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PREFACE 

In this book, we approach different topics related to neutrosophics, 

such as: Neutrosophic Set, Intuitionistic Fuzzy Set, Inconsistent 

Intuitionistic Fuzzy Set, Picture Fuzzy Set, Ternary Fuzzy Set, 

Pythagorean Fuzzy Set, Atanassov’s Intuitionistic Fuzzy Set of second 

type, Spherical Fuzzy Set, n-HyperSpherical Neutrosophic Set, q-Rung 

Orthopair Fuzzy Set, truth-membership, indeterminacy-membership, 

falsehood-nonmembership, Regret Theory, Grey System Theory, Three-

Ways Decision, n-Ways Decision, Neutrosophy, Neutrosophication, 

Neutrosophic Probability, Refined Neutrosophy, Refined 

Neutrosophication, Nonstandard Analysis; Extended Nonstandard 

Analysis; Open and Closed Monads to the Left/Right; Pierced and 

Unpierced Binads; MoBiNad Set; infinitesimals; infinities; nonstandard 

reals; standard reals; Nonstandard Neutrosophic Lattices of First Type 

(as poset) and Second Type (as algebraic structure); Nonstandard 

Neutrosophic Logic; Extended Nonstandard Neutrosophic Logic; 

Nonstandard Arithmetic Operations; Nonstandard Unit Interval; 

Nonstandard Neutrosophic Infimum; Nonstandard Neutrosophic 

Supremum, Plithogeny; Plithogenic Set; Neutrosophic Set; Plithogenic 

Operators, Neutrosophic Triplets, (Axiom, NeutroAxiom, AntiAxiom), 

(Law, NeutroLaw, AntiLaw), (Associativity, NeutroAssociaticity, 

AntiAssociativity), (Commutativity, NeutroCommutativity, Anti-

Commutativity), (WellDefined, NeutroDefined, AntiDefined), (Semi-

group, NeutroSemigroup, AntiSemigroup), (Group, NeutroGroup, 

AntiGroup), (Ring, NeutroRing, AntiRing), (Algebraic Structures, 

NeutroAlgebraic Structures, AntiAlgebraic Structures), (Structure, 

NeutroStructure, AntiStructure), (Theory, NeutroTheory, AntiTheory), S-

denying an Axiom, Multispace with Multistructure, and so on. 

In the first chapter (Neutrosophic Set is a Generalization of 

Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set (Picture 

Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set (Atanassov’s 

Intuitionistic Fuzzy Set of second type), q-Rung Orthopair Fuzzy Set, 
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Spherical Fuzzy Set, and n-HyperSpherical Fuzzy Set, while 

Neutrosophication is a Generalization of  Regret Theory, Grey 

System Theory, and Three-Ways Decision - revisited), we prove that 

Neutrosophic Set (NS) is an extension of Intuitionistic Fuzzy Set (IFS) 

no matter if the sum of single-valued neutrosophic components is < 1, or 

> 1, or = 1. For the case when the sum of components is 1 (as in IFS), 

after applying the neutrosophic aggregation operators one gets a different 

result from that of applying the intuitionistic fuzzy operators, since the 

intuitionistic fuzzy operators ignore the indeterminacy, while the 

neutrosophic aggregation operators take into consideration the 

indeterminacy at the same level as truth-membership and falsehood-

nonmembership are taken. NS is also more flexible and effective because 

it handles, besides independent components, also partially independent 

and partially dependent components, while IFS cannot deal with these. 

Since there are many types of indeterminacies in our world, we can 

construct different approaches to various neutrosophic concepts. 

Neutrosophic Set (NS) is also a generalization of Inconsistent 

Intuitionistic Fuzzy Set (IIFS) { which is equivalent to the Picture Fuzzy 

Set (PFS) and Ternary Fuzzy Set (TFS) }, Pythagorean Fuzzy Set (PyFS) 

{Atanassov’s Intuitionistic Fuzzy Set of second type}, Spherical Fuzzy 

Set (SFS), n-HyperSpherical Fuzzy Set (n-HSFS), and q-Rung Orthopair 

Fuzzy Set (q-ROFS). And Refined Neutrosophic Set (RNS) is an 

extension of Neutrosophic Set. And all these sets are more general than 

Intuitionistic Fuzzy Set.  

We prove that Atanassov’s Intuitionistic Fuzzy Set of second type 

(AIFS2), and Spherical Fuzzy Set (SFS) do not have independent 

components. And we show that n-HyperSphericalFuzzy Set that we now 

introduce for the first time, Spherical Neutrosophic Set (SNS) and n-

HyperSpherical Neutrosophic Set (n-HSNS) {the last one also introduced 

now for the first time} are generalizations of IFS2 and SFS. 

The main distinction between Neutrosophic Set (NS) and all previous 

set theories are:  a) the independence of all three neutrosophic 

components {truth-membership (T), indeterminacy-membership (I), 
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falsehood-nonmembership (F)} with respect to each other in NS – while 

in the previous set theories their components are dependent of each other; 

and b) the importance of indeterminacy in NS - while in previous set 

theories indeterminacy is completely or partially ignored. 

Neutrosophy is a particular case of Refined Neutrosophy, and 

consequently Neutrosophication is a particular case of Refined 

Neutrosophication. Also, Regret Theory, Grey System Theory, and 

Three-Ways Decision are particular cases of Neutrosophication and of 

Neutrosophic Probability. We have extended the Three-Ways Decision to 

n-Ways Decision, which is a particular case of Refined Neutrosophy. 

In 2016 Smarandache defined for the first time the Refined Fuzzy Set 

(RFS) and Refined Fuzzy Intuitionistic Fuzzy Set (RIFS). We now, 

further on, define for the first time: Refined Inconsistent Intuitionistic 

Fuzzy Set (RIIFS){Refined Picture Fuzzy Set (RPFS), Refined Ternary 

Fuzzy Set (RTFS)}, Refined Pythagorean Fuzzy Set (RPyFS) {Refined 

Atanassov’s Intuitionistic Fuzzy Set of type 2 (RAIFS2)}, Refined 

Spherical Fuzzy Set (RSFS), Refined n-HyperSpherical Fuzzy Set (R-n-

HSFS), and Refined q-Rung Orthopair Fuzzy Set (R-q-ROFS). 

