.

The Transitivity: if ACB < C, then AcCC.

The Involution: (A°)¢ = A.

The ldentity: Aup=4, ANX=A4 Ang=0, AU X=X

Where the symbol € means contained in or equivalent to and c means contained in.

2.2.3 Generalized Unions and Intersections on Crisp Sets [61]:

The Union of a collection of crisp sets is the crisp set that contains those elements that

are members of at least one set in the collection.

AjUA,U.LUA, =UL A ={x:x€A;Ti=12..,n} (2.6)
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The Intersection of a collection of sets is the set that contains those elements that are
members of all the sets in the collection.

AiNA,N..NA, =N A ={xix€EAVi=12..,n} (2.7)
More generally, when I is a set, the notations N;¢; A; and U;¢; A; are used to denote the
intersection and union of the sets A; for i € I, respectively. Note that we have:

NierA; ={x; x €A, VieEl}
(2.8)
UierA; ={x; x€A;,Ti €T}

2.3 Fuzzy Sets [85]:
In 1965, Zadeh generalized the idea of a crisp set by extending a valuation set {0, 1} to
the interval of real values [0,1]. The degree of membership of any particular element of
a fuzzy set express the degree of compatibility of the element with a concept
represented by fuzzy set. That is a fuzzy set A contains an object x to some degree A(x).
Fuzzy sets tend to capture vagueness exclusively via membership functions that are
mappings from a given universe of discourse into the unit interval.
2.3.1 Definition [85]:
Let X be a fixed set, a fuzzy set A of X is an object having the form A = ( u, ), where
the function py4: X — [0, 1] defines the degree of membership of the element x € X to
the set A. The set of all fuzzy subset of X is denoted by F(X). The fuzzy empty set in
X is denoted by O = (0),where0:X — [0,1]and 0(x) =0, Vx € X. Moreover,
the fuzzy universe set in X is denoted by:
1 = (1), where 1:X — [0,1]and 1(x) =1,Vx € X.
2.3.2 Operations on Fuzzy Sets:
Consider three fuzzy sets A, B and C in the universe X. For a given element x in the
universe X, the following are the membership degrees for x under the basic fuzzy sets

operations[42, 62, 85].
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The Union of Fuzzy Sets:

(AU B)() = max (s, #5(®) o7 (aus) @) = 1a () V 115 (),
The Intersection of Fuzzy Sets:

(40 B)G) = min (14 (), 15.(0) ) 0 (1tans)C0) = 1a () A 15 0.
The Complement of Fuzzy Sets: pac(x) = 1= pya(x).
The Difference of Fuzzy Sets: (A—B)(x) = min (,ué(x) 11— ,ug(x)).
The Containment of Fuzzy Sets: A< B < puu(x) < pg(x).
2.3.3 Properties of Fuzzy Sets’ Operations:
The properties of the classical set also suits for the properties of the fuzzy sets [86]. The
important properties of fuzzy set include:
The Commutativity: AUB=BUA, ANnB=BnA
The Associativity: AU (BuC)=(AUB)uC, An(BnC)=(AnB)nC.
The Distributive: AU (BNC) =(AUB)N(AUC),

AN(BUC) = (ANB) U (ANC).

The Idempotency: AUA =

1>

The Transitivity: if ACBCC, then AcCC.
The Involution:  co (coA)=A or (A% =A.
The Identity: AuO0=A ANO0O=0,Aul=1land Anl1l=1.

The complement: co0 =1 and col = 0.

The Containment:
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2.3.4 Generalized Unions and Intersections on Fuzzy Sets [62]:
The Union of a collection of fuzzy sets is the set that contains those elements that are
members of at least one set in the collection.
Uier A;i: X - [0, 1], where X— sup;e1A;(x), Vx € X. (2.9
The Intersection of a collection of Fuzzy Sets is the set that contains those elements
that are members of all the sets in the collection.
Nier A;i: X — [0, 1], where X— infigA;(x), Vx € X. (2.10)
2.3.4.1 Definition:
e The set of all elements that having the degree of membership not equal zero in a
fuzzy set A is said to be the support of A; and is defined as:
Supp(A) = {x:x € X and A(x) > 0}, (2.11)
where A € F(X) and Supp(A) € P(X).
e The all elements that having the degree of membership equal one in a fuzzy set
A is said to be the support of A; and is defined as:
Ker (A) ={x:x € X and A(x) = 1}, (2.12)
where A € F(X) and Ker(A) € P(X).
2.3.4.2 Definition: (the weak o cut (a level))
Let A be afuzzy setand o € ]0,1] the weak acut A, , is defined as:
Ay, ={x:xeXand A(x) = a,a €]0,1]}. (2.13)
2.3.4.3 Definition: (the strong a cut (a level) )
Let A be a fuzzy set and a € [0, 1] the strong o cut Ag , is defined as:
Ag = {x:x € Xand A(x) > a,a € [0, 1[}. (2.14)
2.3.4.4 Definition:
For any fuzzy set A € F(X), we may define the following values for the fuzzy set's

height and regression.

11
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height A = sup,ex A(x),
(2.15)
plinth A = infex A(x).

2.4 Intuitionistic Fuzzy Sets:
In real life, the available information is vague, inexact or insufficient, the parameters of
any problem are usually defined by the decision makers in an uncertain way. Therefore,
it is desirable to consider the knowledge of experts about the parameters as fuzzy data.
Out of several higher order fuzzy sets, "Intuitionistic Fuzzy Sets" (in short IFS) [3, 4]
have been found to be highly useful to deal with vagueness. There are situations where,
due to insufficiency in the available information, the evaluation of membership values is
not possible up to our satisfaction. Nevertheless, the evaluation of non-membership
values is not also always possible and consequently there remains a part in deterministic
on which hesitation survives. Certainly, IFS theory is more suitable to deal with such
problem.
2.4.1 Definition [4]:
An intuitionistic fuzzy set, A in X, is defined to be a structure of the form:
A = {(x, us(x),94(x)): x € X}, where the functions p,: X — [0, 1] defines the degree
of membership, and the functions 9,: X — [0, 1] defines the degree of non-membership
of the element x € X. For every element x € X in A the two degrees of membership (14)
and non-membership (d9,) of x satisfy: 0 < pu,(x) + 9,(x) < 1. (2.16)
When 9,(x) =1 — us(x), the set A is happen to be a fuzzy set; while A is said to be
intuitionistic fuzzy set if 94(x) <1 — uu(x) Vx € X.
Example 2.4.1:
Consider an intuitionistic fuzzy set A, with a membership function u,(x) and non-
membership function 9,(x). For some x, € X, if we have that u,(x,) = 0.7 and

94(x) = 0.1, then we can interpreted that the element x belongs to the intuitionistic

12
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fuzzy set A by the degree 0.7; and that x, does not belong to the intuitionistic fuzzy set
A by the degree 0.1.
2.4.2 Operations on Intuitionistic Fuzzy Set [5]:
In this section we review some basic operations which are defined on the intuitionistic
fuzzy sets. To commence, we consider A, B and C to be three intuitionistic fuzzy sets
defined on the universe set X. Hence, we have the following operations.
The Union of Intuitionistic Fuzzy Set:
The union of two intuitionistic fuzzy sets A and B is defined by:

AUB = (max(pus(x), pp(x)), min(9,(x), 95(x))).
The Intersection of Intuitionistic Fuzzy Set:
The intersection of two intuitionistic fuzzy sets A and B is defined by:

ANB = (min(#A(x), Up (x)) ,maX( ﬁA(x)'ﬁB(x)))-
Complement of Intuitionistic Fuzzy Set:
The complement of intuitionistic fuzzy sets A is given by

AC = {(x,94(x), pa(x)): x € X},
e A<B S uy(x) <ug(x)and 9,(x) = 95(x) Vx € X,
e A=B S us(x) =pug(x)and 9,4(x) =95(x) Vx €X.

2.4.3 Properties of Intuitionistic Fuzzy Set [4]:
The following are the important properties of intuitionistic fuzzy set:
The Commutativity of Intuitionistic Fuzzy Set: AUB=BUA, ANB=BNA.
Associativity of Intuitionistic Fuzzy Set:

AUBUC)=(AUB)UC, AUBUC) =(AuB)UC.
Distributivity of Intuitionistic Fuzzy Set:

AU (ﬂlBl) = ﬂl(A U Bi)v An(Ui Bl) = Ui (A N Bl)

13
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Transitivity of Intuitionistic Fuzzy Set: if AcBandBc C= AcC.

Atanassov himself and many other authors [11, 52] studied different properties in
intuitionistic fuzzy set.

2.5 Theory of Neutrosophic Set:

Several definition for the concept of neutrosophic sets were introduced by authors in
literature (see for instance [74, 75]). To follow up our work we choose the following
definition, which define the concepts of two neutrosophic sets; namely, the neutrosophic
fuzzy sets and the neutrosophic crisp sets [65]; the two concepts are given in the
following two sections §2.5.1 and §2.5.2, respectively.

2.5.1 Neutrosophic Sets:

To commence, we consider a universe of discourse X, and two neutrosophic fuzzy sets
A and B of X.

The set of all neutrosophic fuzzy sets of the universe X is will be denoted by N (X).
2.5.1.1 Definition:

A neutrosophic fuzzy set (simply, neutrosophic set); A neutrosophic set A on
A € NV (X). is defined as the triple structure:

A= (T, 1,,F,), where T, ,1,,F,: X - [0,1]. (2.17)
Which are the three function that define respectively the degree of membership, the
degree of indeterminacy, and the degree of non-membership of each element x € X to
the set A. From philosophical point of view [74, 75], the neutrosophic set take the
values from either real standard subset [0, 1] or non-standard subset ]7°0,1°[ i.e.; where
"1, 0" are standard part and "e" its non-standard part; "e" be such infinitesimal
number; In our experiments, we will use the interval [0,1] instead of the non-standard
interval 170,1°[; where the interval 170,17 will be difficult to be applied in the real

applications such as in scientific and engineering problems.
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2.5.1.2 Definition:
e The complement of a neutrosophic set A is denoted by A€ or (co A), [74] may
be defined as one of the following two types: Vx € X,
Type l: AC = (TAC, IAC ,FAC), Where TAC,IAC,FAC X - [0,1]
(2.18)
Type I AC = (FA, IAC ,TA), Where FA ,IAC lTA X - [0,1 ]
TAC(X) =1- TA(X),IAC(X) =1- IA(x) and FAC (x) =1- FA(X).
e The neutrosophic empty set of X, denoted by 0,-, may be defined as one of the
following two types:
Typel: 05 =(0, 0, 1), where 1(x) =1and 0(x) =0,Vx € X.
(2.19)
Typell: 05 =(0, 1, 1), where 1(x) =1and 0(x) =0,Vx € X.
e The neutrosophic universe set of X, denoted by 1,,, may be defined as one of
the following two types:
Typel: 1 =(1, 1, 0), where 1(x) =1and 0(x) = 0,Vx € X.
(2.20)
Typell: 1,,=(1, 0, 0), where 1(x) =1and 0(x) =0,Vx € X.
2.5.1.3 Definition[63]: (Containment)
A neutrosophic set A is considered to be contained in another neutrosophic set B
denoted by A € B according to one of the following two types.
Type I: A € B ifand only if ;
TA(.X') < TB(X'), IA(x) < IB(X'),FA(X') = FB(X'), VXEX.
(2.21)
Type ll: A € B if and only if ;
TA(X) < TB(.X'), IA(X) = IB(X),FA(X) = FB(X), Vv X € X.
2.5.1.4 Definition: (Intersection)
The intersection of two neutrosophic sets A and B is a neutrosophic set

C=(T¢, I;,F;), whose truth membership, indeterminacy membership and falsity

membership functions are related to those of A and B by one of the following two type:
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Type I: Te(x) = min(T,(x), Tz (x)), Ic(x) = min(I,(x),I5(x)),

Fo(x) = max(Fy(x), Fz(x)).
2.22)

Type Il: Te(x) = min(Ty(x), Tg(x)), Ic(x) = max(I,(x), 1(x)),
Fo(x) = max(Fy(x), Fz(x)).
2.5.1.5 Definition: (Union)
Let A and B are neutrosophic sets, the union of A and B is a neutrosophic fuzzy sets,

written as C = max(A, B), where C = (T, I, F¢), may be defined as two types:
Type I: Te(x) = max(Ta(x), Tp(x)), Ic(x) = max(Iy(x),I3(x)),

Fe(x) = min(FA (x),Fg (x)).
(2.23)

Type Il To(x) = max(Ty(x), Tg(x)), Ic(x) = min(I4(x),I5(x)),
Fe(x) = min(FA(x),FB(x)).
2.5.1.6 Proposition [64]:
Let {A;:i € I} be an arbitrary family of neutrosophic sets subsets in X, then:
e Intersection A; may be defined as the following two types:
Type I: N; A; = (minge; T;, minge; Ty, maxe; Ty),
(2.24)
Type I: N; Ai = (miniel TL' , MaXiep TL' , MaXier Tl)
e Union A; may be defined as the following two types:
Type I: U; Ai = (maxiE, TL' , MaXiegr Ti , miniel Tl'>,
(2.25)
Type I U; Ai = (maxl-EI Ti , Min;g; TL' , Min;g Tl>
2.5.1.7 Definition: (Strong a cut)
Let A = (T4(x), I4(x),F4(x)) be a neutrosophic set of the set X. For a € [0, 1], the a

cut of Ais fuzzy set A, defined by as two types:

Typel: Ay ={xix €X, Ty(x) = a, I,(x) = a F(x) <1- a},
(2.26)
Typell: Ay ={x:x € X, Ty(x) > a, [,(x) <aFi(x)<1-— a}.
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Condition T4 (x) = a ensures F,(x) < 1 — a but not conversely. So « cut can be define
as: A, ={x:x €X,Fy(x) <1— al.

2.5.1.8 Definition: (Weak a-cut)

For a neutrosophic set A = (T4(x), I4(x),F,(x)); For a € [0, 1], the weak a-cut can
be defined by as two types:

Type l: Ag = {x:x € X,Ty(x) > a, L(x) >a,F;(x) <1-— a},
(2.27)
Type ll: Az = {x:ix € X, Ty(x) > a, I,(x) <a,F;(x) <1— a}.

2.5.1.9 Properties of the Neutrosophic Sets [64, 75]:
One can easily prove the following properties for any neutrosophic sets A, B, C € N (X).
e Ildempotency: ANA=A AUA=A
e Commutativity: AnNB=BnNA, AUB=BUA.
e Associativity: (ANnB)NnC =An(BnC(), (AuB)UC=AU (BUQC).
e Distributivity: An(BUC)=(AnB)U(ANnOQ),
AuBNC =(AUuB)N(AUC).
e Absorption: ANn(BUA)=A, AU(BNA) =A
e De Morgan's laws: (AU B)¢ = AN B¢, (AnB)¢=A°UBE-.
e Involution: (A°)¢ =A.
e If AS Bthen B¢ c AS.
For instance we will prove the following property: (A U B)¢ = A¢ n B©
LetA,B € N(X); A= (T4(x),14(x),F4(x)) and
B = (Tp(x), Ip(x), Fp(x)).
Type l: (AUB)¢(x) =1— (AUB)(x)
=1 —(max(T4(x), T (x)), max(I4(x), Iz(x)), min(F,(x), Fz(x)))
= (Mmin(Tyc(x), Tge(x)), min(l4e(x),Igc(x)), max(F4c(x), Fge(x)))

= (A° N B)(x).
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Type Il: (AUB)¢(x) =1— (AUB)(x)

=1 — (max(Ty(x), Tg(x)), min(I4(x),I5(x)), min(F4(x), Fz(x)))

= (min(Tye(x), Tge(x)), max(I4ec(x), gc(x)), max(F4ec(x), Fge(x)))

= (A° N BY)(x).
2.5.2 Neutrosophic Crisp Sets:
A neutrosophic crisp set A on the universe of discourse X, as defined in [65], is defined as
a triple structure of the form: A = (A%, A?,A3), where A is the set of all elements that
belong in A, A3 contains the elements that not belong in A; while A? contains those
elements which do not belong to neither A* nor A3,
2.5.2.1 Definition [64, 65]:
According to Salama [65], the neutrosophic crisp sets (in short NCSs) are to be
categorized with respect to its components in to three different classes as follows:

e (NCSs)classl: A'nA?2=¢, A1nA3=¢, A3NA%=0.

e (NCSs)classll: A'nA?2=¢, A1NnA3=¢, A3NA*=¢and

AluA?u A =X.
(2.28)

e (NCSs)classlll: AtnA2nA3=¢, A'UA?UA3=X.
2.5.2.2 Definition [65]:
Consider a universe of discourse X, the neutrosophic crisp universal set X, and the
neutrosophic crisp empty set @y, are to be defined as follows:

e (5 may be defined as one of the following two types:

Type |I: @y =(0, 0, X ),

(2.29)
Type ll: @y =(0, X, X ).
e X, may be defined as one of the following two types:
Type I: Xy =(X, X, @),
(2.30)

Type ll: Xy = (X, 0, ).
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2.5.2.3 Definition [65]:
Let A = (A, A%, A3)be a NCSs in X, then the complement of the set A (A€ or (coA))
may be defined as one of the following two types:
Type I: coA = (coAl, coA?,coA3),
(2.31)
Type Il: coA = (A3, coA?,Al).
2.5.2.1 Example: consider a universe of discourse X = {a, b, c, d, e, f}, and two
neutrosophic crisp sets A = ({a, b, c,d},{e},{f})and B = ({a, b, c}, D, {d, e})
We can deduce the following:
e The complement of A:
Type l: coA={{e f}{ab,c,d f},{ab,c,d,e}),
Type ll: coA = ({a,b,c,d,e},{ab,cd, f}{e f}).
e The complement of B:
Typel: coB =({{d,e, f}, X, {a,b,c [},
Type ll: coB = {({a,b,c,f}, X, {d,e, f}).
2.5.2.4 Definition:
For any non-empty set X, and any two NCSs 4,B; A = (A, A%, A%),B = (B',B?,B3),
we may consider two possible types for containment A <€ B.
Typel: ACS B < A' € B',A? € B? and A® 2 B3,
(2.32)
Type ll: AC B < A' € BY,A%2 2 B? and A% 2 B3.
2.5.2.5 Definition [65]:
For any non-empty set X, and any two NCSs 4,B; A = (A, A% ,A3%),B = (B',B?,B3),
we me define basic two set operations as following:
e The Intersection A, B may be defined as one of the following:
Typel: AnB=(A'nB, A>nB',A3 U B?),

(2.33)
Typell: ANB = (A'nBY, A2 U B!, A3 UBY).
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e The Union A, B may be defined as one of the following:
Typel: AuB = (A'UB?!, A2uUB!,A%nBY),
(2.34)
Type ll: AuB = (A'UB!, A2nB',A%3nBY).
2.5.2.1 Proposition [65]:
Let {A;:i € I} be an arbitrary family of Neutrosophic Crisp subsets in X, then:
e N; A; may be defined as the following two types:
Type l: Ny A; =(n; A',,n; A% ,U; 43),
(2.35)
Type ll: N A; =(n; A', ,U; A%;,U; A%).
e U; A; may be defined as the following two types:
Type l: U; A; =(U; AT, \U; A%;,n; A%),
(2.36)
Type ll:  U; A; =(U; AY,,n; A% ,n; A%).
2.5.2.2 Example: consider a universe of discourse X = {a, b, ¢, d, e, f} and two
neutrosophic crisp sets A = ({a, b, ¢, d}, {e}, {f}) and
B =({a,b,c},0,{d,e}).
e The Union of A and B,
Typel: AUB =({a,b,c,d} {e} 0),
Typell: AUB =({{a,b,c,d},,0).
e The Intersection of A and B
Typel: AnB = ({a,b,c}, @, {d,ef}),
Typell: AnB = ({a,b,c}, {e}, {d, e f}.
2.5.2.6 Properties of the Neutrosophic Crisp Sets [64, 75]:
One can easily prove the following properties for any neutrosophic crisp sets
A,Band C € NC(X).

e ldempotency: ANA=A AUA=A

e Commutativity: ANB=BnNA AUB=BUA.
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Associativity: (ANB)NnC =An(BnQ),
(AuUB)UC=AU ((BUO).

