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Abstract—In this paper, the classification results obtained
from several kinds of support vector machines (SVM) and neural
networks (NN) are compared with our proposed classifier. Our
approach is based on neural networks and interval neutrosophic
sets which are used to classify the input patterns into one
of the two binary class outputs. The comparison is based
on several classical benchmark problems from UCI machine
learning repository. We have found that the performance of our
approaches are comparable to the existing classifiers. However,
our approach has taken into account of the uncertainty in the
classification process.

Index Terms—neural network, interval neutrosophic sets, sup-
port vector machine, binary classification, uncertainty

I. INTRODUCTION
In this paper, we aim to compare the accuracy of our results

obtained from our previous work [1] with the results obtained
from several kinds of support vector machines and other
existing classifiers. It is understood that it may be difficult
to compare the results from different types of classifiers
without the same testing environments. However, we intend
to compare the results in general while we recognize that
different classifiers may be suitable for different problems.

A. Support Vector Machines
A Support Vector Machine (SVM) is an algorithm that

can learn to recognize objects by examining training samples.
SVM can be described in four basic concepts: the separating
hyperplane, the maximal margin hyperplane, the soft margin,
and the kernel function [2]. There are several techniques used
to improve the performance of SVM. For example, when
the training set is large, SVM can be improved by using
incremental learning in which the subsets of training data are
considered one at a time, and then all results are combined [3].
In [3], Syed et al. proposed SV-incremental learning algorithm,
in which each new batch of data, together with the support
vectors obtained from the previous learning step, were trained.
However, a drawback of SV-incremental learning is that the
old support vectors obtained from the previous learning step
can be considered as the outliers if the new batch of data
is distributed differently from the old support vectors. In
order to address this problem, Rüping [4] proposed SV-L-
incremental algorithm based on SV-incremental algorithm. In

his experiment, he added more weight on an error obtained
from the previous support vectors than an error from a new
batch data.
A Least Squares SVM (LS-SVM) is another modified SVM,

which was introduced by Suykens [5]. A LS-SVM involves in
a linear equation instead of a quadratic programming problem
that is involved in the traditional SVM. Hence, it is found to
provide a low computational complexity cost [6]. However, a
drawback of LS-SVM is that its sparseness is lost. Instead of
training with the only support vectors, the whole input data
is trained. Valyon [7] improved LS-SVM by introducing a
Least Squares version of the Least Squares Support Vector
Machine (LS2-SVM). His algorithm covers a sparse solution
by reducing the number of columns in a kernel matrix, but the
approach still preserves the quality solution. Consequently, the
number of training input data is decreased.
In Proximal Support Vector Machine Classification

(PSVM) [8], instead of using a separating plane in the classifi-
cation, two parallel planes are used. Both planes are generated
as far away as from each other, whereas each plane is closest
as possible to the points belonging to one of the two classes.
PSVM may be considered as a regularized least squares SVM.
It was found to provide comparable results to the traditional
SVM, however PSVM performed considerably faster.
A Fuzzy Proximal Support Vector Machine (FPSVM) [9] is

an extension of PSVM. Fuzzy membership values are assigned
to data points before these points are assigned to the two
parallel planes. The point with a high membership value is
more important than the one with a lower membership value.
FPSVM was found to provide better performances than PSVM
and SVM. It was also found that the FPSVM was significantly
faster than the traditional SVM.
In recent years, a Generalized Eigenvalue Proximal Support

Vector Machine (GEPSVM) was proposed by Mangasarian
and Wild [10]. This modified SVM applies two non-parallel
planes instead of parallel planes used in PSVM. Objects or
points belonging to each class are proximal to each plane. Two
generalized eigenvalue problems are generated. The smallest
eigenvalue of each generalized eigenvalue problem is cor-
respondent to the eigenvector that forms each non-parallel
plane. The generalized eigenvalue problem is a simple problem
that can be solved easier and faster than the optimization
algorithm used in SVM-Light, which is an implementation
of the traditional SVM [10].
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Khemchandani and Chandra [11] proposed Twin Support
Vector Machine (TWSVM), which is also a non-parallel plane
classifier but different formulation from the GEPSVM. In
TWSVM, two smaller size of quadratic programming prob-
lems are solved instead of the large one used in the traditional
SVM. The constraints of each quadratic programming problem
are determined by patterns belonging to each class. TWSVM
was found to perform four times faster than the traditional
SVM.
The previous paragraphes explain only some examples

of modified SVM that are comparable or better than the
traditional SVM. There is still a lot more research on the
modifying SVM, in which we cannot explain all of them in this
paper. Only some of them that test the performance of their
algorithms based on the classical benchmark UCI data sets are
shown in this paper. In section II , some classification accuracy
results obtained from those modified SVM are represented and
compared.