In the second chapter (Refined Neutrosophy & Lattices vs. Pair 

Structures & YinYang Bipolar Fuzzy Set), we present the lattice 

structures of neutrosophic theories, we prove that Zhang-Zhang’s 

YinYang Bipolar Fuzzy Set is a subclass of Single-Valued Bipolar 

Neutrosophic Set. Then we show that the Pair Structure is a particular 

case of Refined Neutrosophy, and the number of types of neutralities 

(sub-indeterminacies) may be any finite or infinite number. 

The third chapter (About Nonstandard Neutrosophic Logic - 

Answers to Imamura’s “Note on the Definition of Neutrosophic 

Logic”) intends to answer Imamura’s criticism that we found benefic in 

better understanding the nonstandard neutrosophic logic – although the 

nonstandard neutrosophic logic was never used in practical applications. 

In order to more accurately situate and fit the neutrosophic logic into 

the framework of nonstandard analysis, we present the neutrosophic 

inequalities, neutrosophic equality, neutrosophic infimum and supremum, 
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neutrosophic standard intervals, including the cases when the 

neutrosophic logic standard and nonstandard components T, I, F get 

values outside of the classical unit interval [0, 1], and a brief evolution of 

neutrosophic operators.  

In the fourth chapter (Extended Nonstandard Neutrosophic Logic, 

Set, and Probability based on Extended Nonstandard Analysis), we 

extend for the second time the Nonstandard Analysis by adding the left 

monad closed to the right, and right monad closed to the left, while 

besides the pierced binad (we introduced in 1998) we add now the 

unpierced binad - all these in order to close the newly extended 

nonstandard space under nonstandard addition, nonstandard subtraction, 

nonstandard multiplication, nonstandard division, and nonstandard power 

operations. Then, we extend the Nonstandard Neutrosophic Logic, 

Nonstandard Neutrosophic Set, and Nonstandard Probability on this 

Extended Nonstandard Analysis space - that we prove it is a nonstandard 

neutrosophic lattice of first type (endowed with a nonstandard 

neutrosophic partial order) as well as a nonstandard neutrosophic lattice 

of second type (as algebraic structure, endowed with two binary 

neutrosophic laws, infN and supN). Many theorems, new terms 

introduced, better notations for monads and binads, and examples of 

nonstandard neutrosophic operations are given. 

The fifth chapter (Plithogenic Set and Hypersoft Set) has two parts. 

The first part (Plithogenic Set, an Extension of Crisp, Fuzzy, 

Intuitionistic Fuzzy, and Neutrosophic Sets - revisited) introduces the 

plithogenic set (as generalization of crisp, fuzzy, intuitionistic fuzzy, and 

neutrosophic sets), which is a set whose elements are characterized by 

many attributes’ values. An attribute value v has a corresponding (fuzzy, 

intuitionistic fuzzy, neutrosophic or other types of sets) degree of 

appurtenance d(x,v) of the element x, to the set P, with respect to some 

given criteria. In order to obtain a better accuracy for the plithogenic 

aggregation operators in the plithogenic set, and for a more exact 

inclusion (partial order), a (fuzzy, intuitionistic fuzzy, or neutrosophic) 

contradiction (dissimilarity) degree is defined between each attribute 

value and the dominant (most important) attribute value. The plithogenic 
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intersection and union are linear combinations of the fuzzy operators 

tnorm and tconorm, while the plithogenic complement, inclusion 

(inequality), equality are influenced by the attribute values contradiction 

(dissimilarity) degrees. This article offers some examples and 

applications of these new concepts in our everyday life. The second part 

(Extension of Soft Set to Hypersoft Set, and then to Plithogenic 

Hypersoft Set) generalizes the soft set to the hypersoft set by 

transforming the function F into a multi-attribute function. Then we 

introduce the hybrids of Crisp, Fuzzy, Intuitionistic Fuzzy, Neutrosophic, 

and Plithogenic Hypersoft Set. Plithogeny (generalization of Dialectics 

and Neutrosophy), and Plithogenic Set/Logic/Probability/Statistics 

(generalization of fuzzy, intuitionistic fuzzy, neutrosophic 

set/logic/probability/statistics) were introduced by Smarandache in 2017. 

In the sixth chapter (Introduction to NeutroAlgebraic Structures 

and AntiAlgebraic Structures - revisited), we opened for the first time 

[in 2019] new fields of research called NeutroStructures and 

AntiStructures respectively. 

In all classical algebraic structures, the Laws of Compositions on a 

given set are well-defined. But this is a restrictive case, because there are 

many more situations in science and in any domain of knowledge when a 

law of composition defined on a set may be only partially-defined (or 

partially true) and partially-undefined (or partially false), that we call 

NeutroDefined, or totally undefined (totally false) that we call 

AntiDefined.  

Again, in all classical algebraic structures, the Axioms (Associativity, 

Commutativity, etc.) defined on a set are totally true, but it is again a 

restrictive case, because similarly there are numerous situations in science 

and in any domain of knowledge when an Axiom defined on a set may be 

only partially-true (and partially-false), that we call NeutroAxiom, or 

totally false that we call AntiAxiom.  

Finally, the seventh chapter (New Developments in Neutrosophic 

Theories and Applications) presents suggestions for future research in 

the area of neutrosophics, e.g. neutrality and indeterminacy, types of 

indeterminacies, completeness or incompleteness in neutrosophy, 
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dependence and independence of sources providing information, 

geometric representation of neutrosophic cubic set, nonstandard 

neutrosophic algebraic structure,  three-ways model, division of 

quadruple neutrosophic numbers, neutrosophic quaternions, 

neutrosophic physics laws, neutrosophic physical constants, 

neutrosophic sorites paradox, determinate and indeterminate parts of a 

sky cloud, example of bipolar neutrosophic set, neutrosophic triplet 

hypertopology, plithogenic set in combination with all previous set-types, 

plithogenic graph, neutrosophic dynamic system: easier to break from 

inside, than from outside, degree of democracy, degree of indeterminate-

democracy, and degree of antidemocracy, neutrosophic example in 

military, neutrosophic random variable, neutrosophic risk, neutrosophic 

satisfiability & neutrosophic randomness, neutrosophication vs. regret 

theory, expert systems vs. neutrosophic implications, neutrosophic 

applications in literature, arts, criminal justice, philosophy, and history, 

neutrosophy in arts and letters, and so on. 
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CHAPTER 1 