Distributivity: An(BuC)=(AnB)U(AnQC(),
AuBNC =(AUuB)N(AUC).

Absorption: An(BUA)=A, Au(BnA)=A

De Morgan's laws: (AUB)¢ = A°n B¢ (ANB)¢ = A°UB".

Involution: (A%)¢ = A.

If A € Bthen B€ C AS.

For instance we will prove the following property:

Let A, Be NV (X), A= (A, A% A%)and B = (B, B?, B3).

Type I: (AN B)(x) = (Ty(x) N Tp(x), L4(x) N Ip(x), F4(x) U Fp(x))

= (Tg(x) N Ty(x),I5(x) N I4(x), Fg(x) U F4(x))

= (BN A)(x).

Type ll: (AN B)(x) = (Ta(x) N Tp(x), 14(x) U Ip(x), F4(x) U Fp(x))

= (Tg(x) N Ty(x),I5(x) U I4(x), Fg(x) U F4(x))

= (BN A)(x).

2.5.2.1 Corollary [65]:

Let A, B and C be are neutrosophic sets in X, then:

IfAcBandC<c D thenAUCSBUD andAnC<SBND.
IfAc B andAc C thenA S BNC.

IfAcCandB< C thenAUBC C.

IfFAC B and B< C thenA C C.

Type of Sets
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2.6 Image as a Mathematical Object:

As a real life application for sets, we will consider the images. Mathematically, the
image is considered as a set of pixels; The image as mathematical object in the
Cartesian Domain, represented by an m xn matrix; I = [g(i, ) lmxn, With entities
g(i,j) corresponding to the intensity to the given pixel located at the node (i,j). The

original color image shown in Fig.2.1.

a)

s »
Fig. 2.1: a) Original "duck” image b)original "Lena" image

2.6.1 Binary Image[66]:

The value of a pixel of a binary image is either 1 or 0 depending on whether the pixel
belongs to the foreground or to the background. In practice, images are defined over a
rectangular frame called the definition domain of the image. The definition domain is
often referred to as the image plane (it is actually a plane for 2-D images). Fig. 2.2,

shows an example for a binary image with foreground pixels in white and background

pixels in black; using the built in binary function in matlab.

Y,

a) b)
Fig. 2.2: a) Binary "Duck" image b) binary "Lena" image
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2.6.2. Greyscale Image [80]:

A grayscale image is to be considered as a function g(i,j), where i and j define the
spatial (plane) coordinates, and the value of g at any pixel with coordinates (i,j) is
called the intensity of the image at that pixel. For the grayscale image, The range of the
values of the function g (i, j) is not restricted to the two values, 0 and 1; as in the case of
the binary image, but it is extended to a wider finite set of non-negative integers,

starting from 0 to 255.

a)

b)
Fig. 2.3: a) Grayscale "Duck™ image b) grayscale "Lena" image

2.6.3 Fuzzy Image [48]:

With the concept of fuzziness, a fuzzy image is a function that assigns to each pixel a
value of membership denoting how much it belongs to the white set. Whereas, the
values of the intensity of each pixel in the grayscale image ranges from 0 to 255, the
membership degrees in the fuzzy image are to be expected in the interval [0, 1].one of
the most used methods to compute the membership degrees is to normalize the values of
the intensity of each pixel. Fig.2.4, we will use the fuzzy image show in Fig.2.4(b);
which is deduced form the original color image shown in Fig.2.4(a). we used the matlab

to get fuzzy image.
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5 )
Fig. 2.4: a) Fuzzy "Duck" image b) fuzzy "Lena" image

2.6.3.1 Implementation and Experimental Results:
We use the following algorithm to transform the image into fuzzy image.
1. Read the gray scale image .
2. Compute the maximum intensity values for each pixel in image.
3. Normalize the intensity of each pixel with respect to the maximum value

g(@ij)
max(g(i.j))

; computed in the previous step.

4. Construct to the matrix u(x).
2.6.4 Neutrosophic Image:
The image in the neutrosophic domain each pixel of the image is represented by three
values.
2.6.4.1 The Image in the Neutrosophic Domain [17, 25]:
Mathematically, a gray image is represented by an m x n array I,,, = [g(i, j)];nxn With
entities g (i, j) corresponding to the intensity of the pixel located at (i, j). In this section
we are transforming the image I,,, into neutrosophic domain using three membership
functions T,I and F [25]. A pixel p(i,j) in the image is described by a triple
(T, ), I13i,)),F(,j)). where T(i, j) is the membership degree of the pixel in the white
set, and F(i,j) is its membership degree in the non-white (black) set; while I(i,j) is
how much it is neither white nor black the values of T(i,j),I1(i,j) and F(i,j) are

defined as follows:
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1) = 2o

Imax —9min

5(i:j)_6min

I(l’]) - ‘Smax_‘smin ’ (21)

F(,j)=1-T(Gj) = Zneclil

Imax —9min

Where  §(i,j) = — Zm=l+32n=j.zg(m,n) is the mean intensity in some
2

. W
wWXW m:l—; n=

neighborhood w of the pixel and §(i,j) is the homogeneity value computed by the
absolute value of difference between the intensity and its local mean value
6(@,j) = abs(g(Q,/) = G0 /)), Gmax = max g(i,j), Gmin = ming(Q,j),

Omax = max 6(i,j) and 6, = min (1, j).

Hence, in the neutrosophic domain the image becomes a 3D matrix Imyp =
[T;j 1;j Fj;], with dimensionsm X n X 3.

2.6.4.1.a Implementation and Experimental Results:

We use the following algorithm to transform the image into neutrosophic domain.

1. Read the gray scale image.

2. Compute the local mean intensity for each pixel in image.

3. Compute the maximum and minimum values of the local. mean
intensites.

4. Compute the divergence between the intensity of each. pixel and its
local mean intensity.

5. Compute the maximum and minimum values of the divergence
induced in the previous step.

6. Construct the matrix T,the truth valu of each pixel.

7. Construct the indeterminate matrix I.

8. Construct the falssness matrix F.
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- P g
Fig.2.5(i): Neutrosophic "Duck" image (T4, 1, ,F4) respectively

Fig.2.5(ii): Neutrosophic "Lena" image (T, 14, F4) respectively

2.6.4.2 Neutrosophic Crisp Image:

Let X be a non-empty fixed Set, a neutrosophic crisp set A, can be defined as a triple of
the form (A%, A%, A3), where A%, A%2and A% are crisp subsets of X. The three
components represent a classification of the elements of the space X according to some
event A; the subset Alcontains all the elements of X that are supportive to A, A3
contains all the elements of X that are against A, and A? contains all the elements of X
that stand in a distance from being with or against A. Consequently, every crisp event A
in X can be considered as a NCS having the form: A = (A, A%, A3). The set of all

Neutrosophic Crisp Sets of X will be denoted by NV C (X).

; o 1.4
= & | —af

Fig.2.5(i): Neutrosophic crisp "Duck" iage: (A, AZ%, A3) respectively
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Fig.2.5(ii): Neutrosophlc crlsp "Lena" |mage (A1 A?, A3) respectlvely

2.7 Conclusion:

In this chapter, the theory on crisp sets, the basic ideas of the fuzzy sets, intuitionistic
sets and neutrosophic sets were discussedin detail in this chapter. The laws and
properties of fuzzy sets are introduced along with that of the crisp sets. Neutrosophic
operations inherit properties and restrictions of fuzzy sets. We review the definitions of
the crisp sets with binary image, we will use the fuzzy image its depended on fuzzy set;

where we introduce neutrosophic image and neutrosophic crisp image.
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Chapter 3
Mathematical Morphology

3.1 Introduction:

In late 1960's, a relatively separate part of image analysis was developed; eventually
known as "The Mathematical Morphology". Mostly, it deals with the mathematical
theory of describing shapes using the concept of sets in order to extract meaningful
information's from images; MM refers to a branch of nonlinear image processing and
analysis developed initially by Georges Matheron and Jean Serra [47, 68], that
concentrates on the geometric structure within an image. It has developed from binary
morphology to grayscale morphology, in order to handle binary and grayscale images.
Its basic idea is to measure corresponding shape in image using some structure element
with certain shape to analyze image and recognize object. Dilating and eroding are two
basic operations of MM. These two operations can make up of some compound
operations, and bring some practical morphology algorithm. An image can be
represented by a set of pixels. A morphological operation uses two sets of pixels, i.e.,
two images: the original data image to be analyzed and a structuring element which is a
set of pixels constituting a specific shape.

The Remaining of This Chapter is Structured as Follows:

In § 3.2 we review the shape of the structure element introducing the basic concept of
the binary morphological operators (binary dilation, binary erosion, binary opening and
binary closing). The properties of several morphological filters; (different definition of
boundary and hat filter) are defined in § 3.3. In § 3.4 we introduce the basic operations
of grayscale morphology, namely the dilation, erosion, opening and closing. A revision
of the concepts of fuzzy morphological operations, and a study of its algebraic

properties, as well as some fuzzy morphological filters are to be presented in 83.5.
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3.2 Structuring Element [31, 68]:

Morphological techniques probe an image with a small shape or template called a
structuring element (SE); is simply a binary image, i.e. a small matrix of pixels, each
with a value of 0 or 1. The matrix dimensions specify the size of SE. The SE is
positioned at all possible locations in the image and it is compared with the
corresponding neighborhood of pixels. Some operations test whether the element "fits"
within the neighborhood, while others test whether it "hits" or intersects the
neighborhood. Examples of SE: shaded square denotes a member of the SE The origins
of SEs are marked by a black dot. When working with images, SE should be

rectangular: append the smallest number of background elements.

(T T BT 1]

il S S

Fig 3.1: shape of the structuring element
3.3 Binary Morphology [72]:
In this section, we review the definitions of the classical binary morphological operators
as given by Heijmans [31]; which are consistent with the original definitions of the
Minkowski addition and subtraction [26]. For the purpose of visualizing the effect of
these operators, we will use the binary image show in Fig.2.2.
3.3.1 Basic Binary Morphology Operations:
In this section we briefly review the basic morphological operations, the dilation, the

erosion, the opening and the closing.
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3.3.1.1 Binary Dilation: (Minkowski addition)

Dilation is one of the basic operations in mathematical morphology, which originally
developed for binary images [49, 77]. The dilation operation uses a structuring element
for exploring and expanding the shapes contained in the input image. In binary
morphology, dilation is a shift-invariant (translation invariant) operator, strongly related
to the Minkowski addition. For any Euclidean space E and a binary image A in E, the
dilation of A by some structuring element B is defined by: A@B = Uy A, Where Ay is
the translate of the set A along the vector b, i.e., A,={a+b €Ela€A,b € B}. The
dilation is commutative and may also be given by:

A®B = BOA = U, B,. (3.1)

3) b) c)
Fig. 3.2: Dilation binary image: a) Binary image b) Dilation with SE(3)
c) Dilation with SE(7)
An interpretation of the dilation of A by B can be understood as, if we put a copy of B
at each pixel in A and union all of the copies, then we get A@B. The dilation can also be

obtained by: A@B = {b € E |(—B) N A # @}, where (-B) denotes the reflection of B,

that is, —B = {x € E|—x € B}. the reflection satisfies the following property:

—(A®B) = (-A)®(-B). 3.2)

Fig. 3.3: Translation
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i

Fig. 3.4: Reflection

Example 3.1: This illustrates an instance of the dilation operation. The coordinate
system we use for all the examples in the next few sections is (row, column).

A={0,1), 1.1), (21),(22), 3,0} B={(0.0),(01)}

A B ADB
A® B ={(01),02), (L1), (2.1), 3,1), (2,2), (3,0), (1,2), (2,3)}.

In morphological dilation, the roles of the sets A and B are symmetric, that is, the
dilation operation is commutative because addition is commutative [30].

3.3.1 Definition: Let A be a subset of E" and x e E". The translation of A by b is
denoted by A and is defined by: A, ={a+b € Ela € A,b € B}. (3.3)
Example 3.2: this illustrates of translation.

A={(0,1), (1,1), (21),(2,2), (3,00}, b=(01).

» .

A A{O,l}
Ab ={ (0’2)’ (1’2)! (2!2)! (213)1 (311)}
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3.3.1.2 Binary Erosion: (Minkowski subtraction)

Strongly related to the Minkowski subtraction, the erosion of the binary image A by the
SE B is defined by: A© B = Ny A_p- (3.4)
Unlike dilation, erosion is not commutative, much like how addition is commutative
while subtraction is not [30, 47]. An interpretation for the erosion of A by B can be
understood as, if we again put a copy of B at each pixel in A, this time we count only
those copies whose translated structuring elements lie entirely in A; hence A & Biis all
pixels in A that these copies were translated to. The erosion of A by some structuring

element B is defined by: A © B = {p € E |B, S A}, where B,, is the translation of B

by the vector p, i.e, B,={b+p€E|beB}, Vp €E. (3.5)

a) b) c)

Fig. 3.5: Erosion binary image: a) Binary image  b) Erosion with SE(3)
¢) Erosion with SE(7)

3.3.2 Definition: The erosion of A by B is denoted by A © B and is defined by:
ASOB={x€EN|x+b€Aforeveryb € B}.

Example 3.3: this illustrates an instance of erosion.

A={10), (1,1), (1,2),(13),(14),(15). (2 1) (3 1) 41),6 D}

B={(0,0.,01} A©B={(10), (11), (12),(13), (1.4}

j‘

A B AGSB
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Erosion does not possess the commutative property. Some erosion equivalent terms are
"shrink" and "reduce". Erosion of an image A by a SE B is the intersection of all
translations of A by the points -b, where b € B.

3.3.1.3 Binary Opening [49]:

The opening of A by B is obtained by the erosion of A by B, followed by dilation of the
resulting image by B Ao B = (A& B) & B. (3.6)

The opening is also given by Ao B = Ug_cp By, which means that, an opening can be
consider to be the union of all translated copies of the SE element that can fit inside the
object. Generally, openings can be used to remove small objects and connections

between objects.

Fig.3.6a})0pening binary image: a?)Binary image b) Openincg image with SE(3)
¢) Opening image with SE(7)

3.3.1.4 Binary Closing [28]:

The closing of A by B is obtained by the dilation of A by B, followed by erosion of the
resulting structure by B: A« B = (A@ B) © B. (3.7)
The closing can also be obtained by Ae B = (Ao (—B))¢, where A® denotes the
complement of A relative to E (that is, A = {a € E |a € A}). Whereas opening removes
all pixels where the SE won't fit inside the image foreground, closing fills in all places

where the SE will not fit in the image background, that is opening removes some

objects. all objects, while closing removes small holes.
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a) b) C)

Fig. 3.7: Closing binary image: a) Binary image b) Closing image with SE(3)
¢) Closing image with SE(7)

3.3.2 Properties of Binary Operations:
Here are some properties of the basic binary morphological operations (dilation,
erosion, opening and closing [47]). We define the power set of X, denoted by P(X), to
be the set of all crisp subset of X. For all A, B and C € P(X), the following properties
hold:
3.3.2.1 Properties of Binary Dilation:
e Commutative: A@B = BOA.
e Associative: (A@B)DC = AD(BDO).
e Extensive: Ac(APB) if 0€B.
e Increasing: ACB=APC)c (B OC).
e Commutes with union, not with intersection:
(AUC) @D B=(ADB) U (CDB).
e Commutativity of dilation: A@ (CUB) =(A@ C) U (A D B),
(ANC) @B < (AD B)N(CS B),
A® (CNB) < (A ON(A D B).

e lterativity property: ADB)DC=APBO).
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3.3.2.2 Properties of Binary Erosion [72]: if B contains the origin, that is;
e Duality of erosion and dilation with respect to complementation:
A® B= (A0 (-B)), and A B=(A® (-B))".

e Anti-extensive: A© B C A, if B contains the origin, that is, 0 € b.

e Increasing: AcB= (C6H6A) 2(CSB).

e Commutes with intersection, not with union:
(ANC)©eB=(ABBNCOB),
(AUC)©B2(ABSB)N(CBSB),

AS(BNC2(ABSBUABIO,
A©S (BUC)=(A©B)NAOGAOQO).
e lterativity property: (AGB)6SC=A6 (B C).
3.3.2.3 Properties of Binary Opening and Closing [20]:

e AGB=(A®B)oB=(As B)PB.

e (A*B)s B=As+B.

e AOB=(A°B)©OB=(AO B)«B.

e (Ao B)o B=Ao B.

e Ao BC A CAeB.

e Increasing: if AS BthenAo C S Bo C.

e Increasing: if AS BthenAe C S Be C.

Opening and closing satisfy the duality that is:

As B= (A% (—B))S, and A o B= (A« (-B))".

