Interval-Valued Neutrosophic Oversets, Neutrosophic Undersets, and Neutrosophic Offsets

Florentin Smarandache
University of New Mexico, Mathematics & Science Department, 705 Gurley Ave., Gallup, NM 87301, USA
(smarand@unm.edu)

Abstract—We have proposed since 1995 the existence of degrees of membership of an element with respect to a neutrosophic set to also be partially or totally above 1 (over-membership), and partially or totally below 0 (under-membership) in order to better describe our world problems [published in 2007].

Keywords—interval neutrosophic overset, interval neutrosophic underset, interval neutrosophic offset, interval neutrosophic overlogic, interval neutrosophic underlogic, interval neutrosophic offlogic, interval neutrosophic overprobability, interval neutrosophic underprobability, interval neutrosophic offprobability, interval overmembership (interval membership degree partially or totally above 1, interval undermembership (interval membership degree partially or totally below 0), interval offsetmembership (interval membership degree off the interval [0, 1]).

I. INTRODUCTION

"Neutrosophic" means based on three components \(T \) (truth-membership), \(I \) (indeterminacy), and \(F \) (falsehood-membership). And "over" means above 1, "under" means below 0, while "offset" means behind/beside the set on both sides of the interval [0, 1], over and under, more and less, supra and below, out of, off the set. Similarly, for "offlogic", "offmembership", "offprobability", "offsetistics" etc.

It is like a pot with boiling liquid, on a gas stove, when the liquid swells up and leaks out of pot. The pot (the interval [0, 1]) can no longer contain all liquid (i.e., all neutrosophic truth/indeterminate/falsehood values), and therefore some of them fall out of the pot (i.e., one gets neutrosophic truth/indeterminate/falsehood values which are > 1), or the pot cracks on the bottom and the liquid pours down (i.e., one gets neutrosophic truth/indeterminate/falsehood values which are < 0).

Mathematically, they mean getting values off the interval [0, 1].

The American aphorism “think outside the box” has a perfect resonance to the neutrosophic offset, where the box is the interval [0, 1], yet values outside of this interval are permitted.

II. EXAMPLE OF MEMBERSHIP ABOVE 1 AND MEMBERSHIP BELOW 0

Let’s consider a spy agency \(S = \{S_1, S_2, \ldots, S_{100}\} \) of a country Atara against its enemy country Batara. Each agent \(S_j \), \(j \in \{1, 2, \ldots, 100\} \), was required last week to accomplish 5 missions, which represent the full-time contribution/membership.

Last week agent \(S_{27} \) has successfully accomplished his 5 missions, so his membership was \(T(S_{27}) = 5/5 = 1 = 100\% \) (full-time membership).

Agent \(S_{32} \) has accomplished only 3 missions, so his membership is \(T(S_{32}) = 3/5 = 0.6 = 60\% \) (part-time membership).

Agent \(S_{41} \) was absent, without pay, due to his health problems; thus \(T(S_{41}) = 0/5 = 0 = 0\% \) (null-membership).

Agent \(A_{33} \) has successfully accomplished his 5 required missions, plus an extra mission of another agent that was absent due to sickness, therefore \(T(S_{33}) = (5+1)/5 = 6/5 = 1.2 > 1 \) (therefore, he has membership above 1, called over-membership).

Yet, agent \(S_{75} \) is a double-agent, and he leaks highly confidential information about country Atara to the enemy country Batara, while simultaneously providing misleading information to the country Atara about the enemy country Batara. Therefore \(A_{75} \) is a negative agent with respect to his country Atara, since he produces damage to Atara, he was estimated to having intentionally done wrongly all his 5 missions, in addition of compromising a mission of another agent of country Atara, thus his membership \(T(S_{75}) = -(5+1)/5 = -6/5 = -1.2 < 0 \) (therefore, he has a membership below 0, called under-membership).

III. DEFINITION OF INTERVAL-VALUED NEUTROSOPHIC OVERSET

Let \(U \) be a universe of discourse and the neutrosophic set \(A_1 \subseteq U \). Let \(T(x), I(x), F(x) \) be the functions that describe the degrees of membership, indeterminate-membership, and non-membership respectively, of a generic element \(x \in U \), with respect to the neutrosophic set \(A_1 \):

\[
T(x), I(x), F(x) : U \rightarrow P([0, \Omega])
\]
where $0 < 1 < \Omega$, and Ω is called over limit,

$$T(x), I(x), F(x) \subseteq [0, \Omega], \text{ and } P([0, \Omega])$$

is the set of all subsets of $[0, \Omega]$.