Neutrosophic Set is a Generalization of Intuitionistic 

Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set 

(Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean 

Fuzzy Set (Atanassov’s Intuitionistic Fuzzy Set of 

second type), q-Rung Orthopair Fuzzy Set, Spherical 

Fuzzy Set, and n-HyperSpherical Fuzzy Set, while 

Neutrosophication is a Generalization of  Regret 

Theory, Grey System Theory, and Three-Ways 

Decision (revisited) 
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Abstract 

In this paper we prove that Neutrosophic Set (NS) is an extension of 

Intuitionistic Fuzzy Set (IFS) no matter if the sum of single-valued 

neutrosophic components is < 1, or > 1, or = 1. For the case when the sum 

of components is 1 (as in IFS), after applying the neutrosophic 

aggregation operators one gets a different result from that of applying the 

intuitionistic fuzzy operators, since the intuitionistic fuzzy operators 

ignore the indeterminacy, while the neutrosophic aggregation operators 

take into consideration the indeterminacy at the same level as truth-

membership and falsehood-nonmembership are taken. NS is also more 

flexible and effective because it handles, besides independent 

components, also partially independent and partially dependent 

components, while IFS cannot deal with these. Since there are many types 

of indeterminacies in our world, we can construct different approaches to 

various neutrosophic concepts. 

Neutrosophic Set (NS) is also a generalization of Inconsistent 

Intuitionistic Fuzzy Set (IIFS) { which is equivalent to the Picture Fuzzy 

Set (PFS) and Ternary Fuzzy Set (TFS) }, Pythagorean Fuzzy Set (PyFS) 

{Atanassov’s Intuitionistic Fuzzy Set of second type}, Spherical Fuzzy 

Set (SFS), n-HyperSpherical Fuzzy Set (n-HSFS), and q-Rung Orthopair 

Fuzzy Set (q-ROFS). And Refined Neutrosophic Set (RNS) is an 

extension of Neutrosophic Set. And all these sets are more general than 

Intuitionistic Fuzzy Set.  

We prove that Atanassov’s Intuitionistic Fuzzy Set of second type 

(AIFS2), and Spherical Fuzzy Set (SFS) do not have independent 

components. And we show that n-HyperSphericalFuzzy Set that we now 

introduce for the first time, Spherical Neutrosophic Set (SNS) and n-

HyperSpherical Neutrosophic Set (n-HSNS) {the last one also introduced 

now for the first time} are generalizations of IFS2 and SFS. 

The main distinction between Neutrosophic Set (NS) and all previous 

set theories are:  a) the independence of all three neutrosophic 

components {truth-membership (T), indeterminacy-membership (I), 

falsehood-nonmembership (F)} with respect to each other in NS – while 

in the previous set theories their components are dependent of each other; 

and b) the importance of indeterminacy in NS - while in previous set 

theories indeterminacy is completely or partially ignored. 
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Neutrosophy is a particular case of Refined Neutrosophy, and 

consequently Neutrosophication is a particular case of Refined 

Neutrosophication. Also, Regret Theory, Grey System Theory, and 

Three-Ways Decision are particular cases of Neutrosophication and of 

Neutrosophic Probability. We have extended the Three-Ways Decision to 

n-Ways Decision, which is a particular case of Refined Neutrosophy. 

In 2016 Smarandache defined for the first time the Refined Fuzzy Set 

(RFS) and Refined Fuzzy Intuitionistic Fuzzy Set (RIFS). We now, 

further on, define for the first time: Refined Inconsistent Intuitionistic 

Fuzzy Set (RIIFS){Refined Picture Fuzzy Set (RPFS), Refined Ternary 

Fuzzy Set (RTFS)}, Refined Pythagorean Fuzzy Set (RPyFS) {Refined 

Atanassov’s Intuitionistic Fuzzy Set of type 2 (RAIFS2)}, Refined 

Spherical Fuzzy Set (RSFS), Refined n-HyperSpherical Fuzzy Set (R-n-

HSFS), and Refined q-Rung Orthopair Fuzzy Set (R-q-ROFS). 

Keywords 

Neutrosophic Set, Intuitionistic Fuzzy Set, Inconsistent Intuitionistic 

Fuzzy Set, Picture Fuzzy Set, Ternary Fuzzy Set, Pythagorean Fuzzy Set, 

Atanassov’s Intuitionistic Fuzzy Set of second type, Spherical Fuzzy Set, 

n-HyperSpherical Neutrosophic Set, q-Rung Orthopair Fuzzy Set, truth-

membership, indeterminacy-membership, falsehood-nonmembership, 

Regret Theory, Grey System Theory, Three-Ways Decision, n-Ways 

Decision, Neutrosophy, Neutrosophication, Neutrosophic Probability, 

Refined Neutrosophy, Refined Neutrosophication. 

 

1.1. Introduction 

This paper recalls ideas about the distinctions between neutrosophic 

set and intuitionistic fuzzy set presented in previous versions of this paper 

[1, 2, 3, 4, 5]. 

Mostly, in this paper we respond to Atanassov and Vassiliev’s paper 

[6] about the fact that neutrosophic set is a generalization of intuitionistic 

fuzzy set. 

We use the notations employed in the neutrosophic environment [1, 2, 

3, 4, 5] since they are better descriptive than the Greek letters used in 

intuitionistic fuzzy environment, i.e.:  
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truth-membership (T), indeterminacy-membership (I), and falsehood-

nonmembership (F). 

We also use the triplet components in this order: (T, I, F). 

Neutrosophic “Fuzzy” Set (as named by Atanassov and Vassiliev [6]) 

is commonly called “Single-Valued” Neutrosophic Set (i.e. the 

neutrosophic components are single-valued numbers) by the neutrosophic 

community that now riches about 1,000 researchers, from 60 countries 

around the world, which have produced about 2,000 publications (papers, 

conference presentations, book chapters, books, MSc theses, and PhD 

dissertations).  