3.3.3 Algebraic Properties Crisp Mathematical Morphology [20, 21]:

In this section, we review some of the algebraic properties of the crisp erosion and crisp

dilation, as well as the crisp opening and crisp closing operator.
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3.3.3.1 Properties of the Crisp Dilation [29, 31]:
Proposition 3.3.1: A®B = BOA
A®B={C|C=a+bfora€A, be B}
={C|C=b+afora€ A, b e B} =BOA.
Proposition 3.3.2: A®(B®C) = (A®B) ®C.
Proof: X € A®(B @C) if and only if there existsa € A,b € Band c € Csuch that X =
a+(b+c),X e A® (B®O), if and only if there exists a € A, b € B and ¢ € C such
that; X=(a+b)+c but a+ (b+c)=(a+b)+c, since addition is associative,
Therefor, A@(BHC) = (AGB)®DC. (3.8)
Proposition 3.3.3: (Dilation is Increasing)
AcC BimpliesA@D<SB@D.
Proof: Suppose A € B. Let x € A@ D. Then forsomea € Aand d € D,
x=a+d.SinccaeAand AcB,aeB;ButaeBandd e D impliesx € B&@ D.
Proposition 3.3.4:
e (ANB)®CS(ADC)NBO).
e AOBNC)S(ADBNADC).
Proof: Suppose b € (AnB) @ C. Then for someye AnB and c € C, a=y +c.
Now y€ANB implies y e Aandy € B. But y € A,c € C and a =y + ¢ implies
aeEA@PB,yeBceCanda=y+cimpliesa e B@ A.Hence (A C)n (B O),
ABBNC)S(ADB)NADOC).
3.3.3.2 Properties of the Crisp Erosion :
Proposition 3.3.6: A© B = Nyeg A_p.
Proof: Let x e A© B, Then for everyb€eB, x+b €A, But x+be€ A implies

x € A_y. Hence forevery b € B, x € A_;,. Thisimplies x € Nyeg A_p.
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Let Npeg A_y,; Then forevery b € B, x € A_,,. Hence, foreveryb € B, x + b € A. Now
by definition of erosion x € A © B.

Proposition 3.3.7: (Erosion is increasing)

A C B implies A©OKCS BSOS K.

Proof: Let x e AG K, Then x + K € A, every k € K. but A € B. Hence, x + k € A for
every k € K. By definition of erosion, x € B © K. creasing property of erosion [61,
62]. On the other hand, if A and B are SE and B is contained in A, then the erosion of an
image D by A is necessarily more severe than erosion by B, that is, D eroded by A will
necessarily be contained in D eroded by B.

Proposition 3.3.8: A2 BimpliesD © A< D © B.

Proof: Let x e D& A. Thenx +a € D forevery a€ A But B<S A. Hence, x +a €D
for every a € B. Now by definition of erosion, x € D © B. The dilation and erosion
transformations bear a marked similarity, in that what one does to the image foreground
the other does to the image background. Indeed, their similarity can be formalized as a
duality relationship. Recall that two operators are dual when the negation of a
formulation employing the first operator is equal to that formulation employing operator
on the negated variables. An example is De Morgan's law, illustrating the duality of
union and intersection (A U B)¢ = A° n B€.

3.3.1 Definition: Let B € EN. The reflection of B is denoted (-B) that is
—B = {x € E|—x € B}. (3.9
The reflection occurs about the origin. Matheron [47] refers to (-B) as "the symmetrical
set of B with respect to the origin™. Serra [69] refers to B as " B transpose”. the duality
of Dilation and Erosion employs both logical and geometric negation because of the
different roles of the image and the SE in an expression employing these morphological

operators.
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Theorem 3.3.1: ( Erosion Dilation Duality)

(A© B)t = A° @ (-B). (3.10)
Proof: x € (A© B)¢ifandonlyif x ¢ A© B.x ¢ AS B if and only if there exists
b € B such that x + b € A. There exists b € B such that x + b € A®. if and only if
there exists b € B such that x € (A%),,. There exists b € Bsuch that x € (A°), if and
only if x € Upeg A°_p,. Now, x € Upeg A°_y, if and only if x € Upep)A%; and
x € Upe—p) A%y ifand only if x € A° @ (—B).

3.3.4 Basic Binary Morphological Filters [79]:

In image processing and analysis, it is important to extract features of objects, describe
shapes, and recognize patterns. Such tasks often refer to geometric concepts, such as
size, shape, and orientation. MM takes this concept from set theory, geometry, and
topology and analyzes geometric structures in an image. Most essential image
processing algorithms can be represented in the form of morphological operations. In
this section we review several basic morphological filters, such as boundary extraction
and hat filter.

3.3.4.1 Some Types of Crisp Boundary Using Dilation and Erosion:

In this section, we present some very useful words based on combinations of crisp
erosions and crisp dilations and leading to the definition of morphological gradient
operators [77].

3.3.4.1.a The External Crisp Boundary Filter [14]:

Boundary internal of a set A requires first the dilating of A by a SE B and then taking

the set difference between its dilation and A. B,,;:(4) = (A @ B) — A. (4.11)
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a) b) N C)

Fig. 3.8: External boundary image: a) Binary image
b)External boundary filter with SE(3) c)External boundary filter with SE(7)

This would give us all background pixels that bordered the object. Or, if we wanted all
foreground pixels that bordered the background, we could use:

3.3.4.1.b The Internal Crisp Boundary Filter [51]:

Boundary internal of a set A requires first the erosion of A by a SE B and then taking the
set difference between A and erosion image. That is, the boundary internal of a set A is

obtained by: B;,;(4A) = A — (A © B). (3.12)

. B
a) c)

Fig. 3.9: Internal boundary image: a) Binary image
b) Internal boundary filter with SE(3) c) Internal boundary filter with SE(7)

3.3.4.1.c The Gradient Crisp Boundary Filter [44]:

Determining the gradient of an image is a fundamental image processing operation that
is often used as a precursor to other, more advanced operations such as feature
extraction and segmentation. The morphological gradient operator provides a simple
approach to find the gradient of an image by combining the dilation and erosion

operators. The morphological image gradient operator is defined as:

Bgradient(A) = (A @b B) - (A S B)- (313)

39

—
| —



Chapter 3 Mathematical Morphology

The dilation thickens regions in an image and the erosion shrinks them. Therefore, their
difference emphasizes the boundaries between regions. If the SE is relatively small,
homogeneous areas will not be affected by dilation and erosion, so the subtraction tends
to eliminate them. The net result is an image with the gradient-like effect. The effect of

morphological gradient operation is shown in Fig. 3.11.

Fig. 3.10: Gradient boundary image: a) Binary image
b)Gradient boundary filter with SE(3) c¢) Gradient boundary filter with SE(7)

3.3.4.1.d The Outline Crisp Boundary Filter:
The outline of a binary image can be computed using erosion followed by a subtraction.

Boutiine(A) = co(A© B) N A. (3.14)

a)

c)
Fig. 3.11: Outline boundary image: a) Binary image
b) Outline boundary filter with SE(3) c)Outline boundary filter with SE(7)

3.3.4.2 Combination External and Internal Crisp Boundary [14, 28]:
Dilation and erosion can be used in combination with image subtraction to obtain the

morphological extraction A of an image as:

1. Bgrad(A) = max[Bext(A)'Bint(A)]- (3.15)
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a) b) c)
Fig. 3.12: Grad boundary image: a) Binary image b)Grad boundary filter with SE(3)
¢) Grad boundary filter with SE(7)

2. Bgin(A) = [Bext(A) - Bint(A)]- (3.16)

a) b) c)
Fig. 3.13: Div. boundary image: a) Binary image b) Div. boundary filter with SE(3)
c)Div. boundary filter with SE(7)

3.3.4.3 Hat Filter [60]:
In MM and digital image processing, top-hat transform is an operation that extracts
small elements and details from given images. There exist two types of hat filters: The
Top-hat filter is defined as the difference between the input image and its opening by
some structuring element; The Bottom-hat filter is defined dually as the difference
between the closing and the input image. Top-hat filter are used for various image
processing tasks, such as feature extraction, background equalization, image
enhancement. If an opening removes small structures, then the difference of the original
image and the opened image should bring them out. This is exactly what the white top-
hat filter does, which is defined as the residue of the original and opening:

Top-hat filter:  Topp,:(A) = A — (A°B). (3.17)
The counter part of the Top-hat filter is the Bottom-hat filter which is defined as the

residue of closing and the original:
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Bottom-hat filter: Bottomy,.(A) = (A*B) —A. (3.18)
These filters preserve the information removed by the opening and closing operations,
respectively. They are often cited as white top-hat and black top-hat. Fig. 3.16 show the

results obtained when applying Top-hat and Bottom-hat filter.

a) b) c)
Fig.3.14: Hat filter image: a) Binary image b) Top-hat filter image
c)Bottom-hat filter image

3.4 Grayscale Mathematical Morphology [80]:

Grayscale image depended on mathematics theory. It has developed from binary
morphology to grayscale morphology, and it is a new method of image process. The
binary morphological operations of dilation, erosion, opening and closing are all
naturally extended to grayscale imagery by the use of a min or max operation. From this
definition we will proceed to the representation which indicates that grayscale dilation
can be computed in terms of a maximum operation and a set of addition operations. A
similar plan is followed for erosion which can be evaluated in terms of a minimum
operation and a set of subtraction operations. We extend the basic operations of dilation,
erosion, opening, and closing to grayscale images. Assume that f(i,j) is a greyscale
image and b is a SE and both functions are discrete. Similarly to binary morphology, the
SE are used to examine a given image for specific properties. Dilating and eroding are
two basic operations of MM. These two operations can make up of some compound

operations and bring some practical morphology algorithm.
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3.4.1 Grayscale Dilation and Erosion [80]:

Since grayscale erosion with a flat SE computes the min intensity value of f in every
neighborhood, the eroded grayscale image should be darker (bright features are reduced,
dark features are thickened, background is darker). The effects of dilation are opposite.
3.4.1.1 Grayscale Dilation [77]:

The dilation of f by a flat SE b at any location (i, j) is defined as the maximum value of
the image in the window outlined by —b when the origin of —b is at (i,j), that is
[f @ b](i, j) = maxnep{f(i —s,j — t)}; where we used that —b = b(—i, —j); The
explanation is similar to one for erosion except for using maximum instead of minimum

and that the SE is reflected about the origin.

a) b) C)
Fig. 3.15: Dilation grayscale image: a) Grayscale image
b)Dilation image with SE(3) c)Dilation image with SE(7)

3.4.1.2 Grayscale Erosion [80]:

The erosion of f by a flat SE b at any location (i, j) is defined as the minimum value of
the image in the region coincident with b when the origin of b is at (i, j). Therefore, the
erosion at (i, ) of an image f by a SE b is given by:

[f © bI(i,j) = min¢nep{f (i +5,j + )} (3.20)
where, similarly to the correlation, i and j are incremented through all values required
so that the origin of visits every pixel in f. That is, to find the erosion of f by b, we
place the origin of the SE at every pixel location in the image. The erosion is the

minimum value of f from all values of f in the region of f coincident with b.

43

—
| —



Chapter 3 Mathematical Morphology

a) b) C)

Fig. 3.16: Erosion grayscale image: a) Grayscale image

b) erosion image with SE(3) c¢) erosion image with SE(7)
3.4.2 Grayscale Opening and Closing [54]:
Opening and closing of images have a simple geometrical interpretation. Assume that
the image f(i,j) is viewed as a surface intensity values are interpreted as heights over
the x_y plane. Then the opening of f by b can be interpreted as "pushing" the SE b up
from below against the undersurface of f.
3.4.2.1 Grayscale Opening:

Grayscale opening operation is erosion followed by dilation, it can smooth the contour

of image and remove small extrudes. f e b = (f © b) P b.

a) b) c)
Fig. 3.17: Opening grayscale image: a) Grayscale image
b) Opening image with SE (3) c¢) Opening image with SE (7)

3.4.2.2 Grayscale Closing:

Grayscale closing operation is dilation followed by erosion, it can smooth the image
outline and recover the holes. f « b = (f @ b) © b. (3.22)
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&%=

a) b) C)
Fig. 3.18: Closing grayscale image: a) Grayscale image b) Closing image with SE(3)
c¢)Closing image with SE(7)

3.4.3 Some Type of Grayscale Boundary Filters Using Dilation and Erosion:

The edge detection based on morphology is to do the dilation and erosion operations by
using SE, G(f) represents the function of the image boundary; there are some existing
boundary filter based on the basic operation of morphology. there are many kinds of
grayscale boundary filter (external, internal, gradient ...); the dilation thickens regions
in an image and the erosion shrinks them [54,71].

3.4.3.1 Grayscale External Boundary Filter:

The dilation operator of boundary detection is

Gext (f) = (f(0.)) @ b, ) — f(L)). (3.23)

a) b) c)
Fig. 3.19: External boundary grayscale image: a) grayscale image
b)External boundary filter with SE(3) c)External boundary filter with SE(7)

3.4.3.2 Grayscale Internal Boundary Filter [51]:

The erosion operator of edge detection is

Gine(f) = f(.)) = (F(L.)) © b(i,))) (3.24)
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a) b)
Fig. 3.20: Internal boundary grayscale image: a)Grayscale image
b)Internal boundary filter with SE(3) c) Internal boundary filter with SE(7)
3.4.3.3 Grayscale Gradient Boundary Filter [44]:
Dilation and erosion can be used in combination with image subtraction to obtain the

morphological gradient G of an image as:

Ggradient(f) = f(,))—(f(J) © b)) (3.25)

a) b)
Fig. 3.21: Gradient boundary grayscale image: a) Grayscale image
b) Gradient boundary filter with SE(3) c¢) Gradient boundary filter with SE(7)

The above three operators implement simply and run fast.

3.4.4 Grayscale Hat Filter [31]:

Combining image subtraction with openings and closings results in top-hat and bottom-
hat filter.

3.4.4.1 Grayscale Top-hat Filter:

The top-hat filter of a grayscale image f is defines as f difference its opening:

Tophae(f) = (0. )) — (f (7)o b(i, ). (3.26)
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a) b) C)
Fig. 3.22: Top-hat filter grayscale image: a) Grayscale image
b) Top-hat filter with SE (7) c¢) Top-hat filter with SE (9)
3.4.4.2 Grayscale Bottom-hat Filter:

Similarly, the bottom-hat filter of a grayscale image;

Bottomye,(f) = (f(i,/) » b(i,/)) = f (i, ). (3.27)

a) b) c)
Fig. 3.23: Bottom-hat filter grayscale image: a) Grayscale image
b) Bottom -hat filter with SE(7) c) Bottom-hat filter with SE(9)

3.5 Fuzzy Mathematical Morphology:

One approach to extend mathematical morphology to grayscale images was supported
by "Fuzzy Set Theory" [85], where the image is embedded into the fuzzy domain; such
that each pixel value is interpreted as its membership degree to the original data set
[8, 9, 12]. Hence, the fuzzy image is processed using fuzzy morphological operator,
which were defined as an extension of the classical morphological operators. In this
section, we review the definitions of the fuzzy morphological operators as given in
[8, 9, 11]. For the purpose of visualizing the effect of these operators, we will use the
fuzzy image show in Fig.2.4; which is deduced form the original color image shown in
Fig.2.1. Attention will be paid here only to the four basic operations of mathematical

morphology (erosion, dilation, opening and closing). Fuzzy mathematical morphology
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[20, 39] has been developed to soften the classical binary morphology so as to make the
operators less sensitive to image imprecision. It can also be viewed simply as an
alternative grayscale morphological theory. The basic two operations of morphology are
the dilation and erosion operators. The fuzzy version of the morphological dilation is
used to smooth small dark regions. since all the values in the SE are positive, the output
image tends to be brighter than the input. Dark elements are reduced or eliminated
depending on how their shapes and sizes relate to the SE used. Whereas, the fuzzy
morphological erosion. Is used to smooth small light regions. The formulae of the two
basic morphological operations, as well as two different operations is ducted form them;
are defined as follows:

3.5.1 Fuzzy Morphological Operations:

Mathematical morphology comprises an important toolset for analyzing spatial
structures in images [39]. For binary images, the definitions of the fundamental
morphological operations dilation and erosion can be related to the set theoretic
Minkowski addition and subtraction. The extension of those operations to grayscale
images is strongly related to ranking operations and, therefore, to the concept of ordered
sets. It has been considered for a long time how to extend mathematical morphology to
the case of fuzzy sets (as was done in other image processing disciplines, e.g., see [46]).
Although there was a simple idea to consider grayscale images as fuzzy versions of
binary images.

3.5.1.1 Fuzzy Morphological Dilation [42]:

For any grayscale image, A and any SE B (either grayscale or binary), the fuzzy
dilation of A by B, (denoted by A & B); defined as the membership function:

tage  Z° — [0,1] and pagp(v) = supyezz min ua(v +w), pupW)]. (3.28)
Where u,v € Z? are the spatial co-ordinates of pixels in the image and SE respectively.

While u,, ug are the membership functions of the image and the SE, respectively.
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a) i
Fig.3.24: Dilation fuzzy image: a) Fuzzy image b) Fuzzy image dilated with SE(3)
¢) Fuzzy image dilated with SE(5)

3.5.1.2 Fuzzy Morphological Erosion [42]:

For any grayscale image, A and any SE B (either gray-scale or binary), the fuzzy
erosion of A by B, (denoted by A © B); defined as the membership function:

tagp  Z2 — [0,1] and pygp(v) = inf,eze max[ py(v +u), 1 — up(W)]. (3.29)
Where u, v eZ? are the spatial co-ordinates of pixels in the image and the SE,
respectively. While u,, ug are the membership functions of the image and the SE

respectively.

Fig.3.25: Erosion fuzzy image: a) Fuzzy image
b) Fuzzy image eroted with SE(3) c¢) Fuzzy image eroted with SE(5)

3.5.1.3 Fuzzy Morphological Opening [42, 47]:

Several combinations of the two basic fuzzy morphological operations, the dilation and
erosion, give new operations; for instance, the fuzzy morphological opening and fuzzy
morphological closing. The interpretation of the operation of fuzzy morphological
opening, is that it darken the bright regions in which the structure element does not fit,

and is to be defined as the follows; For any grayscale image A, and any SE B (either
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grayscale or binary), the fuzzy opening of A by B (4 o B); is defined as the membership
function: .5 : Z? — [0,1],

Haop(V) = Supyezz min(inf ez max (ua(v —u +w), 1 — pp(w)), up(w)). (3.30)
Where u, v, w €Z? are the spatial co-ordinates of pixels in the image and 4, up are the

membership functions of the image and the SE respectively.

. - s £, g 5
Fig.3.26: Opening fuzzy image: a) Fuzzy image b) Fuzzy image opening with SE(3)
c) Fuzzy image opening with SE(5).

3.5.1.4 Fuzzy Morphological Closing [70]:

While the fuzzy opening acts on the bright regions, the fuzzy morphological closing
brighten the dark regions in which the SE does not fit, the definition goes as follows;
For any grayscale image A, and any SE B (either grayscale or binary), the fuzzy closing
of A by B (Ao B); is defined as the membership function: u,.5: Z2 — [0,1],
Hap(V) = inf,cz2 max(sup,ezz min (ua(v —u+w),up(w)), 1 — up(w)).  (3.31)
and u,v,w € Z? are the spatial co-ordinates of pixels in the image and p,, ug are the

membership functions of the image and the SE respectively.