An Interval-Value Neu tro sophic Overset A_1 is de fined as:

$A_1 = \{(x, <T(x), I(x), F(x)>), x \in U\}$,

such that there exists at least one element in A_1 that has at least one neutrosophic component that is partially or totally above 1, and no element has neutrosophic components that are partially or totally below 0.

For example: $A_1 = \{(x_1, (<1, 1.4>, 0.1, 0.2>), (x_2, <0.2, [0.9, 1.1], 0.2>))$, since $T(x_1) = (1, 1.4)$ is totally above 1, $I(x_2) = [0.9, 1.1]$ is partially above 1, and no neutrosophic component is partially or totally below 0.

IV. DEFINITION OF INTERVAL-VALUED NEUTROSOPHIC UNDERSET

Let U be a universe of discourse and the neutrosophic set $A_2 \subseteq U$. Let $T(x), I(x), F(x)$ be the functions that describe the degrees of membership, indeterminate-membership, and nonmembership respectively, of a generic element $x \in U$, with respect to the neutrosophic set A_2:

$$T(x), I(x), F(x) : U \to [\Psi, 1],$$

where $\Psi < 0 < 1$, and Ψ is called under limit,

$$T(x), I(x), F(x) \subseteq [\Psi, 1], \text{ and } P([\Psi, 1])$$

is the set of all subsets of $[\Psi, 1]$.

An Interval-Value Neu tro sophic Underset A_2 is defined as:

$A_2 = \{(x, <T(x), I(x), F(x)>), x \in U\}$,

Such that there exists at least one element in A_2 that has at least one neutrosophic component that is partially or totally below 0, and no element has neutrosophic components that are partially or totally above 1.

For example: $A_2 = \{(x_1, <-0.5, -0.4>, 0.6, 0.3>), (x_2, <0.2, 0.5, [-0.2, 0.2]>\}$, since $T(x_1) = (-0.5, -0.4)$ is totally below 0, $F(x_2) = [-0.2, 0.2]$ is partially below 0, and no neutrosophic component is partially or totally above 1.

V. DEFINITION OF INTERVAL-VALUED NEUTROSOPHIC OFFSET

Let U be a universe of discourse and the neutrosophic set $A_3 \subseteq U$. Let $T(x), I(x), F(x)$ be the functions that describe the degrees of membership, indeterminate-membership, and nonmembership respectively, of a generic element $x \in U$, with respect to the set A_3:

$$T(x), I(x), F(x) : U \to P([\Psi, \Omega]),$$

where $\Psi < 0 < 1 < \Omega$, and Ψ is called under limit, while Ω is called over limit,

$$T(x), I(x), F(x) \subseteq [\Psi, \Omega], \text{ and } P([\Psi, \Omega])$$

is the set of all subsets of $[\Psi, \Omega]$.

An Interval-Value Neu tro sophic Offset A_3 is defined as:

$A_3 = \{(x, <T(x), I(x), F(x)>), x \in U\}$,

such that there exist some elements in A_3 that have at least one neutrosophic component that is partially or totally above 1, and at least another neutrosophic component that is partially or totally below 0.

For examples: $A_3 = \{(x_1, <[1, 1.2], 0.4, 0.1>), (x_2, <0.2, 0.3, (-0.7, -0.3)>\}$, since $T(x_1) = [1, 1.2]$ that is totally above 1, and $F(x_2) = (-0.7, -0.3)$ that is totally below 0.