The NS is more complex and more general than previous (crisp / fuzzy 

/ intuitionistic fuzzy / picture fuzzy / ternary fuzzy set / Pythagorean fuzzy 

/ Atanassov’s intuitionistic fuzzy set of second type / spherical fuzzy / q-

Rung orthopair fuzzy) sets, because:  

‒ A new branch of philosophy was born, called Neutrosophy [7], 

which is a generalization of Dialectics (and of YinYang Chinese 

philosophy), where not only the dynamics of opposites are studied, but 

the dynamics of opposites together with their neutrals as well, i.e. (<A>, 

<neutA>, <antiA>), where <A> is an item, <antiA> its opposite, and 

<neutA> their neutral (indeterminacy between them).  

‒ Neutrosophy show the significance of neutrality / indeterminacy 

(<neutA>) that gave birth to neutrosophic set / logic / probability / 

statistics / measure / integral and so on, that have many practical 

applications in various fields. 

‒ The sum of the Single-Valued Neutrosophic Set/Logic components 

was allowed to be up to 3 (this shows the importance of independence of 

the neutrosophic components among themselves), which permitted the 

characterization of paraconsistent/conflictual sets/propositions (by letting 

the sum of components > 1), and of paradoxical sets/propositions, 

represented by the neutrosophic triplet (1, 1, 1). 
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‒ NS can distinguish between absolute truth /indeterminacy 

/falsehood and relative truth/indeterminacy/falsehood using nonstandard 

analysis, which generated the Nonstandard Neutrosophic Set (NNS). 

‒ Each neutrosophic component was allowed to take values outside of 

the interval [0, 1], that culminated with the introduction of the 

neutrosophic overset/underset/offset [8]. 

‒ NS was enlarged by Smarandache to Refined Neutrosophic Set 

(RNS), where each neutrosophic component was refined / split into sub-

components [9]., i.e. T was refined/split into T1, T2, …, Tp; I was refined 

/ split into I1, I2, …, Ip; and F was refined split into F1, F2, …, Fs; where p, 

r, s ≥ 1 are integers and p + r + s ≥ 4; all Tj, Ik, Fl are subsets of [0, 1] with 

no other restriction. 

‒ RNS permitted the extension of the Law of Included Middle to the 

neutrosophic Law of Included Multiple-Middle [10]. 

‒ Classical Probability and Imprecise Probability were extended to 

Neutrosophic Probability [11], where for each event E one has: the chance 

that event E occurs ( ch(E) ), indeterminate-chance that event E occurs or 

not ( ch(neutE) ), and the chance that the event E does not occur 

( ch(antiE) ), with: 0 ≤ sup{ch(E)} + sup{ch(neutE)} + sup{ch(antiE)} ≤ 

3. 

‒ Classical Statistics was extended to Neutrosophic Statistics [12] that 

deals with indeterminate / incomplete / inconsistent / vague data 

regarding samples and populations. 

And so on (see below more details). Several definitions are recalled 

for paper’s self-containment.  

1.2. Refinements of Fuzzy Types Sets 

In 2016 Smarandache [8] introduced for the first time the Refined 

Fuzzy Set (RFS) and Refined Fuzzy Intuitionistic Fuzzy Set (RIFS). 

Let 𝒰 be a universe of discourse, and let 𝐴 ⊂ 𝒰 be a subset. 
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We give general definitions, meaning that the components may be any 

subsets of [0, 1]. In particular cases, the components may be single 

numbers, hesitant sets, intervals and so on included in [0, 1]. 

1.3. Fuzzy Set (FS) 

AFS = { 𝑥(𝑇A(𝑥)), 𝑥 ∈ 𝒰 }, where 𝑇A: U ⟶ P([0, 1]) is the membership 

degree of the generic element x with respect to the set A, and P([0, 1]) is 

the powerset of [0, 1], is called a Fuzzy Set.  

 

1.4. Refined Fuzzy Set (RFS) 

We have split/refined the membership degree 𝑇A(𝑥) into sub-

membership degrees. Then: 

1 2{ ( ( ), ( ),..., ( )), 2, }p

RFS A A AA x T x T x T x p x U=   , where 
1( )AT x  is 

a sub-membership degree of type 1 of the element x with respect to the 

set A, 
2( )AT x  is a sub-membership degree of type 2 of the element x with 

respect to the set A, …, ( )p

AT x is a sub-membership degree of type p of 

the element x with respect to the set A, and ( ) [0,1]j

AT x   for 1 ≤ j ≤ p, 

and ∑ 𝑠𝑢𝑝𝑇𝑥
𝑗𝑝

𝑗=1 ≤ 1 for all x ∊ U. 

1.5. Intuitionistic Fuzzy Set (IFS) 

Let 𝒰 be a universe of discourse, and let 𝐴 ⊂ 𝒰 be a subset. Then:  

AIFS = { 𝑥(𝑇A(𝑥), FA(𝑥)), 𝑥 ∈ 𝒰 }, where 𝑇A(x), FA(x): U ⟶ P ([0, 1]) 

are the membership degree respectively the nonmembership of the 

generic element x with respect to the set A, and P ([0, 1]) is the powerset 

of [0, 1], and sup𝑇A(𝑥) + supFA(𝑥) ≤ 1 for all x ∊ U, is called an 

Intuitionistic Fuzzy Set.  
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1.6. Refined Intuitionistic Fuzzy Set (RIFS) 

We have split/refined the membership degree 𝑇A(𝑥) into sub-

membership degrees, and the nonmembership degree FA(x). Then: 

1 2 1 2{ ( ( ), ( ),..., ( ); ( ), ( ),..., ( )), 3, },p s

RIFS A A A A A AA x T x T x T x F x F x F x p s x U= +    

with p, s positive nonzero integers,  ∑ 𝑠𝑢𝑝𝑇𝑥
𝑗
+

𝑝
𝑗=1 ∑ 𝑠𝑢𝑝𝐹𝑥

𝑙 ≤ 1𝑠
𝑙=1 , and 

( ), ( ) [0,1]j l

A AT x F x   for 1 ≤ j ≤ p and 1 ≤ l ≤ s.  

Where 
1( )AT x  is a sub-membership degree of type 1 of the element x 

with respect to the set A, 
2( )AT x  is a sub-membership degree of type 2 of 

the element x with respect to the set A, …, ( )p

AT x is a sub-membership 

degree of type p of the element x with respect to the set A. 