- a) g e .
Fig.3.27: Closing fuzzy image: a) Fuzzy image b) Fuzzy image closing with SE(3)
¢) Fuzzy image closing with SE(5)
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3.5.2 Properties of Fuzzy Morphological Operations [71]:

Here are some properties of the basic fuzzy morphological operations (dilation, erosion,

opening and closing [22, 40]). We define the power set of X, denoted by F(Z?), to be

the set of all fuzzy subset of X,

e Forall A,B,C € F(Z?) the following properties hold:
i.Monotonicity (increasing in both argument):
ACSB= A@C<SB@C,
ACB= COACCOB.
ii.Monotonicity (increasing in the first and decreasing in the argument):
ASB=AB6CC<CBBC,
ASB=(CB6A2COSB.
iili. Monotonicity (increasing in the first argument):
ACSB=Ae(C S BeC(.
iv.Monotonicity (increasing in the first argument):
ACB=Ao(C < BoC(.
o forany family (4;li € I) in F(Z?) and B € F(Z?),

i.nl-e, A; @ B cn (AL ) B) and B @.n A;€Sn (B &) AL)
1€l 1€l 1€l

ii.niEIAl-GB cn (AleB) and Beﬂ A 2N (BeAl)
1€l 1€l 1€l

iii.ﬂiel Ai ° B Qﬂ (Al ° B)
i€l

iV.ﬂiE, Ai oB Qﬂ (Al o B)
i€l

o forany family (4;li € I) inF(Z?) and B € F(Z?),

i. UigA;®OB2U (A;©B) and BOU A; 2U (B A)).
el L€l el

ii. UiesA; ©B2n (Al ) B) and B ©enA cn (B ) AL)
el L€l el

iii. UiEIAi.B 2_0 (AL’B)
Lel
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iv. UicsA; o B 221 (Al o B)
2

3.5.3 Fuzzy Morphological Filters [81]:

In this section, we present some fuzzy morphological filters deduced form combining
two or more of the four operations defined in 8 3.8.1.

3.5.3.1 Some Type of Boundary Filters Using Fuzzy (Dilation and Erosion):

Both fuzzy erosion and dilation, can be combined in various ways to form several
powerful morphological filters in order to extract the boundaries form some grayscale
image [67].

3.5.3.1.a. Fuzzy Gradient Boundary Filter[79]:

One operation can be performed by applying the fuzzy difference over the dilation and
the erosion of the two image A and structure element A. this operation is to be called the

fuzzy gradient filter and is defined as follows:

19 gradienc) (V) = Min[paes (), 1 = s ()] (3.32)
As the dilation thickness regions in an image and the erosion shrinks them, the
interpretation of the fuzzy gradient filter can be understood as emphasizing the
boundaries between regions. If the SE is relatively small, the homogeneous areas will
not be affected by fuzzy dilation and fuzzy erosion, then the subtraction tends to

eliminate them. The effect of morphological gradient operation is shown in Fig. 3.30.

a) b) c)
Fig.3.28: Gradient boundary fuzzy image: a) Fuzzy image
b) Gradient boundary with SE(3) c¢) Gradient boundary with SE(5)
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Moreover there are two kinds of half gradient were deduced form the fuzzy gradient
filter known as the internal gradient and the is external gradient filters.

3.5.3.1.B. Fuzzy External Boundary Filter [72]:

In this filter, a fuzzy dilation is firstly applied to the fuzzy image A by a structure
element B, then the output filtered image will be the difference between fuzzy dilated

image and the original fuzzy image A; that is, the fuzzy external boundary of A is

defined by: uy, ,a)(v) = min[/,t(A@B)(v), 1- ,uA(v)]. (3.33)

a)
Fig.3.29: External boundary fuzzy image: a) Fuzzy image
b) External boundary filter with SE(3) c) External boundary filter with SE(5)

3.5.3.1.C. Fuzzy Internal Boundary Filter [51]:
The first step of the fuzzy internal boundary filter, is to fuzzy erode the image, hence,
the output filtered image will be the difference between the original fuzzy image and the

fuzzy eroded image; that is, the fuzzy internal boundary of A is defined by:

Ho, () (V) = min[us(v), 1 — page ()].

b) c)
Fig.3.30: Internal boundary fuzzy image: a) Fuzzy image
b)Internal boundary filter with SE(3) b)Internal boundary filter with SE(5)
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3.5.3.1.D. Fuzzy Outline Boundary Filter:
The first step of the fuzzy outline boundary filter, is the erode the image; then the
complement of its erosion image hence, the output image will be the intersection

between the original image and the output image that is the fuzzy outline boundary of A

is defined by: p, ... .oy (V) = min|[1 — puagp(v), Al (3.35)

) b) D)
Fig.3.31: Outline boundary fuzzy image: a) fuzzy image
b) Outline boundary filter with SE(3) b) Outline boundary filter with SE(5)

3.5.3.2 Combination Fuzzy External Boundary and Fuzzy Internal Boundary:

(3.36)
a)
Fig.3.32: Sup. boundary fuzzy image: a) Fuzzy image
b) Sup. boundary filter with SE(3)  b) Sup. boundary filter with SE(5)

2. oy (V) = min[pa, () (V), Koty (V)] (3.37)

a) b) c)
Fig.3.33: Inf. boundary fuzzy image: a) Fuzzy image
b) Inf. boundary filter with SE (3) c) Inf. boundary filter with SE (5)
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3. Hap, @) =minfus, ) — Ha, @] (3.38)

Fig.3.34: Div. boundary fuzzy image: a) fuzzy image
b) Div. boundary filter with SE (3) c¢) Div. boundary filter with SE(5)

3.5.3.3 Fuzzy Hat Filter [22, 40]:

The hat filters represent an important class of morphological transforms used for
extracting details from signals or images. One principal application of these transforms
is the removal of objects from an image.

3.5.3.3.A. Fuzzy Top-hat Filter [35]:

In mathematical morphology, top-hat filter is an operation that extracts small elements
and details from given images. The top-hat filter is defined as the difference between
the input image and its opening by some SE. Top-hat filter are used for various image
processing tasks, such as feature extraction, background equalization, image
enhancement, and others. An important use of the top-hat filter is in correcting the

effects of non-uniform illumination. The fuzzy top-hat filter of A is given by:

Hopyq,(a) (V) = min [1a(@), 1 = pao ;)]

a) b) c)
Fig.3.35: Top-hat filter fuzzy image: a) Fuzzy image b) Top-hat image with SE(3)
c) Top-hat image with SE(7)
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3.5.3.3.B. Fuzzy Bottom-hat Filter [43]:

The bottom-hat morphological operator subtracts an input image from the result of
morphological closing on the input image. Applied to a binary image, this filter allows
getting all the pixels that were added by the closing filter but were not removed

afterwards due to formed connections. The fuzzy bottom-hat filter of A is given by:

HBottompq:(A) (17) = min [.u(A *B) (17),1 —Ha (17)]

) b) Ty
Fig.3.36: Bottom-hat filter fuzzy image: a) Fuzzy image b) Bottom-hat image with SE(3) b)
Bottom-hat image with SE(7)

3.6 Conclusion:

In this chapter, we reviewed the fundamental definitions from the mathematical
morphology; for both grayscale and binary images. introducing a revision for the basic
morphological operators, namely, the morphological dilation, erosion, opening and
closing. Some algebraic properties of the operations have been investigated. Different
combinations of the defined basic operations are to be made in order to construct more

advanced morphological operators and filters.

56

—
| —



Chapter 4 Neutrosophic Crisp Mathematical Morphology

Chapter 4
Neutrosophic Crisp Mathematical Morphology

4.1 introduction:

in this chapter, we aim to apply the concepts of the neutrosophic crisp sets and its
operations to the classical mathematical morphological operations; introducing what we
call "Neutrosophic Crisp Mathematical Morphology”. Several operators are to be
developed, including the neutrosophic crisp dilation, the neutrosophic crisp erosion, the
neutrosophic crisp opening and the neutrosophic crisp closing. Moreover, we extend the
definition of some morphological filters using the neutrosophic crisp sets concept. For
instance, we introduce the neutrosophic crisp boundary extraction, the neutrosophic
crisp Top-hat and the neutrosophic crisp Bottom-hat filters. The idea behind the new
introduced operators and filters is to act on the image in the neutrosophic crisp domain
instead of the spatial domain.

4.2 Neutrosophic Crisp Mathematical Morphology:

As a generalization of the classical mathematical morphology, we present in this chapter
the basic operations for the neutrosophic crisp mathematical morphology. To
commence, we need to define the reflection and the translation of a neutrosophic set.
4.2.1 Definition:

Consider the space X = R™ or Z"; With origin 0 = (0,...,0) given The reflection of the
SE B mirrored in its origin is defined as: —B = (—B',—B?,—B3). 4.1)
4.2.2 Definition:

For every the p € A, the translations by p is the map p: X — X, a = a + p it transforms

any subset A of X into its translate by p € Z2, A, = (A',, A%,, A%,), where

A'y(w) ={u+p:u€A’, peB'}, Azp(u) ={u+p:u € A%, p € B} and
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A*,(w) ={u+pued’ peB3}.

4.3 Neutrosophic Crisp Morphological Operations:

we introduce and study the mathematical morphology via neutrosophic crisp sets; The
operations of neutrosophic crisp morphology dilation, erosion, opening and closing of
the neutrosophic image by neutrosophic crisp structuring element.

4.3.1 Neutrosophic Crisp Dilation and Neutrosophic Crisp Erosion:

Neutrosophic mathematical morphological transformations apply to neutrosophic sets of
any dimensions, those like Euclidean N-space, The two basic operations of
morphological operators are dilation and erosion.

4.3.1.1 Neutrosophic Crisp Dilation Operation:

dilation "grows" or "thickens" objects in a binary image The manner and extend of this
growth is image. controlled by the SE. let A, B € N'C(X), then we define two types of the
neutrosophic crisp dilation as follows:

4.3.1.1.A. Neutrosophic Crisp Dilation of Type I:

(Aé? B) = (A! @ B!, A> @ B?,A® © B), where for each uand v € Z2.

Al®B'= U A", AOB*= U A%, AOB’= N A% ,.
beB beB beB3

a) ~b)
Fig.4.1(1): Neutrosophic crisp dilation in type I: a) Original image
b)Neutrosophic crisp dilation components (A' @ B!, A2 @ B2, A®> © B3) respectively

4.3.1.1.B Neutrosophic Crisp Dilation of Type II:
(A® B) = (A @ B',A2 © B2, A% © B), where for each u and v € Z2. AL @ B! =

Upepr Alp, A2 O B2 = Npyepz A%, A2 O B3 = Nyeps 43,

58

—
| —



Chapter 4 Neutrosophic Crisp Mathematical Morphology

Fig.4.2(11): Neutrosophic crisp dilation in type 1I: a) Original image
b)Neutrosophic crisp dilation components (A! @ B, A2 © B?, A3 © B3) respectively.

4.3.1.2 Neutrosophic Crisp Erosion Operation:

Erosion is just opposite to dilation. It is defined as the minimum value in the window.
The image after dilation will be darker than the original image. It shrinks or thins the
image. let A, B € VC(X); then the neutrosophic dilation is given as two type:
4.3.1.2.A. Neutrosophic Crisp Erosion of Type I:

(A©B) =(A' © B!, A2 © B2 ,A% @ B®), where foreachuandv e Z2.

a) b)
Fig.4.3(1): Neutrosophic crisp erosion in type I: a) Original image
b)Neutrosophic crisp erosion components (A © B! ,A%? © B2?,A3 @ B3) respectively

4.3.1.2.B. Neutrosophic Crisp Erosion of Type II:
(A6 B) =(A' ©B!,A? @ B2 ,A% @ B®), whereforeachuandv e Z2.

Al e Bl = nb€B1 Al_b ,AZ @ BZ = UbEBZ Azb ,A3 @ B3 = Ub€B3 A3b'

a) b)
Fig.4.4(11): Neutrosophic crisp erosion in type 1I: a) Original image
b)Neutrosophic crisp erosion components (A © B!, A2 @ B?, A3 @ B3) respectively

(=)
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4.3.2 Neutrosophic Crisp Opening and Neutrosophic Crisp Closing:
In practice, dilations and erosions are usually employed in pairs, either dilation of an
image followed by the erosion of the dilated result, or image erosion followed by
dilation. In either case, the result of iteratively applied dilations and erosions is an
elimination of specific image detail smaller than the structuring element without the
global geometric distortion of unsuppressed features.
4.3.2.1 Neutrosophic Crisp Opening Operation:
The process of "opening"” an image will likely smooth the edges, remove small holes
from a reference image and break narrow block connectors. The opening of an image A
by a SE B; let A,B € NC(X); then we define two types of the neutrosophic crisp
dilation operator as follows:
4.3.2.1.A. Neutrosophic Crisp Opening of Type I:
A3B = (A' o B1,A%? 0 B?, A3 « B3),
AloBlz(AleBl)@Bl,AZOBzz(AZGBZ)GBBZ,

A3« B3 = (4@ B%) O B3.

a)
Fig.4.5(1): Neutrosophic crisp opening in type I: a) original image
b)Neutrosophic crisp opening components (A* o B, A% o B2, A3 « B3) respectively

4.3.2.1.B. Neutrosophic Crisp Opening of Type II:

A3B = (A' o B!,A% « B2, A3 « B3),
A'oB1=(A'©BY) @ B!, A?. BZ=(42@ B?) O B?,
A3« B3 = (4% @ B%) © B3.
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a) b)
Fig.4.6(11): Neutrosophic crisp opening in type I1: a) Original image
b)Neutrosophic crisp opening components (A o B, A% « B2, A% « B3) respectively

4.3.2.2 Neutrosophic Crisp Closing Operation:
Close operation can also be smoothed image of the contour. Compared with open
operation, closed operation is generally used to fill the small hole and crack in the
target. The main function of the connection is similar to the expansion effect, but it is
also the same as the size of the target. let A, B € V'C(X); then the neutrosophic dilation
is given as two types:
4.3.2.2.A. Neutrosophic Crisp Closing of Type I:
ASB = (A' « B1,A%? « B2, A3 0 B3),
AloBl=(AleBl)EBBl, A2 « B2 = (AZGBZ)EBBZ,

A3o B3 = (4% @ B%) © B3.

Fig.4.7(1): Neutrosophic crisp closing in type I: a) Original image
b)Neutrosophic crisp closing components (A « B, A% « B2, A3 o B3) respectively

4.3.2.2.B. Neutrosophic Crisp Closing of Type II:
A% B = (A « B1,A? 0 B2, A3 o B3),
Al'Bl= (AleBl)@Bl, AZOBZ — (AZGBBZ)GBZ,

Ao B® = (A°@® B%) O B3
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a)
Fig.4.8(11): Neutrosophic crisp closing in type Il: a) Original image
b)Neutrosophic crisp closing components (A ¢ B, A% o B2, A3 o B3) respectively

Note: Opening and Closing remove from the image its elements (objects, noise)
respectively lighter and darker then the background.
4.4 Algebraic Neutrosophic Crisp Properties:

In this section, we investigate some of the algebraic properties of the neutrosophic crisp
erosion and dilation, as well as the neutrosophic crisp opening and the neutrosophic
crisp closing operator.

4.4.1 Properties of the Neutrosophic Crisp Erosion:
Proposition 4.1:
The neutrosophic erosion satisfies the monotonicity for all A,B € N C(Z2). We will
prove the proposition for the two types of neutrosophic crisp erosion operation as
follows:
Type I:
1. ACB=(A'©C',A206C?,A°6C3) c (B ©6(C'B? © C?,B® ©C?3),
AOC'cB' ©6CLA2OC*’CB*©C? and 2O C* 2B ©C3.
2ACB=(C'OA',CPOA%CCEO A% c(C'©B',C?E©B? (36O B3),
C!OA'cCIOBl C°2°OA2c(C?OB? and C3© A% 2C3 © B3
Type II:
1. ACB=(A'OC,A26C?,AOC3)c (B ©CL,B2 ©6C%,B3 ©C3),

A'OClcB' ©CLA’EC?2B?2 ©C? and A6 C3*2B2 ©C3.
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2ACB=(C!OA,C2OA%CEO A% c(CtOBL,C2O B%C2 O B3,
CloA'cClOB!, (26A22C?2OB? and CC O A3 2C2 6 B3
Note that: Dislike the neutrosophic crisp dilation operator, the neutrosophic crisp
erosion does not satisfy commutativity and the associativity properties.
Proposition 4.2: For any family 4;,i € I in N'C(Z?) and B € N'C(Z?);
We will prove the proposition for the two types of neutrosophic crisp erosion operation
as follows:
Typel: a) N A © B=ni(A; ©B)
(Nier A} © BY, Ny A%; © B?, N A% @ B?)
=(n (A1, © BY),n (4% © B),0 (A%; ® BY)).
b) BS NierA; = Nici(BB A)
(B! S A%, B® o0 A%, B S A%
=(n (B1© A1),n (B2 © A%),0 (B° @ A%)).
Type ll: a) Ny A; © B=Niei(A; ©B)
(Nier A'; © BY, Ni A% @ B?, N A°; @ B?)
={Q (W OB (W B, (A% © BY)
b) BS NierA; = Niei(BB A)
(B! o8 A%, B® D0 A%, B S A%
= (igl (B'© Ali)’igl (B> @ Azi)’igl (B* @ A3)).
Proof a) intwo types:

Type I:

iQIAiéB =(n (n All-(_b)), n (n Azi(_b)), U (n A3ib))

beB \i€l beB \i€l beB \i€l

- <iQI (bQB Ali(_b)) 'iQI (bQB Azi(_b)) ’igl (bgB Agib)> = Nie1(A; O B).
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Type Il: similarity, we can show that it is true in type II.
b) The proof is similar to point a).
Proposition 4.3: For any family A;,i € I in N'C(Z?) and B € N'C(Z?).
We will prove the proposition for the two types of neutrosophic crisp erosion operation
as follows:
Typel: @) UjeiA; © B=Uiei(A; © B)
(Uier A; © BY, Ui A% © B?, Ui A% @ B®)
= (U (A'; ©BhH),U (A%; © B%),U (A’; ® B?)).
i€l i€l i€l
b) BE Ui A; = Uil (BB A)
(B1OU Al,B2OU A?,,B3@uU A3)
i€l i€l i€l
=(U (B'© A')),U (B> © A?%),U (B* @ A%)).
i€l i€l i€l
Type ll: @) Ui A; © B=U;(A; © B)
(Uier Alj © BY, Ujer A% @ B?, Ui A% @ B?)
= (U (A'; © BY),U (A%; @ B?),U (A%; @ B?)).
i€l i€l i€l
b) BE Ui A; = Uil (BB Ay)
(BOuU A, B2 U A%, B3 U A3)
i€l i€l i€l
=(U (B'© A"),U (B* @ A%),U (B* @ A%)).
i€l 1€l i€l
Proof: a)