Also $A_3 = \{(a, <0.3, [0.1, 0.1], [1.05, 1.10]>), \text{ since } I(a) = [-0.1, 0.1] \text{ that is partially below 0, and } F(a) = [1.05, 1.10] \text{ that is totally above 1.}

VI. INTERVAL-VALUED NEUTROSOPHIC OVERSET / UNDerset / Offset OPERATORS

Let U be a universe of discourse and $A = \{(x, <T_a(x), I_a(x), F_a(x)>), x \in U\}$ and $B = \{(x, <T_b(x), I_b(x), F_b(x)>), x \in U\}$ be two interval-valued neutrosophic oversets / undersets / offsets.

$$T_a(x), I_a(x), F_a(x), T_b(x), I_b(x), F_b(x) : U \to P([\Psi, \Omega]),$$

where $P([\Psi, \Omega])$ means the set of all subsets of $[\Psi, \Omega]$.

and $T_a(x), I_a(x), F_a(x), T_b(x), I_b(x), F_b(x) \subseteq [\Psi, \Omega]$, with $\Psi \leq 0 < 1 \leq \Omega$, and Ψ is called under limit, while Ω is called over limit.

We take the inequality sign \leq instead of $<$ on both extremes, in order to comprise all three cases: over set (when $\Psi = 0$, and $1 < \Omega$), underset (when $\Psi < 0$, and $1 = \Omega$), and offset (when $\Psi < 0$, and $1 < \Omega$).

A. INTERVAL-VALUED NEUTROSOPHIC OVERSET / UNDerset / Offset Union

Then $A \cup B = \{(x, <\max\{\inf(T_a(x)), \inf(T_b(x))\}, \max\{\sup(T_a(x)), \sup(T_b(x))\}), \\\\}$.\min\{\inf(I_a(x)), \inf(I_b(x))\}, \min\{\sup(I_a(x)), \sup(I_b(x))\})\},.\\min\{\inf(F_a(x)), \inf(F_b(x))\}, \min\{\sup(F_a(x)), \sup(F_b(x))\})\},.$
B. Interval-Valued Neutrosophic Overset / Underset / Offset Intersection

Then $A \cap B = \{(x, <\min\{I_A(x), I_B(x)\}, \min\{T_A(x), T_B(x)\},
\sup\{T_A(x), T_B(x)\})],
\max\{I_A(x), I_B(x)\}], \max\{\sup(I_A(x)), \sup(I_B(x))\}],
\max\{\inf(F_A(x)), \inf(F_B(x))\}], \max\{\sup(F_A(x)), \sup(F_B(x))\} >, x \in U\}.

C. Interval-Valued Neutrosophic Overset / Underset / Offset Complement

The complement of the neutrosophic set A is

$C(A) = \{(x, >F_A(x), [\Psi + \Omega - \sup\{I_A(x)\}, \Psi + \Omega - \inf\{I_A(x)\}],
T_A(x)>), x \in U\}.

VII. CONCLUSION

After designing the neutrosophic operators for single-valued neutrosophic overset/underset/offset, we extended them to interval-valued neutrosophic overset/underset/offset operators. We also presented another example of membership above 1 and membership below 0.

Of course, in many real world problems the neutrosophic union, neutrosophic intersection, and neutrosophic complement for interval-valued neutrosophic overset/underset/offset can be used. Future research will be focused on practical applications.

REFERENCES

[2] Neutrosophy at the University of New Mexico’s website: http://fs.gallup.unm.edu/neutrosophy.htm

structures based on sets of the refined neutrosophic numbers $a+b_1I_1+b_2I_2+\ldots+b_pI_p$.

He introduced the (T, I, F)-Neutrosophic Structures [2015]. In any field of knowledge, each structure is composed from two parts: a space, and a set of axioms (or laws) acting (governing) on it. If the space, or at least one of its axioms (laws), has some indeterminacy, that structure is a (T, I, F)-Neutrosophic Structure. And he extended them to the (T, I, F)-Neutrosophic I-Algebraic Structures [2015], i.e. algebraic structures based on neutrosophic numbers of the form $a+bI$, but also having indeterminacy related to the structure space (elements which only partially belong to the space, or elements we know nothing if they belong to the space or not) or indeterminacy related to at least an axiom (or law) acting on the structure space. Then he extended them to Refined (T, I, F)-Neutrosophic Refined I-Algebraic Structures.

Also, he proposed an extension of the classical probability and the imprecise probability to the 'neutrosophic probability' [1995], that he defined as a tridimensional vector whose components are real subsets of the non-standard interval $[-0, 1+]$ introduced the neutrosophic measure and neutrosophic integral: http://fs.gallup.unm.edu/NeutrosophicMeasureIntegralProbability.pdf and also extended the classical statistics to neutrosophic statistics: http://fs.gallup.unm.edu/NeutrosophicStatistics.pdf