And 
1( )AF x is a sub-nonmembership degree of type 1 of the element x 

with respect to the set A, 
2( )AF x  is a sub-nonmembership degree of type 

2 of the element x with respect to the set A, …, ( )s

AF x  is a sub-

nonmembership degree of type s of the element x with respect to the set 

A. 

1.7. Inconsistent Intuitionistic Fuzzy Set (IIFS) { Picture Fuzzy Set 

(PFS), Ternary Fuzzy Set (TFS) } 

Are defined as below: 

𝐴𝐼𝐼𝐹𝑆 = 𝐴𝑃𝐹𝑆 = 𝐴𝑇𝐹𝑆 = {〈𝑥, 𝑇𝐴(𝑥),  𝐼𝐴(𝑥), 𝐹𝐴(𝑥) 〉|𝑥 ∈ 𝒰},  

where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ P([0,1]) and the sum 0 ≤

𝑠𝑢𝑝𝑇𝐴(𝑥) + 𝑠𝑢𝑝𝐼𝐴(𝑥) +  𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 1, for all 𝑥 ∈ 𝒰. 

In these sets, the denominations are: 

𝑇𝐴(𝑥)  is called degree of membership (or validity, or positive 

membership); 

𝐼𝐴(𝑥) is called degree of neutral membership; 
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𝐹𝐴(𝑥) is called degree of nonmembership (or nonvalidity, or negative 

membership). 

The refusal degree is: RA(x) = 1 − 𝑇𝐴(𝑥) − 𝐼𝐴(𝑥) − 𝐹𝐴(𝑥) ∈

[0, 1], for all 𝑥 ∈ 𝒰. 

1.8. Refined Inconsistent Intuitionistic Fuzzy Set (RIIFS) { 

Refined Picture Fuzzy Set (RPFS), Refined Ternary Fuzzy 

Set (RTFS) } 

1 2 1 2

1 2

{ ( ( ), ( ),..., ( ); ( ), ( ),..., ( );

( ), ( ),..., ( )), 4, },

p r

RIIFS RPFS RTFS A A A A A A

s

A A A

A A A x T x T x T x I x I x I x

F x F x F x p r s x U

= = =

+ +  
 

with p, r, s positive nonzero integers, and: 

 ( ), ( ), ( ) [0,1]j k l

A A AT x I x F x  , for 1 ≤ j ≤ p, 1 ≤ k ≤ r, and 1 ≤ l ≤ s, 

1 1 1

0 sup ( ) sup ( ) sup ( ) 1
p r s

j k l

A A AT x I x F x + +    .  

( )j

AT x is called degree of sub-membership (or sub-validity, or positive 

sub-membership) of type j of the element x with respect to the set A; 

( )k

AI x is called degree of sub-neutral membership of type k of the 

element x with respect to the set A; 

( )l

AF x is called degree of sub-nonmembership (or sub-nonvalidity, or 

negative sub-membership) of type l of the element x with respect to the 

set A; 

and the refusal degree is:  

RA(x) = 
1 1 1

[1,1] ( ) ( ) ( ) [0,1]
p r s

j k l

A A AT x I x F x− − −    , for all 𝑥 ∈ 𝒰. 
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1.9. Definition of single-valued Neutrosophic Set (NS) 

Introduced by Smarandache [13, 14, 15] in 1998. Let U be a universe 

of discourse, and a set ANS   U.  

Then ANS = {<x, TA(x), IA(x), FA(x)> | x ∊ U}, where TA(x), IA(x), 

FA(x) : U → [0, 1] represent the degree of truth-membership, degree of 

indeterminacy-membership, and degree of false-nonmembership 

respectively, with 0 ≤  TA(x) + IA(x) + FA(x) ≤ 3.  

The neutrosophic components TA(x), IA(x), FA(x) are independent with 

respect to each other. 

1.10. Definition of single-valued Refined Neutrosophic Set (RNS) 

Introduced by Smarandache [9] in 2013. Let U be a universe of 

discourse, and a set ARNS   U.  Then  

ARNS = {<x, T1A(x), T2A(x), …, TpA(x);  I1A(x), I2A(x), …, IrA(x);  

F1A(x), F2A(x), …, FsA(x)> | x ∊ U}, where all TjA(x), 1 ≤ j ≤ p, 

IkA(x), 1 ≤ k ≤ r, FlA(x), 1 ≤ l ≤ s, : U → [0, 1], and 

TjA(x) represents the j-th sub-membership degree, 

IkA(x) represents the k-th sub-indeterminacy degree, 

FlA(x) represents the l-th sub-nonmembership degree, 

with 𝑝, 𝑟, 𝑠 ≥ 1 integers, where 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 4, and: 

0 ≤ ∑ 𝑇𝑗𝐴(𝑥) + ∑ 𝐼𝑘𝐴(𝑥) + ∑ 𝑇𝑗𝐴(𝑥) ≤ 𝑛
𝑠
𝑙=1

𝑟
𝑘=1

𝑝
𝑗=1 . 

All neutrosophic sub-components TjA(x), IkA(x), FlA(x) are 

independent with respect to each other. 

Refined Neutrosophic Set is a generalization of Neutrosophic Set. 

1.11. Definition of single-valued Intuitionistic Fuzzy Set (IFS) 

Introduced by Atanassov [16, 17, 18] in 1983. Let U be a universe of 

discourse, and a set AIFS   U.  Then AIFS = {<x, TA(x), FA(x)> | x ∊ U}, 

where TA(x), FA(x) : U → [0, 1] represent the degree of membership and 
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degree of nonmembership respectively, with TA(x) + FA(x) ≤ 1, and IA(x) 

= 1 - TA(x) - FA(x) represents degree of indeterminacy (in previous 

publications it was called degree of hesitancy). 

The intuitioinistic fuzzy components TA(x), IA(x), FA(x) are dependent 

with respect to each other. 

1.12. Definition of single-valued Inconsistent Intuitionistic Fuzzy Set 

(equivalent to single-valued Picture Fuzzy Set, and with single-

valued Ternary Fuzzy Set) 

The single-valued Inconsistent Intuitionistic Fuzzy Set (IIFS), 

introduced by Hindde and Patching [19] in 2008, and the single-valued 

Picture Fuzzy Set (PFS), introduced by Cuong [20] in 2013, indeed 

coincide, as Atanassov and Vassiliev have observed; also we add that 

single-valued Ternary Fuzzy Set, introduced by Wang, Ha and Liu [21] 

in 2015 also coincide with them. All these three notions are defined as 

follows. 