Type I:

Vi1 A; © B = (bQB (igl Ali("b)) ’bQB (iLeJl Azi(_b)) 'bgB (iLEJI A3ib))

=9 (0 Am) 4 (0 M) (8 Ko)) = Via (A ©B)

i€l

Type I1: can be verified in a similar way as in type I. b) The proof is similar to point a).
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4.4.2 Properties of the Neutrosophic Crisp Dilation:
Proposition 4.4:
The neutrosophic dilation satisfies the following properties: VA, B € N C(Z32).
i) Commutativity: A®B = BOA.
i) Associativity:  (A@B)®C = AG(BEHC).
iii) Monotonicity: (increasing in both arguments):
We will prove the proposition for the two types of neutrosophic crisp dilation operation
as follows:
Type I:
1. ASB= (A'®C!,A’®C?,A3PC3) c (B ®CL, B2 ®C?,B3 DC3)
Al®C! € B ®C, A’0C? € B2 @®C? and A3®C3 2 B3 @C3.
2. ACB= (C'@®A!, C?°@A?, C3PA3) c (C'®B?, C>°PB?, C3PB3)
C'@A! c C'@B?, C*®A? c C*®B? and C3®A® 2 C3*®B3.
Type II:
1. ACB= (A'®C!,A’®C?,A3dC3) c (B ®CL, B2 ®C?,B3 DC3)
Al®C! € B ®C, A’0C%2 2 B2 @®C? and A3HC3 2 B3 @C3.
2. ACB= (C'@®A',C’DA?,C3PA3) c (C'®B, C?’®B?, C3®B?3)
C'@A! c C'@B?, C*®A? 2 C*®B? and C3@A3 2 C3@B3.
Proof: 1), ii), iii) Obvious in two types.
Proposition 4.5: for any family (4;|i € I) in N'C(Z?) and B € N'C(Z?).
We will prove the proposition for the two types of neutrosophic crisp dilation operation
as follows:
Typel: a) N A; @ B=ni(A; @ B)
(Nier A'; @ BY, Ny A% @ B2, N A% © B®)

=(n (A'; @ BY),n (A%; ® B*),n (A’; © B)).
i€l i€l i€l
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b) BO Nie A= Nici(BB A)
(B n A,,B2@®n A%, B3O n A3)
i€l i€l i€l
=(n (B @ A')),n (B> @ A?%),n (B® © A3)).
i€l i€l i€l
Type ll: @) Ny A; © B=nie(A; © B)
(Nier A'; @ B, Ny A% © B, Ny A%, © B3)
= (N (A'; ® BY),n (A%, © B%),n (A% © B?)).
i€l i€l i€l
b) BO Nt A =Nt (BB A)
(B@®n A,,B2On A%, B3O n A3))
iel i€l iel
=(n (B @ A'),n (B> © A?)),n (B® © A3)).
i€l iel i€l
Proof: we will prove this property for the two types of the neutrosophic crisp

intersection operator:

Type l: N A; @B=(U (n Alib), U (n AZib), n (irewl A3i(_b)))

beB \i€l beB \i€l bEB

-8y )0 (g o)

i€l \bEB i€l \bEB i€l

N A3i(—b))> = Nier(A; © B).

bEB

Type II:

NietAi @B =( U (ﬂ Alib)' n (

2. 3,
beb el veb \ie A l(_b))'bQB (iQIA l(_b)))

i€l

- (iQI (bgB Alib) 'igl (bQB Azi(_b)) 'igl (bQB A3i(_b))) = Nier(A; © B).
Proof: b) The proof is similar a).
Proposition 4.6: for any family (4;|i € I) in NC(Z?) and B € N'C(Z?).
We will prove the proposition for the two types of neutrosophic crisp dilation operation
as follows:
Typel: @) Ui A; @ B=Uie(A; @ B)

(Uijer A'; @ BY, Ui A%; @ B?, Ui A% © B®)

- <ileJI (A% @ Bl)'igl G Bz)’igl (A% © B)).
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b) B @ Uier A; = Uiel(B @ A))
(BT @ U A';,B> DU A?*,B* QU A?))
i€l i€l i€l
=(U (B @ A'),U (B> @ A%*),U (B> © A%)).
i€l i€l i€l
Typell: a) UigA; @ B=Uiq(A; ®B)
(Uit A'; @ BY, Ui A% © B?, Ui A% © B®)
= (U (A'; @ BY),U (A%; © B?),U (A3, © B?)).
i€l i€l i€l
b) B® Ui A; = Ui (B B A)
(B1u A, B2 U A?,,B3 B U A3))
i€l i€l i€l
=(U (B* @ A'),U (B* © A?),U (B © A%)).
i€l i€l i€l
Proof: a) we will prove this property for the two types of the neutrosophic crisp union

operator:

Type I:

U A3i(—b)))

L€l

Ui Ay @B =(U (u Alib), U (u Azib), n (

beB \i€l beB \i€l bEB

=(U ( U Alib),u ( U Azib),u (

i€l \beB i€l \bEB i€l

mal Agi(—b))) = Ujer(A; © B).

Type II:

Uie1 A @B = (bgB (U Alib)' N (l.LEJI Azi(—b))'bQB (igl A3i(—b)))

i€l bEB

=02 (% 40) & (0 ien) g (0, Fien)) = Viaai @B)
Proof: b) The proof is similar to a).

4.4.3 Properties of the Neutrosophic Crisp Opening:

Proposition 4.7:

The neutrosophic opening satisfies the monotonicity V A,B € N C(Z2).

We will prove the proposition for the two types of neutrosophic crisp opening

operation as follows:
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Type I:
ACSB= (A'oC!,A20(C%,A30C3) c(BtoCL,B%20(C%,B30(3)
AloClcBlo(Cl, A20C2C B2 o(C? and A3oC3 2 B3 o (3.
Type II:
ACB= (AloC!,A%20(C2,A30(C3) S (B1o (1, B20 (2, B30 (3)

AloC'CB'o(C!, A20C>2 B2 o(C? and A®oC3 2 B3 o (3.

Proposition 4.8: For any family (4;|i € I) in N°C(Z?) and B € N C(Z?).
We will prove the proposition for the two types of neutrosophic crisp opening operation
as follows:
Typel: N A; 3B =Ne(A; 5B)
(Njer A'; o BY, N A% 0 B2, N A%, « B?)
= (iQI (A'; 0 Bl)»igl (A% o BZ),QI (A%; « B%)).
Type Il Ny A; 3B =Nier(A; 5B)
(Nier A o BY, Ny A% ¢ B?, Ny A% ¢ B®)
= (igl (A% o Bl)'i@l (A%; o BZ):QI (A%; « B)).
Proposition 4.9: for any family (4;|i € I) in NC(Z?) and B € N'C(Z?).
We will prove the proposition for the two types of neutrosophic crisp opening operation
as follows:
Type I: Ui A; 8B = Uier(A; 3 B)
(Ujer Aty o BY, Uje A% 0 B?, U A%  B?)
= (l,LEJI (A'; 0 Bl),ilEJI (A% o BZ),ilEJI (A%; « B%)).
Type Il: Ui A; 3B = Ui (A; 3 B)
(Uier A’ o B, Ui A% @ B?, Ui A®; « B?)

= (U (A'; o B1),U (A% «B?),U (A% « B®)).
iel iel i€l
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Proof: Is similar to the procedure used to prove the propositions given in proposition

4.6.

4.4.4 Properties of the Neutrosophic Crisp Closing:

Proposition 4.10:

The neutrosophic closing satisfies the monotonicity vV A,B € N (Z2). We will prove

the proposition for the two types of neutrosophic crisp closing operation as follows:

Type I:

ACSB= (A'e(C!,A2¢(C%2,A3e(C3) c (B! «C,B% «(C?,B3 «(3)
AleC' S Ble(Cl, A2e¢C2C B? ¢(C? and A3« (C3 2 B3 « (3.

Type II:

ACSB= (Ale(Cl,A2e(C%2,A3e(C3) c (B! o (CL,B? «(C?,B3 o (3)
AleClCBle(Cl, A2¢(C22B? o(C? and A3« (C32B3 « (3.
Proposition 4.11: for any family (4;|i € I) in N'(Z?) and B € N (Z?). We will prove
the proposition for the two types of neutrosophic crisp closing operation as follows:

Typel:  NierA; 3B =Niei(A; 3B)
(Nier A'; « BY, Ny A% « B, N A%; 0 B?)
= (igl (A'; o Bl)'i@l (A%; o BZ):QI (A%; 0 B®)).
Type ll: Ny A #B =N (A; 3 B)
(Nier Ay @ BY, N A% 0 B?, Ny A®; 0 B?)
={N (A'; o Bl)'i@l (A% o BZ),QI (A%; o B%)).
Proposition 4.12: for any family (4;|i € I) in N'C(Z?) and B € N'C(Z?).
Type I Ui A; B =Uei(A; 3 B)
(Ujer A'; o BY, Ui A% o B?, U A%, 0 B®)

= (U (Al; » B1),U (A?; « B?),U (A% o B%)).
i€l i€l i€l
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Type Il: Ui A; 3B =Uie1(A; 3 B)
(Uier Aty o BY, Ui A% 0 B?, U A% 0 B®)
= (iLEJI (A'; o Bl);i\EJI (A% o BZ),ilEJI (A%; o B%)).

Proof: Is similar to the procedure used to prove the propositions given in proposition
4.6.
4.5 Duality of Theorem:
Erosion and dilation are duals of each other with respect to set complementation and
reflection: Indicating that erosion of A by B is the complement of the dilation of the
complement of A by the reflection of B and vice versa. Duality is particularly useful
when the structure element is symmetric with respect to its origin, so that. Then we can
obtain the erosion of an image by B simply by dilating its background (complement of
A) with the same structuring element and complementing the result.
4.5.1 Duality Theorem of Neutrosophic Crisp Dilation:
let A, B € VC(X); Neutrosophic Crisp Erosion and Dilation are dual operations i.e.
Type I:
co(coA @ B) = (co(coA® @ B'), co(coA? @ B2), co(coA® © B))

=(A'©BLA2OB%L A3 ®B3=4SB.
Type II:
co(coA @ B) = (co(coA! @ BY), co(coA? © B2), co(coA® © B?))

=(A'©BLA2 @B A @ B3 =AOB.
4.5.2 Duality Theorem of Neutrosophic Crisp Closing:
let A, B € VC(X); Neutrosophic erosion and dilation are dual operations i.e.
Type I: co(coA s B) = (co(coAl « BY), co(coA? « B2),co(coA3 o B%))

=(A' o B',A? 0 B%, A3 « B3) = A o B.
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Type 11: co(coA s B) = (co(coAl « BY), co(coA? o B?),co(coA3 o B3))
=(A' o B, A% « B2, A3 « B3) = A o B.
4.6 Neutrosophic Crisp Mathematical Morphological Filters:
When considering The differences of two or more of the basic neutrosophic
morphological operators, given in § 4.3, yield some remarkable filters; in this section
we will consider the boundary and Hat filters:
4.6.1 Some Type of Boundary Extraction Filter Using Neutrosophic Crisp Dilation
and Neutrosophic Crisp Erosion:
Where A is the set of all pixels that belong to the foreground of the picture, A% contains
the pixels that belong to the background while A2 contains those pixel which do not
belong to neither A nor A3; let A,B € NC(X), A =(A',A?,A3%), and B is some
structure element of the form B = (B, B?,B3), dilation and erosion can be used in
combination with image subtraction to obtain the morphology extract boundary of an
image; The dilation thickens regions in an image and the erosion shrinks them.
4.6.1.1 Neutrosophic Crisp Internal Boundary Filter:
let A and B be two neutrosophic crisp sets, A = (A, A%, A3) and B is some structure
element of the form B = (B!, B, B3); where A is the set of all pixels that belong to the
foreground of the picture, A3 contains the pixels that belong to the background while A2
contains those pixel which do not belong to neither A nor A3; then the neutrosophic
crisp internal boundary is defined as: B;,; (A) = B(4) n B*(A), where;
B*(4) = A* - [(A* ® B®) — (A' © BY)], B(4) = A®—(B,A' UB;A%)
B,A' = A — (A' © BY), B;A3 = (A% @ B3) — A3,
In the following figure (fig.4.9), we present the results obtained when applying

neutrosophic crisp internal boundary filter on some grayscale image.
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a)
Fig. 4.9: Neutrosophic crisp internal boundary filter: a) Original image
b) Neutrosophic crisp internal boundary filter with SE(3)
c¢) Neutrosophic crisp internal boundary filter with SE(5)

4.6.1.2 Neutrosophic Crisp External Boundary Filter:
The simplest morphological edge detector, the dilation residue, is found by subtracting
the original signal from its dilation by a small structuring element. The output is defined
as: B,,:(A) =B(A) n B*(A), where;
B(A) = A? — (B;A' U B;A%), B*(A) = A2 — [(A* @ BY) — (4% © B?)]

B,A! = (A @ BY) — A1, B;A3 = A3 — (43 © B3).

In the following figure (fig.4.10), we present the results obtained when applying

neutrosophic crisp external boundary filter on some grayscale image.

a) I c)
Fig. 4.10: Neutrosophic crisp external boundary filter: a) Original image
b) Neutrosophic crisp external boundary filter with SE(3)
c¢) Neutrosophic crisp external boundary filter with SE(5)

4.6.1.3 Neutrosophic Crisp Gradient Boundary Filter:

Neutrosophic crisp gradient boundary filter is defined as:
ggradient(A) = B;,(4) n B,(A), where,
B,(A) = A — (BA' U B3A%), B,(A) = A — ((A* @ B®) — (A © BY))

Bi(A") = (A' © BY) — (A' @ BY), B3(4°) = (4° @ B®) — (4° © B).
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In the following figure (fig.4.11), we present the results obtained when applying
neutrosophic crisp gradient boundary filter on some grayscale image.

a)
Fig.4.11: Neutrosophic crisp gradient boundary: a) Original image
b) Neutrosophic crisp gradient boundary filter with SE(3)
¢) Neutrosophic crisp gradient boundary filter with SE(5)

4.6.1.4 Neutrosophic Crisp Outline Boundary Filter:

Neutrosophic crisp outline boundary filter is defined as:

Boutiine(A) = co((B1A* U B3A®) n A?),where;

Bi(AY) = co(A'© BY) n AL, B;(43%) =co(43 @ B3) u A3

In the following figure (fig.4.12), we present the results obtained when applying

neutrosophic crisp outline boundary filter on some grayscale image.

a)
Fig. 4.12: Neutrosophic crisp outline a) Original image
b) Neutrosophic crisp outline filtered image SE(3)
C) Neutrosophic crisp outline filtered image SE(7)

4.6.2 Combinations of Neutrosophic Crisp External and Neutrosophic Crisp
Internal Operators:

Dilation and erosion can be used in combination with image subtraction to obtain the

morphological extraction A of an image as:
1. Egrad(A) = min(B; (4"), AZ), where;

Bl(Al) = max[max(Bext(Al)rBint(Al)): min(Bext(A3)'Bint(A3))]-

(=)
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In the following figure (fig.4.13), we present the results obtained when applying

neutrosophic crisp grad boundary filter on some grayscale image.

- .

Fig. 4.13: Neutrosophic crisp grad boundary: a) Original image
b) Neutrosophic Crisp grad Boundary filtered image with SE(3)
c) Neutrosophic Crisp grad Boundary filtered image with SE(7)

2. Bpin = min(B;(AY), A%), where;
Bl (Al) = max[min(Bext(Al)' aint(Al))l max(BextAg' Bint(Ag))]-
In the following figure (fig.4.14), we present the results obtained when applying

neutrosophic crisp min. boundary filter on some grayscale image.

a) b) c)

Fig. 4.14: Neutrosophic crisp min. boundary: a) Original image
b) Neutrosophic Crisp min Boundary filter image with SE(3)
c¢) Neutrosophic Crisp min Boundary filter image with SE(7)

3. By, = min(B,(AY), A%), where;
Bl(Al) = max[(Bext(Al) - Bint(Al)): (Bext(AS) - Bint(A3))]-
In the following figure (fig.4.15), we present the results obtained when applying

neutrosophic crisp Div. boundary filter on some grayscale image.
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a)
Fig. 4.15: Neutrosophic crisp div. boundary: a) Original image
b) Neutrosophic Crisp Div. Boundary filtered image with SE(3)
c) Neutrosophic Crisp Div. Boundary filtered image with SE(7)

4.6.3 Neutrosophic Crisp Hat Filters:
Filters described above remove image objects or noise of certain kind. Sometimes,
however, instead of removing, one needs to detect objects of particular characteristics.
The descriptions "white" and "black™ indicates types of objects which are detected by a
particular operator lighter or darker than the background. The mentioned above, main
property of top-hat filter can be applied to contrast enhancement. Indeed, by combining
the original image with images with detected objects, the contrast improves. This
combination is performed by adding to the original image the result of white top-hat and
by subtracting the result of a black top-hat:

e Neutrosophic Crisp Top-hat Filter:

Topna:(A) = B(A) N B*(A4), where;

BjA' = A' — (A'oBY), ByA® = (43+B3)—43%)

B(A) = A% — (8,A U 3;4%), B*(4) = A2 — [(4' o BY) — (43 « BY)].
In the following figure (fig.4.16), we present the results obtained when applying

neutrosophic crisp top-hat boundary filter on some grayscale image.
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a)
Fig. 4.16: Neutrosophic crisp top-hat filter: a)Original image
b) Neutrosophic Crisp top-hat Boundary filtered with SE(3)
¢)Neutrosophic Crisp top-hat Boundary filtered with SE(7)

e Neutrosophic Crisp Bottom-hat Filter:
Bottom,,:(A) = B(A) N B*(A4), where;
B(A) = A% = (8,(A") U 05(4%)), B*(A) = A* — [(A" « B') — (A% 2 B?)]
B;(AY) = (A'eBY) — A%, B3 (A3) = 43 — (43 o B3).
In the following figure (fig.4.17), we present the results obtained when applying

neutrosophic crisp bottom-hat boundary filter on some grayscale image.

a) b) ©)
Fig. 4.17: Neutrosophic crisp bottom-hat filter: a)Original image
b) Neutrosophic crisp bottom-hat Boundary filtered with SE(3)
c)neutrosophic crisp bottom-hat Boundary filtered with SE(5)

4.7 Conclusion:

In this chapter we established a foundation for what we called "Neutrosophic Crisp
Mathematical Morphology”. Our aim was to generalize the concepts of the classical
mathematical morphology. For this purpose, we developed serval neutrosophic crisp
morphological operators; namely, the neutrosophic crisp dilation, the neutrosophic crisp

erosion, the neutrosophic crisp opening and the neutrosophic crisp closing operators.