B. Some other classifiers
In this section, some other types of classification algorithms

that have been tested for their performance based on UCI data
sets are described.
In [12], Yang and Honavar applied a genetic algorithm to

select a subset of features to represent the patterns to be
classified based on neural networks constructed by DistAI,
which is a constructive neural network that adds hidden
neurons one at a time.
In [13], Draghici created the constraint based decomposition

(CBD) technique, which is a constructive neural network
technique guaranteed the convergence and can deal with both
binary and multiclass problems. This technique was found to
be able to solve complicated problems fast and provide reliable
solutions.
Schetinin et al. [14] compared the results obtained from

the randomized decision tree (DT) ensemble technique to
the Bayesian decision tree with restarting strategy technique.
They found that the Bayesian decision tree technique provided
superior results and performed two or three times faster than
the other technique.
Frank and Pfahringer [15] proposed a method named input

smearing. Bagging was modified using their method. In this
method, after bootstrap resampling was used to select attribute
values for each bag, each attribute value was modified. An
attribute value was transformed into a smeared value by
adding Gaussian noise to the original attribute value. The noise
threshold value was set using cross-validation. It was found
that their method can improve the performance compared to
a single trees and bagging.
Sridharan et al. [16] proposed a competitive finite mixture

of neurons, a mixture of experts model with competitive
penalties between the experts. An Expectation Maximization
(EM) algorithm was used for learning the weights of each
neuron. It was found that their method provided superior
performances over neural networks and two types of SVMs.
In [17], Chen et al. proposed a simulated annealing (SA)

approach to select a subset of features used in the classifi-
cation. The optimal parameters are also found by applying

Hide-and-Seek SA, used to solve the optimization problem
with continuous decision variables. They claimed that their
method can provide the best architecture and parameter setting
for BPNN.
Yeung et al. [18] proposed a generalization error model

based on the localized generalization error using the stochastic
sensitivity measure. An architecture selection method named
MC2SG is also proposed based on their generalization error
model. Their proposed method can be applied to any classifi-
cation problems with different numbers of samples, features,
and classes. In their experiment, MC2SG is used to find the
number of hidden neurons for a radial basis function neural
network.
There is still a lot more research on how to determine the

best approach to solve the problem of classification. However,
we select only some of them to be compared in this paper and
to compare the performance of our proposed approach. The
results obtained from the above examples are summarized in
Table III.

C. Proposed Technique Using Neural Networks and Interval
Neutrosophic Sets
In our previous paper [1], instead of using only a single neu-

ral network for the classification, our approach was applying a
pair of opposite neural networks used to predict degree of truth
and false membership values. The difference between the truth
and false membership values was used to represent uncertainty
in the classification. This uncertainty value was considered
as the indeterminacy membership value. The predicted truth
and false membership values were compared in order to give
us the binary classification results, whereas the indeterminacy
membership value gave us the confidence level of the classifi-
cation. We have presented the three outputs: truth membership,
indeterminacy membership, and false membership in the form
of an interval neutrosophic set [19]. In our research, we follow
the definition of interval neutrosophic sets defined in [19].
Moreover, we also extended our proposed single pair of neu-

ral networks to bagging neural networks. In [1], an ensemble
of pairs of neural networks was created. Each pair applied
the same bag for training, in which each bag of data was
created using bootstrap resampling. For each input pattern,
the truth membership values obtained from all components
are dynamically weighted average. Also, all false member-
ship values are dynamically weighted average. The weight is
computed and normalized from the complement of uncertainty
occurred in the classification for each pattern. After that, the
weighted average truth membership and the weighted average
false membership values are compared in order to classify the
input pattern into a binary class. The classification accuracy
results obtained from both single pair and ensemble of pairs
of neural networks are shown in the next section.

II. CLASSIFICATION ACCURACY COMPARISON
The previous section describes only some examples of

modified SVM and several other types of classifiers. For each
research, the environments are controlled and set to make it
suitable for data sets and algorithms used in the research.
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TABLE I
DATA SETS USED IN THE COMPARISON.