Let 𝒰 be a universe of discourse, and let’s consider a subset 𝐴 ⊆ 𝒰. 

Then 𝐴𝐼𝐼𝐹𝑆 = 𝐴𝑃𝐹𝑆 = 𝐴𝑇𝐹𝑆 = {〈𝑥, 𝑇𝐴(𝑥),  𝐼𝐴(𝑥), 𝐹𝐴(𝑥) 〉|𝑥 ∈ 𝒰},  

where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1] , and the sum 0 ≤ 𝑇𝐴(𝑥) +

𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤ 1, for all 𝑥 ∈ 𝒰. 

In these sets, the denominations are: 

𝑇𝐴(𝑥)  is called degree of membership (or validity, or positive 

membership); 

𝐼𝐴(𝑥) is called degree of neutral membership; 

𝐹𝐴(𝑥) is called degree of nonmembership (or nonvalidity, or negative 

membership). 

The refusal degree is: RA(x) = 1 − 𝑇𝐴(𝑥) − 𝐼𝐴(𝑥) − 𝐹𝐴(𝑥) ∈ [0, 1], 

for all 𝑥 ∈ 𝒰. 

The IIFS (PFS, TFS) components 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥), RA(x) are 

dependent with respect to each other. 
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Wang, Ha and Liu’s [21] assertion that “neutrosophic set theory is 

difficult to handle the voting problem, as the sum of the three components 

is greater than 1” is not true, since the sum of the three neutrosophic 

components is not necessarily greater than 1, but it can be less than or 

equal to any number between 0 and 3, i.e. 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤

3, so for example the sum of the three neutrosophic components can be 

less than 1, or equal to 1, or greater than 1 depending on each application. 

1.13. Inconsistent Intuitionistic Fuzzy Set and the Picture Fuzzy Set 

and Ternary Fuzzy Set are particular cases of the Neutrosophic Set 

The Inconsistent Intuitionistic Fuzzy Set and the Picture Fuzzy Set and 

Ternary Fuzzy Set are particular cases of the Neutrosophic Set (NS). 

Because, in neutrosophic set, similarly taking single-valued components 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], one has the sum 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤

3, which means that 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) can be equal to or less than 

any number between 0 and 3. 

Therefore, in the particular case when choosing the sum equal to 1 ∈

[0, 3] and getting 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤ 1, one obtains IIFS and PFS 

and TFS. 

1.14. Single-valued Intuitionistic Fuzzy Set is a particular case of 

single-valued Neutrosophic Set 

Single-valued Intuitionistic Fuzzy Set is a particular case of single-

valued Neutrosophic Set, because we can simply choose the sum to be 

equal to 1: 

𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) = 1. 

1.15. Inconsistent Intuitionistic Fuzzy Set and Picture Fuzzy Set and 

Ternary Fuzzy Set are also particular cases of single-valued Refined 

Neutrosophic Set 

The Inconsistent Intuitionistic Fuzzy Set (IIFS), Picture Fuzzy Set 

(PFS), and Ternary Fuzzy Set (TFS), that coincide with each other, are in 
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addition particular case(s) of Single-Valued Refined Neutrosophic Set 

(RNS). 

We may define: 

𝐴𝐼𝐼𝐹𝑆 ≡ 𝐴𝑃𝐹𝑆 = 𝐴𝑇𝐹𝑆 = {𝑥, 𝑇𝐴(𝑥), 𝐼1𝐴(𝑥), 𝐼2𝐴(𝑥), 𝐹𝐴(𝑥)|𝑥 ∈ 𝒰}, 

with 𝑇𝐴(𝑥), 𝐼1𝐴(𝑥), 𝐼2𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], 

and the sum 𝑇𝐴(𝑥) + 𝐼1𝐴(𝑥) + 𝐼2𝐴(𝑥) + 𝐹𝐴(𝑥) = 1, for all 𝑥 ∈ 𝒰; 

where: 

𝑇𝐴(𝑥) is the degree of positive membership (validity, etc.); 

𝐼1𝐴 is the degree of neutral membership; 

𝐼2𝐴(𝑥) is the refusal degree; 

𝐹𝐴(𝑥) is the degree of negative membership (non-validity, etc.). 

𝑛 = 4, and as a particular case of the sum 𝑇𝐴(𝑥) + 𝐼1𝐴(𝑥) + 𝐼2𝐴(𝑥) +

𝐹𝐴(𝑥) ≤ 4, where the sum can be any positive number up to 4, we take 

the positive number 1 for the sum: 

𝑇𝐴(𝑥) + 𝐼1𝐴(𝑥) + 𝐼2𝐴(𝑥) + 𝐹𝐴(𝑥) = 1. 

1.16. Independence of Neutrosophic Components vs. Dependence of 

Intuitionistic Fuzzy Components 

Section 4, equations (46) - (51) in Atanassov’s and Vassiliev’s paper 

[6] is reproduced below: 

“4. Interval valued intuitionistic fuzzy sets, 

intuitionistic fuzzy sets, and neutrosophic fuzzy sets 

(…) the concept of a Neutrosophic Fuzzy Set (NFS) 

is introduced, as follows: 

,        (46) 

where , , , and have the 

same sense as IFS. 
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Let 

.  (47) 

Then we define: 

;          (48) 

;           (49) 

;           (50) 

.           (51)” 

Using the neutrosophic component common notations,

, , and , the 

refusal degree 𝑅𝐴(𝑥) , and  for the neutrosophic set, and 

considering the triplet’s order (T, I, F), with the universe of discourse 

, we can re-write the above formulas as follows: 

     (46)’ 

where , for all . 

Neutrosophic Fuzzy Set is commonly named Single-Valued 

Neutrosophic Set (SVNS), i.e. the components are single-valued numbers. 

The authors, Atanassov and Vassiliev, assert that 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) 

“have the same sense as IFS” (Intuitionistic Fuzzy Set). 

But this is untrue, since in IFS one has 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 1, 

therefore the IFS components 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝑇𝐴(𝑥) are dependent, while in 
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SVNS (Single-Valued Neutrosophic Set), one has 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +

 𝐹𝐴(𝑥) ≤ 3 , what the authors omit to mention, therefore the SVNS 

components 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) are independent, and this makes a big 

difference, as we’ll see below. 