76

—
| —



Chapter 4 Neutrosophic Crisp Mathematical Morphology

These operators were presented in two different types, each type is determined
according to the behavior of the second component of the triple structure of the
operator. Furthermore, we developed three neutrosophic crisp morphological filters;
namely, the neutrosophic crisp boundary, the neutrosophic crisp Top-hat and the
neutrosophic crisp Bottom-hat filters. Some promising experimental results were
presented to visualize the effect of the new introduced operators and filters on the image

in the neutrosophic domain instead of the spatial domain.
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Chapter 5
Neutrosophic Mathematical Morphology

5.1 Neutrosophic Mathematical Morphology:

The aim of this chapter is to introduce a new approach to mathematical morphology
based on neutrosophic set theory. in order to propose "The Neutrosophic Mathematical
Morphology", the concept of neutrosophic morphology based on the fact that the basic
morphological operators make use of fuzzy set operators. Hence, such expressions can
easily be extended using the context of neutrosophic sets. Basic definitions for
neutrosophic morphological operations are extracted and a study of its algebraic
properties is presented. In our work we demonstrate that neutrosophic morphological
operations inherit properties and restrictions of fuzzy mathematical morphology. The
operations of neutrosophic dilation, neutrosophic erosion, neutrosophic opening and
neutrosophic closing of the neutrosophic image by neutrosophic structuring element, are
defined in terms of their membership, in determent and non-membership functions;
which is defined for the first time as far as we know.
Definition 5.1:
The reflection of the SE B mirrored in its origin is defined as:

e —B =(-Tg,—1g,—Fg), where;

—Tg(u) = Tg(—u),—Ig(w) = Ig(—u) and — Fg(u) = Fz(—u).
e Forevery p in E, Translation of Aby p € Z2 is

Ap = (TAP, IAp’ FAp), Where,

Ta,(W) = Tya,(u+p), la,(W) = Iy, (u+p)and Fy (u) = Fy, (u+p).
most morphological operations on neutrosophic can be obtained by combining

neutrosophic set theoretical operations with two basic operations, dilation and erosion.
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5.2 Neutrosophic Morphological Operations:

The neutrosophy concept is introduced to morphology by a triple degree to which the
structuring element fits into the image in the three levels of trueness, indeterminacy, and
falseness. The operations of neutrosophic erosion, dilation, opening and closing of the
neutrosophic image by neutrosophic SE, are defined in terms of their membership,
indeterminacy and non-membership functions; which is defined for the first time as far
as we know.

5.2.1 Neutrosophic Dilation and Neutrosophic Erosion:

The two basic operations for the construction of morphological operators, namely,
neutrosophic dilation and neutrosophic erosion. are based on the two Minkowski set
operations, the Minkowski addition and subtraction of two neutrosophic sets;
respectively. we may define the follows:

5.2.1.1 Neutrosophic Dilation Operation:

Let A and B, be two neutrosophic sets, the neutrosophic dilation of a neutrosophic set B
to a neutrosophic set A is defined by:

(A® B) = (Tags - Iags - Fage), Where for each u,v € Z2. The three components,
Tazs Iags and F o5 are to be defined in to different types as follows:

5.2.1.1.A. Neutrosophic Dilation of Type I:

T (V) = sup min(T,(v + u), T (w)),

U€ez?

Ligp() = sup min(l,(v + u), Iz (w)),

u€ez?

Fazgs() = inf max(Fy(v +u),1 — Fg(u)).

uez?
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a)
Fig.5.1(1): Applying the neutrosophic dilation operator: a)Original image
b) Neutrosophic component of the dilated image in type | (TA@B Jags F A@;B) respectively

5.2.1.1.B. Neutrosophic Dilation of Type II:

Tygs(W) = sup min(T, (v + u), Ty (w)),
ue

Ligg() = inf max([,(v +u), 1 — Iz(w)),

UEZ?

Fags (v) = infyezz max(Fy(v +u), 1 — Fg(u)).

a)
Fig.5.2(I1): Applying the neutrosophic dilation operator: a) Original image

b) Neutrosophic component of the dilated image in type Il (Tygg , Iagss » Fagss) respectively

5.2.1.2 Neutrosophic Erosion Operation:

let A and B, be two neutrosophic sets, The neutrosophic erosion of a neutrosophic set B
from a neutrosophic set A is defined as: (A © B) = (Tass - 1ase » Fagg); Where for
eachu, v € Z2. The three components, Tyzp, [,z and F,&j are to be defined in to

different types as follows:
5.2.1.2.A. Neutrosophic Erosion of Type I:

Ty55(v) = inf max(Ty(v +w),1 — Tg(u)),

u€ez?
IA’@“B(U) = inf ez max(ly(v + u),1 — Iz(w)),

Fysp() = suZp2 min(FA(v +u), FB(u)).
ue
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a) b)
Fig.5.3(l): Applying the neutrosophic erosion operator: a)original image b)neutrosophic
components of the eroded in type | (Txzg , Iagp - Fagp) respectively

5.2.1.2.B. Neutrosophic Erosion of Type I1:

Tyz() = inf max(Ty(v +u), 1 — Tz(w)),

u€ez?

Lizg(v) = sup min(l,(v + u), Ig(u)),
u€ez?

Fosp(v) = sup min(FA(v + u), FB(u)).

UEZ

a) b)
Fig.5.4(11): Applying the neutrosophic erosion operator: a)Original image b)neutrosophic
components of the eroded in type Il (Tyg5 , a5 » Fags) respectively

5.2.2 Neutrosophic Opening and Neutrosophic Closing:

The combination of the two main operations, neutrosophic dilation and neutrosophic
erosion, can produce more complex sequences. Neutrosophic opening and neutrosophic
closing are the most useful of these for morphological filtering.

5.2.2.1 Neutrosophic Opening Operation:

A neutrosophic opened image, is the result of eroding a neutrosophic image A by a
neutrosophic SE B; followed by a neutrosophic dilation operation by the same element
B, and to be defined as the triple structure: (A3 B) = (Tasg,lasg,Fasg), Where
u,v,w € Z2 The three components, Tazg, Ipsgp and Fasg are to be defined in two

different types as follows:
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5.2.2.1.A. Neutrosophic Opening of Type I:

Tys(v) = sup min [ inf max(Ty(v —u+w),1—Tz(W)), Ty (u)] ,

u€ez? WEZ?2

Lisg(v) = sup min [ inf max(I,(v —u+w),1—I(w)), IB(u)],

Uu€ez? WEZ?2

Fusp(v) = inf max [sup min(FA(v —u+w),Fz(w)),1—Fp (u)] :

Uu€ez?

WEZ?2

b)
Fig.5.5(1): Applying the neutrosophic opening operator: a)Original image
b) neutrosophic opening components in type | (Tasg , Iasg , Fasg) respectively

5.2.2.1.B. Neutrosophic Opening of Type II:

Tys5(v) = sup min [ inf max(T,(v —u+w),1— TB(W)), Ty (u)] ,

UEZ? wWEZ?2

Lisg(v) = sup min [ inf max(I,(v —u+w),Iz(w)),1- IB(u)],

u€ez? WEZ?2

Fisp(v) = inf max [sup min(FA(v —u+ w),FB(w)), 1—-Fg (u)] .

WEZ?2

u€ez?

a) b)
Fig.5.6(11): Applying the neutrosophic opening operator: a)Original image
b) Neutrosophic opening components in type 1l (Tasg , Iasg , Fasg) respectively
5.2.2.2 Neutrosophic Closing Operation:
A neutrosophic closed image, is the result of dilation a neutrosophic image A by a

neutrosophic structure element B; followed by a neutrosophic erosion operation by the

same element B, and to be defined as the triple structure: (A% B) = (Tusp , Lusp , Fasg),

( 1
L 8 )
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where The three components, T4, Issp and F455 are to be defined in two different types
as follows: for each u, v,w € Z2.

5.2.2.2.A. Neutrosophic Closing Type I:
Tasg (V) = infyezz max[supyezz min(Ty(v — u + w), Ty(w)), 1 — Ty (w)),
Iasg(V) = infyezz max[sup,,ezz min(L(w —u +w),Iz(w)), 1 — Iz(w)],

Frap(v) = supyez2 minfinf,,ez2 max(Fy(v —u +w), 1 — Fg(W)), Fs(w)].

a) b)
Fig.5.7(1): Applying the neutrosophic closing operator: a)Original image b)Neutrosophic
closing components in type | (Tusp , Lusg , Fasg) respectively

5.2.2.2.B. Neutrosophic Closing Type II:

Tpp(v) = inf max [sup min(T,(v —u + w), T (W)), 1-Tg (u)] ,

Uu€ez? wez?2
Lisg(v) = supyez2 min[infwezz max(IA(v —u+w)l-— IB(W)),IB(u)],

Frag(v) = supyezz mininf,ezz max(Fy(v —u+w), 1 — Fs(w)), Fz(w)].

a)
Fig.5.8(11): Applying the neutrosophic closing operator: a)Original image b)Neutrosophic
closing components in type 11 (Tysp , Lisp , Fasg) respectively

5.3 Algebraic Properties of Neutrosophic Morphological Operations:
In this section we investigate some of the algebraic properties of the neutrosophic
morphological operation; neutrosophic dilation, neutrosophic erosion, neutrosophic

opening and neutrosophic closing. The algebraic properties for neutrosophic
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mathematical morphology erosion and dilation, as well as for neutrosophic opening and
closing operations are now considered.
5.3.1 Properties of the Neutrosophic Erosion Operation:
Proposition 5.1: for any family (4;|i € I) in N'(Z*)and B € N (Z?).

<Tir611Ai§B’ In sz F iQIAiéB) c <TiQI(Ai§B)' In(age) F iQI(AiéB))'
We will prove the proposition for the two types of neutrosophic erosion operation as
follows:

Type I:

T 4,58 (v) = inf max (T.n 4 +u),1- TB(u))
i€l iel

u€ez?z

= inf max (lglf Ty(w+u),1-Tg (u))
L

Uu€ez?

c inf inf(max T 4,(v +u),1 — Tg(u)) STy (a58) V)

UEZ? i€l

Iniel A;OB (V) = infyez> max(lnielAi(v +u),1-1Ip (u))

= inf max (irngIAi(v +u),1— IB(u)>

i

u€ez?
C inf inf(maxIAi(v +u),l-— IB(u)) S1n s ®).
u€z? iel iers
Fo a5B (V) = supyez2 min(FnielAi(V +u), Fg (u))
= SUPyezn MiN <inf Fp,(v+u), FB(u)>
i€l
= SUP,ez2 in}; (min F,(v + u), Fz(w)) c F.ﬂI(AiéB) ).
AS i€
Type II:
T 4,58 (v) = inf max (Tn aAW+u),1-Tg (u))
i€l UEZ2 i€l
= inf max (inf Ty(v+uw),1—-Tg (u))
Uuez? i€l
c inf inf(max Tw+u),l- Tp(w)) STh (am) (V)
iers b

uez? iel

( 1
L 8 )



Chapter 5 Neutrosophic Mathematical Morphology

In 488 (V) = sup min (I,n 4w +u),lp (u))
i€l i€l

UEZ?
= SUP,cz2 MIN (inf Iy,(v+u),lg (u))
i€l
= SUPyez? iryj (min I, (v + u), Ip(w)) S 10 (am) (¥):
A i€

Fq AiéB(U) = sup min (Fn a4,(v+u), Fpg (u))
iel €l

uez? i

= SUP,czz MIN <i_nf Fy,(v + u),FB(u)>

LEl
= SUP,ez2 in}lf (min F,(v + u), Fp(w)) c F.ﬂI(AiéB) (v).
AS i€
Proposition 5.2: for any family (4;li € I) in N'(Z?) and B € N (Z?).
T sl ase, Fuasg) 2(T =5), 1 =g, F B))-
( i OB 2 AOB igIAleB) < 2, (AiSB) 7 4, (A5B) igl(AleB))
We will prove the proposition for the two types of neutrosophic erosion operation as

follows:

Type I:

Ty aep (V) = infyczz max (TUieIAi(v +u),1—-Tg (u))

= inf max <supTAi(v +u),1-Tg (u))

U€EZ? i€l

inf sup(maxT, (v +u), 1 — T5(w)) 2T (458) V).

u€ez?z iel

Iy, ase W) = infyezzmax(ly,, 4, +u), 1= Iz(w))

= inf max (sup Ij,v+w),1— IB(u))

UEZ? i€l

= inf sup(max Iy,(v+u),1— IB(u)) 21, (Ai’éB)(v).
uez? iel i€l

FUieIAiéB (v) = sup,ez2 min(FUl.EIAi(v +u), Fg (u))

= SUP,czz MIN (sup Fy,(v +u), Fg (u))

i€l
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D SUpyep2 s'uga(min Fp,(v +w), Fg(w)) 2 F.UI(AL@B) (v).
lE i€

The proof of type Il is similar to type I.
5.3.2 Properties of the Neutrosophic Dilation Operation:
Proposition 5.3: for any family (4;]i € I) in N'(Z?) and B € N (Z?).

<Tir€11Aié§B' IirewlAié;B' FirewIAié;B) S <Tir€11(Aié§B)' Iirewl(Ai@B)' FiQI(AiéB))-
We will prove the proposition for the two types of neutrosophic dilation operation as
follows: We will prove the proposition for the two types of neutrosophic dilation
operation as follows:

Type I:

Ty a@n (v) = sup min (Tn a@+w, TB(u>)

UEZ?2

= sup min (mf Ta,(v +u), Ty (u)) = sup inf (minT,, (v + ), Tg(w))

u€ez? u€ez? iel
C inf sup (minT,, (v + ), Tz (w)) € Ty (a38)V)-
i€l uez? i€l

IﬂiE] AiéB (17) = SupuEZZ min (IniEI A; (U + u)’ IB (u))

= sup min (lnf Iy,(v+u),lg (u)) c IiQI(Ai@;B) (v).

uez? i€l

FnAGDB(U) = inf max (Fn a+u),1- FB(u))

uez?

= inf, ez max (Lnf Fy(w+u),1- FB(u)>

iel
C infeze in{(max Fa,(v+u),1-Fz(w) < F.nI(AL@B) (v)
4SS i€

Type II:

Tn ABB (v) = sup min (Tn A+, TB(u))

uez?

= sup min (Lnf Ty,(v+uw),Tg (u)) = sup mf(mmTA (v +w), Tp(w))

uez? i€l U€ez? iel
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< inf sup (minT,, (v + ), Ty (w)) S T (a@5) (V-

i€l uez?z

I a@ms (V) = infyueze max(lnielAi (v +u),1—Ig(w))

= inf,c 2 max <Llrg Ii,(v+u)l- IB(u)>

C inf,cze iljrg(max L, (v +u),1—Iz(w)) c IiQI(A@B)(v).
Foc ade (v) = inf,ez2 max (Fnie, 4aw+tw),1-Fp (u))

= inf e 2 max (inf Fy(w+u),1- FB(u)>

i€l
Cinfyez2 igg(max FAi(v +u),1—-Fy (u)) c FiQI(A@B)(v).
Proposition 5.4: for any family (4;|i € I) in N'(Z?) and B € N (Z2).
(TiLE;IAiéB'I igIA@B:F iLEJIAi@B) 2 <Tl_LEJI(Al-é§B)'I iLEJI(AiéB)'F igl(Ai@B))'
We will prove the proposition for the two types of neutrosophic dilation operation as
follows:
Type I:

Tu}A@B (v) = sup,czz min (TiLeJIAi(v +u), Ty (u))

i

= sup min (sup Ty,(v+uw),Tg (u))

u€ez? i€l

2 sup (sup minT,, (v +u), Tp (u)) 2 T'UI(A@B)(U).

U€ezz \ iel

Iggy a4 (v) = supyezz min (I_u Ai(V +u),lp (u))
i€l i€l

= sup min (sup Ly,(v+u), I (u))

uez? i€l

2 sup (sup min l,,(v + u),Ig (u)) 2 I.UI(A@B)(U)'
LE

u€ezz \ iel
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FUiEI AiéAi (v) = in’quZZ max (FiLGJIAi(v + u’)) 1- FB (u’))

= inf max (sup Fp(v+u),1- FB(u)>

U€EZ? i€l

= inf (sup max Fy, (v +u),1— FB(u)) 2 FU(A GBB)(U)

uezz \ iel

Type II:
T.UIA@B (v) = supyezz min (T-LEJIA"(U +u), Ty (u))
LE L

= sup min (sup Ty,(v+u),Tg (u))

Uu€ez?z

2 sup (sup minTy, (v +u), T (u)) 2 T'Léjl( 4,8B) (v).

u€ez? \ iel

Iggy a4 (v) = infyezz max (I_u a,W+u),1—1Ig (u))
i€l i€l

= inf max (sup Iy,(v+w),1- IB(u))

u€ez? i€l

= inf (sup max Iy, (v +u), 1 —IB(u)) 2 I_gI(A@B)(V)-

u€ezz \ iel

FUiEI AiéAi(v) = inquZZ max (FilEJIAi(U + u), 1- FB (u))

= inf max (sup Fp(v+u),1- FB(u)>

u€ez?

= inf (sup max Fy, (v +u),1— FB(u)) 2 FU(A GBB)(U)

u€ezz \ iel

5.3.3 Properties of the Neutrosophic Closing Operation:

Proposition 5.5: for any family (4;]i € I) in N(Z?) and B € N (Z?).

(Thie, a8 In, a8 Fryg ase) S <TiQI(AiiB); IiQI(Ai:B) ) FiQI(Ai:B)).

We will prove the proposition for the two types of neutrosophic closing operation as

follows:
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Type I:

Tn ass (V) = inf max lsup min <Tn 4,V —u+tw), TB(W)> 1- TB(u)l

u€ez? WEZ?2

SUP,ez2 MIN (mf Ty,(v—u+w), TB(W)> 1- TB(u)l

iel

= inf,c 2 max

C inf,cz2 max [mf SUP ez MIN ( Ty, v—u+w), TB(W)) 1-— TB(u)]
i€l

C inf inf ez max [ SUp,,cz2 MIn ( Ty,(v—u+w), TB(W)) 1-— TB(u)]

i€l
STn s (V).
iel
Ing, asp (V) = infyez2 max Supyez? min (InieIAi(v —u+w)lp (W)) ,1— Iy (u)]

= inf,cz2 Max |Sup,,cz2 min <mf Li,(v—u+w), IB(W)> ,1— IB(u)l

i€l

C inf,cz2z max mf SUp,,ezz Min ( Iy,(v—u+w), IB(W)) ,1— IB(u)]
L jel
Cinfinf,cz2 max [ SUP,yezz MiN ( Iy,(v—u+w), IB(W)) — IB(u)]

i€l

Sln s ().
iel

Fn 4;58(V) = sup min
U€ez?

inf max( .ﬂIAi(U —u+w)l- FB(W)>,FB(u)

WEZ?