Name No. of Size of
Features Samples

heart-statlog 13 270
ionosphere 34 351
bupa liver 6 345
mushrooms 22 8124
pima indians 8 768
sonar 60 208

tic-tac-toe 9 958

However, we cannot exactly claim that which is the most
suitable algorithm used for the unknown data sets. The purpose
of this paper is to compare the classification accuracy of
the results obtained from some kinds of SVM and several
other types of classifiers based on a number of benchmarking
UCI data sets. We compare results obtained from different
research reported with different types of algorithms and pa-
rameters setting based on the same benchmark data sets. Those
researches provide techniques with different pros and cons.
However, most of them provide similar accuracy results. The
question is that which technique should be selected to solve
the problem with the unknown data set. The question is still
an ongoing challenge as it requires detailed information on the
characteristics of the unknown data.
In this paper, we aim to present the comparison among some

of the existing techniques and compare them to our proposed
techniques in order to show that our proposed techniques are
capable to provide similar results and accuracy comparable
with the other techniques.
The results obtained from several existing classification

techniques are shown and compared based on seven UCI data
sets [20]. The characteristic of these data sets are shown in
Table I. Table II shows the comparison among nine different
techniques of SVM classification, whereas Table III presents
the comparison among some other classifiers including our
proposed techniques.
In Table II and III, the first row shows the name of

the classifiers. The second row shows the reference papers
that provide results shown in each column. In Table II, all
results shwon in column SVM, SV-Inc., SV-L-Inc., PSVM,
GEPSVM, and TWSVM were obtained from 10-fold cross-
validation. In column LS-SVM, each result was computed
from 50 randomization runs. In column LS2-SVM, there
is no explanation about how the results were obtained. In
column FPSVM, all results were obtained using 5-fold cross-
validation.
In Table III, each data set shown in column GA-Selected

Subset was partitioned ten times. Each time, the data set was
separated into 90% training set and 10% test set. Each partition
was used in five independent runs of the genetic algorithm.
The average results were represented in the experiment. In
column CBD, each data set was randomly split into 80%
training set and 20% test set. For each data set, the average
results were obtained over five trails on the test data. In
column Bayesian DT, the results were evaluated on 5-fold
cross-validation. In column Input Smearing, each data set was
randomly partitioned into 90% training set and 10% test set.

The size of an ensemble is ten. The results are averaged over
100 runs. In column Mix. of Neurons, each data set was
randomly separated into 60% training set and 40% test set. The
results were averaged over 20 trials. In column SA+BPNN, all
results are obtained from 10-fold cross-validation. In column
MC2SG, each data set was divided into 50% training set and
50% test set. The classification accuracies on the test sets were
averaged based on ten independent runs for each data set.
The results shown in the last four columns were obtained

from our previous paper [1]. We applied feed-forward back-
propagation neural networks to each pair of the networks used
in the experiment. Each data set was split into a training set
containing 80% of the data and a testing set containing 20%
of the data. For each data set, the classification accuracies on
the test sets were averaged based on twenty runs with twenty
different randomized training sets. In column BPNN, only the
truth membership values were considered in the classification.
In column T>F, both truth and false membership values were
compared to give us the binary classification results. In the
last two columns, a bagging technique was applied to a single
neural network and a pair of neural networks, respectively.

III. CONCLUSION
There are several techniques used for binary classification.

Each technique has different pros and cons. For example, some
modified SVMs provide the results comparable to the results
obtained from the traditional SVM. However, they can perform
faster or provide less complexity than the traditional SVM.
The integration of neural network and some other existing
techniques can also improve the classification performance
compared to the traditional neural network. Our proposed
technique is also using the integration of the traditional back-
propagation neural network (BPNN) and the existing theory
called interval neutrosophic sets. From Table II and III, we
found that the results obtained from our technique outperform
the results obtained from the traditional BPNN, and they are
also comparable to the results obtained from some classifiers.
Most classifiers shown in this paper concentrate only on
the truth membership values. However, our approach can
represent three types of membership values: truth membership,
indeterminacy membership, and false membership values. The
indeterminacy membership is used to represent degree of
uncertainty in the classification. The relationship among these
three memberships can be used to support the confidence level
in the classification. Hence, if the classification is involved
in the uncertain information then our approach is another
technique that can be chosen for the prediction.
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