In general, for the dependent components, if one component’s value 

changes, the other components values also change (in order for their total 

sum to keep being up to 1). While for the independent components, if one 

component changes, the other components do not need to change since 

their total sum is always up to 3. 

Let’s re-write the equations (47) - (51) from authors’ paper: 

Assume 

.  (47)’ 

The authors have defined: 

;  (48)’ 

;  (50)’ 

.  (49)’ 

These mathematical transfigurations, which transform [change in 

form] the neutrosophic components 

   

whose sum  

𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + +𝐹𝐴(𝑥) ≤ 3,  into inconsistent intuitionistic fuzzy 

components: 
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𝑇𝐴
𝐼𝐼𝐹𝑆(𝑥), 𝐼𝐴

𝐼𝐼𝐹𝑆(𝑥), ,  

whose sum 

𝑇𝐴
𝐼𝐼𝐹𝑆(𝑥) + 𝐼𝐴

𝐼𝐼𝐹𝑆(𝑥) + 𝐹𝐴
𝐼𝐼𝐹𝑆(𝑥) ≤ 1, 

and the refusal degree 

( ) 1 ( ) ( ) ( ) [0,1]IIFS IIFS IIFS IIFS

A A A AR x T x I x F x= − − −  ,   (51)’ 

distort the original application, i.e. the original neutrosophic 

application and its intuitioinistic  fuzzy transformed application are not 

equivalent, see below. 

This is because, in this case, the change in form brings a change in 

content. 

1.17. By Transforming the Neutrosophic Components into 

Intuitionistic Fuzzy Components the Independence of the 

Neutrosophic Components is Lost 

In reference paper [6], Section 4, Atanassov and Vassilev convert the 

neutrosophic components into intuitionistic fuzzy components. 

But, converting a single-valued neutrosophic triplet (T1, I1, F1), with 

T1, I1, F1 ∊ [0, 1] and  

T1 + I1 + F1 ≤ 3 that occurs into a neutrosophic application αN, to a 

single-valued intuitionistic triplet (T2, I2, F2), with T2, I2, F2 ∊ [0, 1] and 

T2 + F2 ≤ 1 (or T2 + I2 + F2 = 1) that would occur into an intuitionistic 

fuzzy application αIF, is just a mathematical artifact, and there could be 

constructed many such mathematical operators [the authors present four 

of them], even more: it is possible to convert from the sum T1 + I1 + F1 ≤ 

3 to the sum  

T2 + I2 + F2 equals to any positive number – but they are just abstract 

transformations.  



Florentin Smarandache 

38 

The neutrosophic application αN  will not be equivalent to the resulting 

intuitionistic fuzzy application αIF, since while in αN the neutrosophic 

components T1, I1, F1 are independent (because their sum is up to 3), in 

αIF the intuitionistic fuzzy components T2, I2, F2 are dependent (because 

their sum is 1). Therefore, the independence of components is lost. 

And the independence of the neutrosophic components is the main 

distinction between neutrosophic set vs. intuitionistic fuzzy set. 

Therefore, the resulted intuitionistic fuzzy application αIF after the 

mathematical transformation is just a subapplication (particular case) of 

the original neutrosophic application αN. 

1.18. Degree of Dependence/Independence between the Components 

The degree of dependence/independence between components was 

introduced by Smarandache [22] in 2006. 

In general, the sum of two components x and y that vary in the unitary 

interval [0, 1] is: 

0 ≤ x+y ≤ 2-d(x,y), where d(x,y) is the degree of dependence between 

x and y, while 1-d(x,y) is the degree of independence between x and y. 

NS is also flexible because it handles, besides independent 

components, also partially independent and partially dependent 

components, while IFS cannot deal with these. 

For example, if T and F are totally dependent, then 0 ≤ T + F ≤ 1, 

while if component I is independent from them, thus 0 ≤  I ≤ 1, then 0 ≤ 

T + I + F ≤ 2. Therefore the components T, I, F in general are partially 

dependent and partially independent. 
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1.19. Intuitionistic Fuzzy Operators ignore the Indeterminacy, while 

Neutrosophic Operators give Indeterminacy the same weight as to 

Truth-Membership and Falsehood-Nonmembership 

Indeterminacy in intuitioniostic fuzzy set is ignored by the 

intuitionistic fuzzy aggregation operators, while the neutrosophic 

aggregation operators treats the indeterminacy at the same weight as the 

other two neutrosophic components (truth-membership and falsehood-

membership). 

Thus, even if we have two single-valued triplets, with the sum of each 

three components equal to 1 { therefore triplets that may be treated both 

as intuitionistic fuzzy triplet, and neutrosophic triplet in the same time 

(since in neutrosophic environment the sum of the neutrosophic 

components can be any number between 0 and 3, whence in particular we 

may take the sum 1) }, after applying the intuitionistic fuzzy aggregation 

operators we get a different result from that obtained after applying the 

neutrosophic aggregation operators. 

1.20. Intuitionistic Fuzzy Operators and Neutrosophic Operators 

Let the intuitionistic fuzzy operators be denoted as:  negation ( IF ), 

intersection ( IF ), union ( IF ), and implication ( IF→ ), and the 

neutrosophic operators [complement, intersection, union, and implication 

respectively] be denoted as: negation ( N ), intersection ( N ), union 

( N ), and implication ( N→ ). 

Let A1 = (a1, b1, c1) and A2 = (a2, b2, c2) be two triplets such that a1, b1, 

c1, a2, b2, c2 ∊ [0, 1] and  

a1 + b1 + c1 = a2 + b2 + c2 = 1. 

The intuitionistic fuzzy operators and neutrosophic operators are 

based on fuzzy t-norm ( F ) and fuzzy t-conorm ( F ). We’ll take for 

this article the simplest ones:  
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1 2 1 2min{ , }Fa a a a =  and 1 2 1 2max{ , }Fa a a a = , 

where F is the fuzzy intersection (t-norm) and F is the fuzzy 

union (t-conorm). 

For the intuitionistic fuzzy implication and neutrosophic implication, 

we extend the classical implication:  

1 2A A→  that is classically equivalent to  1 2A A  , 

where →  is the classical implication,   the classical negation 

(complement), 

and   the classical union, 

to the intuitionistic fuzzy environment and respectively to the 

neutrosophic environment. 