= SUPycz2 MIN lmfwezz max (mfFA w—-—u+w)1l- FB(W)> Fp (u)l

i€l

C Sup,czz min [inf inf ez max ( Fy(w—u+w),1-Fpg (W)) , FB(u)]
i€l
C inf sup,ezz min [ inf ,ezz max ( Fp(v—u+w)1- FB(W)) FB(u)]

iel

c FiQI(Ai:B) (U)
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Type II:

Th, a5 (V) = infyez2 max [supwezz min (TnieIAi(v —u+w), TB(W)) ,1—Tpg (u)]

= inf,c 2 max

SUP yez2 MIN (inf Ty,(v—u+w),Tg (W)) ,1—Tg (u)l

i€l

C inf,cz2 max [inf SUP yez2 MIN ( Ty,(v—u+w), TB(W)) ,1— TB(u)]
i€l

C infinf,cz2 max [ SUP yez2 MIN ( Ty,(v—u+w),Tg (W)) ,1—Tpg (u)]

i€l

S Tn s (V).
iel

In, a8 (V) = supyez2 min [infwezz max (InieIAi(v —u+w),l—-1Ig (w)) , IB(u)]

= SUP,cz2 MIN [infwezz max <inf L,(v—u+w)1- IB(W)>,IB(u)l

i€l

C Sup,czz min [inf inf,eczz max ( L,v—u+w)1l- IB(W)) I (u)]
i€l

C inf sup,eczz min [ inf ,ezz max ( L,v—u+w)1l- IB(W)),IB(u)]
i€l

Slnasp) (V).
iel

F,, a58(V) = supyezz min _infwezz max (FniEIAi(v —u+w),l—-Fg (W)) , FB(u)]

= SUp,c 2z min |inf,, c,2 max <inf Fp(v—u+w),1—Fg (W)) , FB(u)l
i iel

C sup,czz min linf inf ;2 max ( Fy(v—u+w)1—-Fpg (w)) ,Fg (u)]
L i€l

Cinf sup,eczzmin [ inf,czz max ( Fp(v—u+w)1- FB(W)) , Fg (u)]
i€l

c FiQI(Ai:B) (U)

Proposition 5.6: for any family (4;|i € I) in N'(Z?) and B € NV (Z?).

(T,u A;jB» I,u AjSB F,u Al-:B) = <T,u (A;*B)» I,U (4;3B) » F,U (Al-:B))-
i€l i€l i€l i€l i€l i€l
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We will prove the proposition for the two types of neutrosophic closing operation as
follows:

Type I:

Ty, a8 (V) = infyez2 max [supwezz min (TUieIAi(v —u+w),Tg (W)) ,1—Tg (u)A

= inf,cz2 max lsupwezz min <sup Ty,(v—u+w),Tg(w)),1—Tz(w)
i€l ]

i€l

2 inf,cz2 max [sup SUp,,cz2 Min ( Ty(v—u+w),Tg (W)) ,1—Tg(w)

2 inf inf,cz2 max [supwezz min ( Ty(v—u+w),Tg(w)),1— TB(u)-
iel ]

=2 T'U (A{‘B) (v)
iel

Ly, asp (V) = infyez2 max [supwezz min (IUieIAi(v —u+w),lp (W)) ,1—1g (u)]
= inf,cz2 max Isupwezz min (sup Li,(v—u+w),lg (W)) ,1—1Ip (u)l
i€l

2 inf,czz max [sup SUp,,ezz Min ( Li,(v—u+w), IB(W)) ,1— 1y (u)]
i€l

2 inf inf,cz2 max [Supwezz min ( L,(v—u+ W),IB(W)) ,1— IB(u)]
iel

21y V)
iel

Fy,, a38(V) = sup,ez2 min [infwezz max (FUieIAi(v —u+w),l1—-Fg (W)) , FB(u)]
= SUp,czz Min [infwezz max <sup Fp(v—u+w),1—Fg (W)) ) FB(u)l
i€l

2 sup,czz min [sup inf,czz max ( Fy(v—u+w)1- FB(W)) , Fg (u)]

i€l

2 SUp Supyezz Min [ inf,cz2 max ( Fp(v—u+w),1—Fg (w)) ,Fp (u)]
iel

2 FiLEJI(Ai:B) (U)

The proof type Il is similar to type I.
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5.3.4 Properties of the Neutrosophic Opening Operation:
The neutrosophic opening satisfies the following properties:

Proposition 5.7: for any family (4;|i € I) in N'(Z?) and B € N (Z?).

(T a;68 In a; 58 Fryea58) € (TirE\I(AiﬁB): Iirgl(AiS B) ;FigI(AiGB)>-

Proposition 5.8: for any family (4;|i € I) in N'(Z?) and B € N (Z?).
(TigIAiasJiglAiaB iFiLEJIAiT) B) 2 (TiLeJI(Aiﬁ B),IigI(AiﬁB) ,FigI(AibBﬁ-

Proof: Is similar to the procedure used to prove the propositions givenin 8 5.3.3.

5.4 Duality Theorem:

5.4.1 Duality Theorem of Neutrosophic Dilation:

let A and B are two neutrosophic sets. Neutrosophic erosion and dilation are dual

operations i.e. (A° @ B)® = (Tiac gpyc » Liac @myc » Fiac amyc)-

where for each u, ve Z%. We will prove the proposition for the two types of

neutrosophic dilation operation as follows:

Type I:

T(Ac@B)c(v) =1- T(Ac@B)(v)

1 — supyezz min(Tae(v + w), Tg(w)) = inf [1 — min(Tae(v + u), Tz (w))]

u€ez?
= infz[max(l —Tpae(v+u),1— TB(u))]
= inf [max(Ty(v + w),1 — Tz(w))] = Trop(V).

u€ez?
I(Ac@B)c(v) =1- I(Ac@B)(v)

= 1 — supyegn min(A°(v + u), Izg(w)) = inf [1 — min(Ipc(v + w), Iz(x))]

uez?

= inf [max(l —Iye(v+u),1 - IB(u))]

u€ez?

inf [max(ly(v +u),1 - Ig(w))] = l1op(V).

uez?
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Fagp W) = 1= Fagp) ()
=1- [infxeRn max(FAc(v +u),1—-Fp (u))]

= sup[1 — max(Fac(v + u),1 — Fg(u))]

U€ez?

sup [min(F4(v + u), Fg(w))] = Fyop ().

uez?
(T(AC aB)c lacamye Fa @B)C) = (Tugs: Lngs Fass)-
Type II:
Tacgpyc W) =1 —=T(acqp) (V)
=1 — supyez2 min(TAc(v +u), Ty (u))

= inf [1 — min(Tae(v + u), Tz(w)] = inf [max(1 — Tae(v +u), 1 — Tz(w))]

u€ez? UEZ?

= inf [max(Ty(v + w),1 — Tp(w))] = Taop(V).

UEZ?
I(Ac@B)c(v) =1- I(ACEEB)(U)'
=1 — [infyegn max(Ipc(v + u), 1 — Iz (w))]

= sup [1 - max(IAc(U + u): 1- IB(u))]

uez?

= sup[min(l4(v + u), [ (W))] = l1op(V).

UEZ?
F(Ac@B)c(v) =1- F(AC@B)(U)
=1 — [inf, e,z max(Fac(v + u), 1 — Fg(u))]

= sup[1 — max(Fac(v +u),1 — Fg(u))]

u€ez?

= sup[min(Fs(v + w), F5 ()] = Fag5(v).

uez?
(T(AC By lacamye  Frac @B)C) = (TAéB' IA@B'FAéB)'
5.4.2 Duality Theorem of Neutrosophic Closing:
let A and B are two neutrosophic sets, neutrosophic opening and neutrosophic closing

are also dual operation i.e.
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(A°3B)° = (Tacspyc, lacsgye, Facapye), where for all x € X. We will prove the
proposition for the two neutrosophic types follows:

Type I:
T(AC ;B)C(U) =1- TAC;B(U)

=1 — infyezz max[supegn min(Tye(v — u + w), Tzwy), 1 — Ts(w)]

= SUpyezz min [1 — sup min(Tpe(v — u + w), Tswy ), Ts (u)]

WEZ?2

= sup min[ianEZz max(l —Tye(v—u+w),1—- TB(W)), Ty (u)]
u€ez?

= sup min[infezz max(Ty(v —u +w), 1 — Ty ), Ts(w)] = Ty5 5 (V).
U€EZ

I(AC;B)C(U) =1- IAC;B(U)
=1 — infyezz max[supyezz min(lye(v — u + w), Bw)), 1 — Iz (w)]

= SUPyez2 MIN [1 — sup min(IAc(v —u+ W),B(W)),IB (u)]
WEZ?2

= sup min|inf,,ezz max(1 — Lie(v —u+w),1 — B(w)), [ W]
uez?

= sup min[infyezz max(L,(v —u +w),1 — B(w)), I (w)] = I45 (V).

Feacspye(v) =1 —Fpesp
=1 — Supyezz minfinf yezz max(Fae(v —u + w), 1 — Fg(w)), Fg(w)]
= infyezz max|1 — infezz max(Fue(v —u+w), 1 — Fg(w)),1 — Fz(w)]
= infyez2 max[sup,,ezz min(Fy(v —u + w), Fsw)), 1 — Fw)| = Fas5().
(Tacsye» lacspye, Facspye) = (Tas g lasp Fasp).
Type II:
Teac spyc(¥) = 1 = Tpcsp(v)

=1— infye, max[supwezz min(TAc v—u+w), TB(W)), 1-Tp (u)]
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= SUP,czz MIN [1 — sup min(Tpe(v — u + w), Tgewy ), T (u)]

WEZ?2

sup min[inf ,ezz max(1 — Tpe(v —u + w), 1 — Tzy), Te (W]

uez?

sup min[inf ,ez2 max(Ty(v —u + w), 1 — Tey ), Ts(w)] = Tys5(V).

u€ez?

lacsgye(¥) =1 = Ipesp(v)

=1 — supyezz minfinf,ezz max(lye(v —u +w), 1 — Ig(w)), Iz(w)]

= infyezz max|1 — infezz max(Ipe(v —u+w), 1 — I[z(w)), 1 — Iz(w)]

=infyez2 max[supwezz min(IA(v —u+ W),IB(W)), 1- IB(u)] = Iys5(v).
Facspgye(v) =1—Fyesp

=1 — supyezz minfinf,,ezz max(Fue(v —u +w), 1 — Fz(W)), Fz(w)]

= infyezz max|[1l — inf ez max(Fue(v —u +w), 1 — F5(w)), 1 — Fg(w)]

= infyez2 max[sup,,ezz min(Fy(v —u + w), FsW)), 1 — FW)| = Fus5().

(T(AC:B)C :I(ACiB)C :F(AC:B)C> = (TASBJIABB'FASB)

5.5 Neutrosophic Mathematical Morphological Filters:

When considering The differences of two or more of the basic neutrosophic
morphological operators, given in § 5.2, yield some remarkable filters; in this section
we will consider the boundary and Hat filters:

5.5.1 Some Type of Boundary Extraction Filter Using Neutrosophic Dilation and

Neutrosophic Erosion:

As the neutrosophic dilation thickens regions in the true level of image, and the
neutrosophic erosion shrinks them, the neutrosophic differences between the image and
either its neutrosophic dilation or erosion may emphasize the boundaries between
regions included in the image. Therefore, several boundary filters may be obtained as

follows:
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5.5.1.1 Neutrosophic Gradient Boundary:

To commence, we will investigate the neutrosophic gradient filter which is the mean

value of the three components of the neutrosophic difference between the neutrosophic

dilation of some image and its neutrosophic erosion. We get the neutrosophic gradient

of the image by applying the mean of these boundaries. If the structure element is

relatively small, the homogeneous areas will not be affected by neutrosophic dilation

and neutrosophic erosion, then the subtraction tends to eliminate them. The effect of

neutrosophic morphological gradient operation is shown in Fig. 5.9 and to be defined in

two different types as follows:

Type I:

_ 1\ [min (TA@B(U), 1- TAéB(v)),min (I/@B W), 1-1I,55 (v)),
gradient — (g) * .

max (F/@B(v), 1-— FA-éB(v))
In the following figure (fig.5.9 (1)), we present the results obtained when applying

neutrosophic gradient boundary filter on some grayscale image.

b)
Fig. 5.9(1): Applying the neutrosophic gradient boundary: a) Original image
b) Neutrosophic gradient boundary filtered

Type II:

d

gradient =

1/3) min (TA;.;B(U), 1- TA—éB(v)),max (IA@B (v),1- TAévB(v)),
max (F/@B(v), 1-T,5s (v)) .

In the following figure (fig.5.10 (1I)), we present the results obtained when applying
neutrosophic gradient boundary filter on some grayscale image.
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a) b)
Fig.5.10 (11): Applying the neutrosophic gradient boundary: a) original image
b) Neutrosophic gradient boundary filtered

5.5.1.2 Neutrosophic External Boundary:

In this filter, a neutrosophic dilation is firstly applied to the neutrosophic image A by
some neutrosophic structure element B; hence, the output filtered image will be the
neutrosophic difference between neutrosophic dilated image and the neutrosophic image
A. That is, the neutrosophic external boundary of A is to be defined in two different
types as follows:

Type I:

min (TA@B(U), 1-— TA(U)),min (IA@;B(U), 1- IA(U));
max (FA@B (v)) ,1—=F,(v) .

In the following figure (fig.5.11 (1)), we present the results obtained when applying

5ext = (1/3) * [

neutrosophic external boundary filter on some grayscale image.

a) b)
Fig.5.11(1): Applying the neutrosophic external boundary: a) original image
b) Neutrosophic external boundary filtered image

Type II:
min (TA@B (v),1- TA(v)) , max (I,@B (v),1 - IA(v)),

éex = 1 3 *
e = (1/3) max(FAggB(v)):l_FA(v)
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In the following figure (fig.5.12 (I1)), we present the results obtained when applying

neutrosophic external boundary filter on some grayscale image.

a) b)
Fig.5.12(11): Applying the neutrosophic external boundary: a) Original image
b) Neutrosophic external boundary filtered image

5.5.1.3 Neutrosophic Internal Boundary:
The main step of the neutrosophic internal boundary filter, is to get the neutrosophic
erosion of the neutrosophic image, hence, the output filtered image will be the
neutrosophic difference between the original image in neutrosophic domain and the
neutrosophic eroded image that is the neutrosophic internal boundary of the
neutrosophic image A is to be defined in two different types as follows:
Type I:

B min (TA(v), 1- (TAéB(v))),min (IA(v), 1-1I,58 (v)),

Oine = (1/3) * .

max (FA(v), 1-— FAévB(v))

In the following figure (fig.5.13 (l)), we present the results obtained when applying

neutrosophic internal boundary filter on some grayscale image.

a) b)
Fig. 5.13(1): Applying the neutrosophic internal boundary: a) Original image
b) Neutrosophic internal boundary filtered image
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Type II:
min (TA(U), 1-— (TA’e“B (v))),min (IA(U). 1-1I,55 (17)),

5int = (1/3) *
max (Fy(v), 1 — FAé—B(v))

a)
Fig.5.14(11): Applying the neutrosophic internal boundary: a) original image
b) Neutrosophic internal boundary filtered image

5.5.1.4 Neutrosophic Outline Boundary:

The main step of the neutrosophic outline boundary filter, is to get the complement of
the neutrosophic erosion of the neutrosophic image, hence, the output filtered image
will be the neutrosophic difference between the original image in neutrosophic domain
and the neutrosophic eroded image that is the neutrosophic outline boundary of the
neutrosophic image A is to be defined as follows: 0,,ime (A) = (0,4 U 0343) N A?,
where; 3, (AY) = co(A* © BY) n A,  95(43) = co(43 @ B3) u 43. In the following
figure (fig.5.15), we present the results obtained when applying neutrosophic outline

boundary filter on some grayscale image.

a) b) c)
Fig. 5.15: Neutrosophic outline boundary: a) Original image
b) Neutrosophic outline Boundary filtered image with SE(3)
¢) Neutrosophic outline Boundary filtered image with SE (7)
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5.5.2 Some Combination Neutrosophic External and Internal Boundary Filters:

1
1 Osup = (5) * [Tnax + Imax + Fminl, where;

Tnax = max(aext(T): aint(T))’ Imax = max(aext(l): aint(l)),
Fin = min(aext(F)’aint(F))-
In the following figure (fig.5.16), we present the results obtained when applying

neutrosophic sup. boundary filter on some grayscale image.

c)
Fig.5.16: Neutrosophic sup. boundary: a) original image
b) Neutrosophic sup. Boundary filtered image with SE(5)
c) Neutrosophic sup Boundary filtered image SE (7)

2. 0graa = (1/3) * [Toum + Lsum + Feum], Where;
Tsum = Oext(T) + 01t (T), Foyum = 0ext(F) + 0pne (F),
Isum = Oext (1) + Opne (I).
In the following figure (fig.5.17), we present the results obtained when applying

neutrosophic grad boundary filter on some grayscale image.

c)
Fig. 5.17: Neutrosophic grad boundary: a)Original image
b) Neutrosophic grad boundary filtered image with SE(5)
c) Neutrosophic grad boundary filtered image with SE (7)
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5.5.4 Neutrosophic Hat Filters:

The main function of the hat filters is to extract small elements and details from given
image. In this section we will introduce two forms of the neutrosophic hat filters;
namely, the neutrosophic top-hat and the neutrosophic bottom-hat filters. In the classical
mathematical morphology, the top-hat filters plays a very important rule in several tasks
of processing disciplines; such as: feature extraction, back ground equalization, feature
extraction, background equalization, image enhancement,...etc.

5.5.4.1 Neutrosophic Top-hat Filter:

In the classical mathematical morphology, the top-hat filters plays a very important rule
in several tasks of processing disciplines; such as: feature extraction, back ground
equalization, feature extraction, background equalization, image enhancement,...etc. In
this section we will generalize the concept of the top-hat filter using the neutrosophy
concepts; that is the neutrosophic top-hat filter is to be defined as the neutrosophic
difference between the neutrosophic image and its neutrosophic opening image. The
neutrosophic top-hat filter of the neutrosophic image A is to be defined in two different
types as follows:

Type I:

Topng = (1/3) * [min(TA(v), 1= Tyo(v)), min(1,(v), 1 — Liss(v)), |

max(F,(v),1 — Fu5(v))

In the following figure (fig.5.18 (1) (1)), we present the results obtained when applying

neutrosophic top-hat filter boundary filter on some grayscale image.

a) b)
Fig.5.18(1): Applying the neutrosophic top-hat filter: a)Original image
b) Neutrosophic top-hat boundary filtered in type I

( ]
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Type Il:

min(Ty(v), 1 — Tasp (v)), max(1y(v), 1 — Iz (v)),

Toppae = (1/3) * max(FA(v), 1—Fypp (v))

a) b)
Fig.5.19(11): Applying the neutrosophic top-hat filter: a)Original image
b) Neutrosophic top-hat boundary filtered in type 11

5.5.3.2 Neutrosophic Bottom-hat Filter:

In the classical mathematical morphology, the bottom-hat filters plays a very important
rule in several tasks of processing disciplines; such as: feature extraction, back ground
equalization, feature extraction, background equalization, image enhancement,...etc. In
this section we will generalize the concept of the bottom-hat filter using the neutrosophy
concepts; that is the neutrosophic bottom-hat filter is to be defined as the neutrosophic
difference between neutrosophic closing and image the neutrosophic image. The
neutrosophic bottom-hat filter of the neutrosophic image A is to be defined as follows:
in two different types as follows:

Type I:

min(TA;B(v), 1- TA(U)),min(lA:B(V)» 1- IA(V))'
max(FA(v), 1 — Fap (V)) .

In the following figure (fig.5.20 (1) (I1)), we present the results obtained when applying

Bottomy,,; = (1/3) *

neutrosophic bottom-hat filter Boundary filter on some grayscale image.
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b)
Fig.5.20(1): Applying the neutrosophic bottom-hat filter: a) Original image
b) Neutrosophic bottom-hat boundary filtered in type Il

Type Il:
min(Tp (@), 1 — T4(v)), min(Iup(v), 1 — I,(v)),

BOttOmhat = (1/3) * mCIX(FA(v); 1-— FA;B (17))

a) b)
Fig.5.21 (I1): Applying the neutrosophic bottom-hat filter: a) Original image
b) Neutrosophic bottom-hat boundary filtered in type Il

5.6 Conclusion:

In this paper, we have proposed a new technique for analyzing and processing images;
either grayscale or binary. The technique is a generalization for the fuzzy mathematical
morphology; it handles the image in the neutrosophic domain.in such domain the image
analyzed into three different layers; the first layer describes how much each pixel
belongs to the white set, the third layer describes how much each pixel belongs to the
non-white (black) set, while the second layer describes how much the pixel is neither
white nor black. The properties of each layer were used to define the basic operations
for what we called "Neutrosophic Mathematical Morphology"”. mainly, we introduced
four basic operations; namely, the neutrosophic dilation, the neutrosophic erosion, the
neutrosophic closing and the neutrosophic opening. The algebraic properties of the

proposed operation were discussed. Furthermore, we introduced some advanced
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neutrosophic filters using different combinations of the basic operators. Hence, we
experimented the new introduced operators and filters using "Lena™ image to investigate

the effect of each over the image.
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Chapter 6
Neutrosophic Morphology Threshold

6.1 Introduction:

An important technique in image segmentation, the image thresholding is also an
important step towards pattern detection and recognition, which determines the quality
of many image analysis tasks. It is used to extract the meaningful objects from the
image, Thresholding is one of the most simplest and pre-processing step for image
applications. Basically, the classical thresholding geminates some binary image in
which the pixels with zero value belonging to the background while the pixels
belonging to the foreground have the value 1. The process of partitioning the image into
mutually exclusive regions (background and foreground) needs to choose an appropriate
gray level in the original image to be used for classifying the pixels wither it is inside or
outside some specific range; such process is not easy. A number of excellent
investigations on various thresholding techniques have been reported in the literature;
for instance, Kapur et al [38], Li and Lee [45] used the concept of entropy; while Brink
and Pendcock [13] Abutaleb [1] used two-dimensional entropy to threshold an image.
Otsu in [56], suggested the threshold detection by maximizing the class separability.
Whatmough [82] used the exponential hull method, which is a variation of convex hull
for concavity analysis. Kittler and Illingworth [41] minimized the classification error
probability based on the condition that a mixture of Gaussian densities governs the
histograms. Several researchers have investigated fuzzy based thresholding techniques.
Pal and Rosenfeld [57] optimized the fuzzy compactness using the Zadeh S-function for
the membership evaluation for image thresholding. Huang and Wang [32] used
Shannon and Yagers measure for fuzzy thresholding. Ramar et al. [59] used the neural

network for selecting the best threshold using various fuzzy measures. Fuzzy
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homogeneity vectors and fuzzy co-occurrence matrix was reported by Cheng and Chen
[16] for image thresholding. Cheng et al. [18] integrated neutrosophic set with a
modified fuzzy c-means algorithm for segmentation. Some mean operation was utilized
to eliminate the indeterminacy [41]. An improved clustering method IFCM was
presented using the neutrosophic values after applying a-mean operation. Hanbay and
Talu [27] proposed a thresholding algorithm for synthetic aperture radar image using
neutrosophic sets. As a framework to deal with uncertain cases, neutrosophic sets can be
used to describe the image having uncertain information and has been applied to image
processing techniques, such as image thresholding, de noising and segmentation.

In this chapter, a new image threshold technique based on neutrosophic sets is
presented; the chapter is organized as follows: In 82 definitions of thresholding, in §2
the theory of neutrosophy whereas, the concepts of fuzzy morphology are introduced in
83..

6.2 Image Thresholding

The classical thresholding creates binary images from grey-level ones by turning all
pixels below some threshold to 0" and all pixels about that threshold to "1". Binary
images are popular, but images are normally acquired as grayscale images. ldeally,
objects in the image should appear consistently brighter (or darker) than the
background. Under such conditions, which transform an image into a binary image (first
choosing a grey level (Thr) in the original image) by transforming each pixel according
to whether it is inside or outside a specified range. If g(x,y) is a threshold version of

f(x,y) at some global threshold (T hr), it can be defined as [55],

if f(x,y) <Thr

g(x’y):{1 if f(x,y)=Thr (6.1)

Thresholding operation is defined as: Thr = Thr[x,y, p(x,y), f (x, y)]. In this equation,

Thr stands for the threshold value; f(x,y) is the gray level of point (x,y) and p(x,y)
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denotes some local properties of this point, such as the average gray level of a
neighborhood. Based on this, there are two types of image thresholding techniques
available: global and local.

Global thresholding: When Thr depends only on f(x,y) (in other words, only on
gray-level values) and the value of Thr solely relates to the character of pixels, this
thresholding technique is called global thresholding. A histogram of the input image
intensity should reveal two peaks, corresponding respectively to the signals from the
background and the object. (Note: It is a core assumption of the current version of
the 3DMA software that the input data set consists of 2 phases, a phase comprising the
object of interest and a single other background phase). Global thresholding consists of
setting an intensity value (threshold) such that all pixels having intensity value below
the threshold belong to one phase, the remainer belong to the other. Global thresholding
is as good as the degree of intensity separation between the two peaks in the image. It is
an unsophisticated segmentation choice. The global thresholding option
in 3DMA allows the user to pick a single global threshold for a 3D image or separate
thresholds for each 2D slice in the image. Some experimental options has also been
provided to provide automatic choice of threshold by performing a binormal fit to the
two-peak histogram and setting a threshold at the inerpeak minimum as determined by
the normal fits. The thresholding option outputs the segmented image slice wise, in a
packed bit (0,1) format. All voxels having intensity below the threshold value are set to
"0"; the rest are set to "1".

Local thresholding: If threshold Thr depends on f(x,y) and p(x, ), this thresholding
is called local thresholding. This method divides an original image into several sub
regions, and chooses various thresholds T for each sub region reasonably [83, 84].
Local thresholding method is superior to the global ones for poorly and unevenly

illuminated images. Niblack proposes a local thresholding technique based on the local
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mean and local standard deviation [55]. The drawback of this algorithm is to determine
the size of the neighborhood that is set by the user and it depends on the information
available in the images. The window size should be small enough to preserve the local
details and at the same time, it should be large enough to suppress noise. One of the
well-known local thresholding methods is to fit a plane or biquadratic function to match
the background gray-level variations [34] for unevenly illuminated images. A more
advanced way is to generate a threshold surface where the threshold level changes
dynamically over the image pixel to pixel [19]. Milgram et al. use gradient or edge
information to segment images and assumed that different objects may have different
thresholds, but each object has a fixed threshold with respect to its background [50].
Otsu method [56]: it is one of the most successful methods for image thresholding
because of its simple calculation. Otsu is an automatic threshold selection region based
segmentation method. It is a type of global thresholding in which it depend only on
some gray value of the image. Otsu method was proposed by Scholar Otsu in 1979,
which is widely used because it is simple and effective [50]. The Otsu method requires
computing a gray-level histogram before running. However, because of the one-
dimensional which only consider the gray-level information, it does not give better
segmentation result. So, for that two dimensional Otsu algorithms was proposed which
works on both gray-level threshold of each pixel as well as its Spatial correlation
information within the neighborhood. So Otsu algorithm can obtain satisfactory
segmentation results when it is applied to the noisy images [15].

6.3 Neutrosophic Image Entropy:

For a gray image, the entropy is utilized to evaluate the distribution of the gray levels. If
the entropy is maximum, the intensities have equal probability. If the entropy is small,

the intensity distribution is non-uniform. Neutrosophic entropy of an image is defined as
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the summation of the entropies of three subsets T, I and F which is employed to
evaluate the distribution of the elements in neutrosophic domain [25]:
EnNS == EnT + En, + EnF. (62)

max(T)

Bnp== ) Pr(ij) nPr(i)),

i,j=min(T)

max(I)

Bny== ) PG InPG),

i,j=min(I)

max(F)

Bnp=— > Pe(i)) nPe(i.)).

i,j=min(F)

Where; Eny, En; and Eng are the entropies of sets T, | and F respectively. P (i, j),
P,(i,j) and Pg(i, j)are the probabilities of elements in T, | and F respectively, whose
values equal to i.
6.4 The Proposed Algorithm:
In this section, we suggest some algorithm for image thresholding as follows:

A. Transform input image into Neutrosophic Domain:
A Neutrosophic image Pys is represented by three memberships sets T, | and F. A pixel
P in the image is described as P(t,i,f) and belongs to bright pixel set, W in the
following way: it is t% true, i% indeterminate, and f% false as bright pixel, where t
variesin T, i variesin I, and f variesinF.

B. Comparing Neutrosophic Image with Threshold:
If we directly fed the input image to the neutrosophic domain, then the image obtained
are not clear. There is an uncertainty in the assignment of pixels as a pixel may belong

to more than one pixel. For each pixels, indeterminacy value is generally greater.
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C. Neutrosophic Image Entropy:

The entropy is computed for the image in its three layers, the truthness, the
indeterminacy, and falseness. It evaluates the distribution of the intensity of each pixel
in each layer.

D. Apply Mathematical Morphology on the Neutrosophic Image:
After transforming the image into a neutrosophic image, we experimenting with the
basic morphological operations (neutrosophic dilation, neutrosophic erosion,
neutrosophic opening, neutrosophic closing); results showed that we get better
thresholding when using the operation.

E. Neutrosophic Morphologic Image Entropy:
In this step we compute the entropy for each component of the image resulted after
applying the neutrosophic morphological opening operation.

F. The Neutrosophic Thresholding Value:
Now, we use the entropy computed in the previous step to deduce a neutrosophic value
for thresholding the neutrosophic image.

G. The Neutrosophic Image Segmentation:
Finally, we use the deduced neutrosophic threshold value in order to segment the image
under consideration this proposed algorithm may be explained by the following steps:
6.4.1 The Proposed Algorithm Steps:
Step 1: Convert the image to Neutrosophic Domain using equation 2.1.
Step 2: Compute the entropy on neutrosophic image using equation 6.2.
Step 3: Apply morphology operation on the neutrosophic image.

Step 4: Compute the neutrosophic entropy for the output of step 3, using equation 6.2.

Eny(i+1)—Eng(i)

Step 5: Compute the threshold value; Thr = .
Eng(i)
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Step 6: Segment the image according to the value induced in step 5 by OTSU's method

[56]. The flowchart of the proposed algorithm is shown in Fig. 6.1.

Transform the image into NS
domain

Compute the entropy for
neutrosophic components

l

Apply morphological
operators

l

Compute the entropy for the
component resulted from the
morphology step

!

_ Enj(i+1)—Ele(i)
o En;(i)

!

Segment the image
according to the result

Thr

Fig. 6.1: flowchart of the proposed algorithm
6.5 Experiments:
In this chapter, We use several images for our experimental work; the images "Lena,

Camera man, Rice and Coin". The steps of our experiment is as follows:
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First step is to transform the image from the spatial domain into the neutrosophic
domain. The results of this step for each image are showen in the following figure

(fig.6.2):

Fig.6.2: a) gray image b)Neutrosophic image (T, 1, ,F4) respectively

Second step is to apply the neutrosophic morphology operation for the neutrosophic

components

- Using neutrosophic opening operation the result are shown in the following

figure (fig.6.3)
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Fig.6.3: a) gray image b) Neutrosophic opening image (Tasg , Ias5, Fasg) respectively

Third step: compute Threshold value by using the relation,
_ Enj(i+1)—Enj(i)

Thr = En;(i)

The following table show the thresholding value for each image.

Image
Thr Lenna Camera man Rice Coin
Threshold Value 0.0301 | 0.0332 0.0386 0.0338
(OTSU)
Threshold Value 0.033 | 0.0403 0.0330 0.0464
(NMM)

Table 1: the thresholding values for the images under consideration
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Forth step apply OTSU's method [56], using Thr value determined in the previous

step. The following figure (fig.6.4) shows the results obtained.

Fig.6.4: a) gray image b) OTSU's method image threshold
¢)Neutrosophic morphological method image threshold

6.6 Neutrosophic Morphological Method Image Threshold:
To measure the accuracy of our algorithm, we compare between the misclassified pixels
between the ideally segmented image and actually segmented image by in our

experiments. The quality of the resulting images can be described in terms of signal to
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noise ratio (SNR):

Xrco Leso 12 (r.c)

271-‘1;01 Zzl/:_ol(l(r’ C) - In(r’ C))Z .

SNR ES 10 10g10

Where; I(r,c) and I,(r,c) represent the intensities of pixel (r,c) in the ideally
segmented and actually segmented images, respectively. The following table shows the

SNR values computed for each image.

Image
SNR Lenna Camera man Rice Coin
SNR (OTSU) 45.1762 | 46.559 45.9378 46.3514
SNR (NMM) 48.1308 | 48.1308 48.13 48.1307

Table 6.2: the SNR values for the images under consideration

Finally, we experimented our algorithm on several images in "tif" format. The images
under consideration with their neutrosophic components were given in (fig.6.2).
namely, the images are, "Lena, Camera man, Rice and Coin". In the fig.6.4, the results
when applying the neutrosophic opening operation followed by calculating the entropy
to produce the thresholding value were given. From the resulting threshold images, it
has been observed that results using the neutrosophic operations measures gives good
results when compared to gray thresh (Otsu's method).

6.7 Conclusion and Discussion:

This chapter proposes an image segmentation method using neutrosophic mathematical
morphology. An algorithm for image thresholding has been proposed. Finally, the
image in neutrosophic domain is segmented. The experimental results show that the

proposed method cannot only perform better on synthesis images.

"This chapter was carried out in collaboration between (Dr. Hewayda ElGhawalby, Dr. Wafaa R.
Shabana and Eman M. El-Nakeeb)". (
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Chapter 7

Conclusion and Future Work

This chapter concludes thesis activities and results presented through the thesis and
presenting future work can be conducted. Thesis introduced the overview of a new
technique for analyzing and processing images; either binary or grayscale. The
technique is a generalization for the fuzzy mathematical morphology; it handles the
image in the neutrosophic domain. in such domain the image analyzed into three
different layers; the first layer describes how much each pixel belongs to the white set,
the third layer describes how much each pixel belongs to the non-white (black) set,
while the second layer describes how much the pixel is neither white nor black. The
properties of each layer were used to define the basic operations for what we called
"Neutrosophic Mathematical Morphology”. mainly, we introduced four basic
operations; namely, the neutrosophic dilation, the neutrosophic erosion, the
neutrosophic closing and the neutrosophic opening. The algebraic properties of the
proposed operation were discussed. Furthermore, we introduced some advanced
neutrosophic filters using different combinations of the basic operators. Some promising
experimental results were presented to visualize the effect of the new introduced
operators and filters on the image in the neutrosophic domain instead of the spatial
domain. We used "Lena™ and "duck” images to investigate the effect of each of the new
operators over the image. A literature review for the types of sets was presented in
chapter 2, as well as a brief revision for the basic definitions and operations of crisp
sets, fuzzy sets and neutrosophic sets and their properties.

In chapter 3, we discussed the theory of both the classical and fuzzy mathematical
morphology and their various operators for binary and grayscale images. Also some

algebraic properties of the basic operators dilation and erosion were discussed. Besides
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the two primary operations of erosion and dilation, there are two secondary operations
that play key roles in morphological image processing, these being opening and its dual,
closing. Which possesses more geometric formulation in terms of the structuring
element.

In chapter 4, we established a foundation for what we called, "Neutrosophic Crisp
Mathematical Morphology". It is a new approach to mathematical morphology based on
neutrosophic set theory. In addition, we were able to prove that neutrosophic
morphological operations inherited some properties and restrictions from fuzzy
mathematical morphology. Furthermore, we developed three neutrosophic crisp
morphological filters; namely, the neutrosophic crisp external boundary, the
neutrosophic crisp internal boundary, the neutrosophic crisp gradient boundary, the
neutrosophic crisp Top-hat and the neutrosophic crisp Bottom-hat filters.

Chapter 5 generalized the concepts of the classical mathematical morphology into the
neutrosophic domain. For this purpose, we developed serval neutrosophic
morphological operators inherit properties and restrictions of fuzzy mathematical
morphology; namely, the neutrosophic dilation, the neutrosophic erosion, the
neutrosophic opening and the neutrosophic closing operators. These operators were
presented in two different types, each type is determined according to the behavior of
the second component of the triple structure of the operator. Furthermore, we developed
three neutrosophic morphological filters; namely, the neutrosophic external boundary,
the neutrosophic internal boundary, the neutrosophic gradient boundary, the
neutrosophic Top-hat and the neutrosophic Bottom-hat filters. Some promising
experimental results were presented to visualize the effect of the new introduced
operators and filters on the image in the neutrosophic domain instead of the spatial

domain.
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Finally, in chapter 6 we applied the neutrosophic mathematical morphological operators
proposed in this thesis to one of the most important image’s processing application,
namely, the image thresholding. The chapter also gave a promising results showing an
improvement comparing with the exciting thresholding techniques.

In future, we plan to apply the introduced concepts to more image processing
applications. For instance, Image Smoothing, Enhancement, Retrieval. We also plan to

examine the neutrosophic morphological operators with medical imaging.
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