But taking other fuzzy t-norm and fuzzy t-conorm, the conclusion will 

be the same, i.e. the results of intuitionistic fuzzy aggregation operators 

are different from the results of neutrosophic aggregation operators 

applied on the same triplets. 

Intuitionistic Fuzzy Aggregation Operators { the simplest used 

intuitionistic fuzzy operations }: 

Intuitionistic Fuzzy Negation: 

IF  (a1, b1, c1) = (c1, b1, a1) 

Intuitionistic Fuzzy Intersection: 

1 1 1 2 2 2 1 2 1 2 1 2 1 2( , , ) ( , , ) (min{ , },1 min{ , } max{ , },max{ , })IFa b c a b c a a a a c c c c = − −  

Intuitionistic Fuzzy Union: 

1 1 1 2 2 2 1 2 1 2 1 2 1 2( , , ) ( , , ) (max{ , },1 max{ , } min{ , },min{ , })IFa b c a b c a a a a c c c c = − −  

Intuitionistic Fuzzy Implication: 

1 1 1 2 2 2( , , ) ( , , )IFa b c a b c→  is intuitionistically fuzzy equivalent to 

1 1 1 2 2 2( , , ) ( , , )IF IFa b c a b c   
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Neutrosophic Aggregation Operators { the simplest used 

neutrosophic operations }: 

Neutrosophic Negation: 

N  (a1, b1, c1) = (c1, 1-b1, a1)   

Neutrosophic Intersection: 

1 1 1 2 2 2 1 2 1 2 1 2( , , ) ( , , ) (min{ , },max{ , },max{ , })Na b c a b c a a b b c c =  

Neutrosophic Union: 

1 1 1 2 2 2 1 2 1 2 1 2( , , ) ( , , ) (max{ , },min{ , },min{ , })Na b c a b c a a b b c c =  

Neutrosophic Implication: 

1 1 1 2 2 2( , , ) ( , , )Na b c a b c→  is neutrosophically equivalent to 

1 1 1 2 2 2( , , ) ( , , )N Na b c a b c   

1.21. Numerical Example of Triplet Components whose Summation 

is 1 

Let A1 = (0.3, 0.6, 0.1) and A2 = (0.4, 0.1, 0.5) be two triplets, each 

having the sum:   

0.3 + 0.6 + 0.1 = 0.4 + 0.1 + 0.5 = 1. 

Therefore, they can both be treated as neutrosophic triplets and as 

intuitionistic fuzzy triplets simultaneously. We apply both, the 

intuitionistic fuzzy operators and then the neutrosophic operators and we 

prove that we get different results, especially with respect with 

Indeterminacy component that is ignored by the intuitionistic fuzzy 

operators. 

1.21.1 Complement/Negation 

Intuitionistic Fuzzy: 

IF (0.3, 0.6, 0.1) = (0.1, 0.6, 0.3),  
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and IF (0.4, 0.1, 0.5) = (0.5, 0.1, 0.4). 

Neutrosophic: 

(0.3,  0.6,  0.1) (0.1,1 0.6,0.3) (0.1,0.4,0.3) (0.1,0.6,0.3),N = − =   

and 

( )0.4,  0.1,  0.5 (0.5,1 0.1,0.4) (0.5,0.9,0.4) (0.5,0.1,0.4).N = − = 
 

1.21.2 Intersection 

 Intuitionistic Fuzzy 

(0.3,0.6,0.1) (0.4,0.1,0.5) (min{0.3,0.4},1 min{0.3,0.4} max{0.1,0.5},max{0.1,0.5}) (0.3,0.2,0.5)IF = − − =  

As we see, the indeterminacies 0.6 of A1 and 0.1 of A2 were 

completely ignored into the above calculations, which is unfair. Herein, 

the resulting indeterminacy from intersection is just what is left from 

truth-membership and falsehood-nonmembership {1 - 0.3 - 0.5 = 0.2 }. 

 Neutrosophic 

(0.3,0.6,0.1) (0.4,0.1,0.5) (min{0.3,0.4},max{0.6,0.1},max{0.1,0.5}) (0.3,0.6,0.5) (0.3,0.2,0.5)N = =   

In the neutrosophic environment the indeterminacies 0.6 of A1 and 0.1 

of A2 are given full consideration in calculating the resulting 

intersection’s indeterminacy:  max{0.6, 0.1} = 0.6. 

1.21.3 Union: 

 Intuitionistic Fuzzy: 

(0.3,0.6,0.1) (0.4,0.1,0.5) (max{0.3,0.4},1 max{0.3,0.4} min{0.1,0.5},max{0.1,0.5}) (0.4,0.5,0.1)IF = − − =  

Again, the indeterminacies 0.6 of A1 and 0.1 of A2 were completely 

ignored into the above calculations, which is not fair. Herein, the resulting 

indeterminacy from the union is just what is left from truth-membership 

and falsehood-nonmembership { 1 - 0.4 - 0.1 = 0.5 }. 

 Neutrosophic: 

(0.3,0.6,0.1) (0.4,0.1,0.5) (max{0.3,0.4},min{0.6,0.1},min{0.1,0.5}) (0.4,0.1,0.1) (0.4,0.5,0.1)N = =    
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Similarly, in the neutrosophic environment the indeterminacies 0.6 of 

A1 and 0.1 of A2 are given full consideration in calculating the resulting 

union’s indeterminacy:  min{0.6, 0.1} = 0.1. 

1.21.4 Implication 

Intuitionistic Fuzzy  

(0.3,0.6,0.1) (0.4,0.1,0.5) (0.3,0.6,0.1) (0.4,0.1,0.5) (0.1,0.6,0.3) (0.4,0.1,0.5) (0.4,0.3,0.3)IF IF IF IF→ =   =  =   

Similarly, indeterminacies of A1 and A2 are completely ignored. 

 Neutrosophic 

(0.3,0.6,0.1) (0.4,0.1,0.5) (0.3,0.6,0.1) (0.4,0.1,0.5)

(0.1,0.4,0.3) (0.4,0.1,0.5)

(0.4,0.1,0.3) (0.4,0.3,0.3)

N N N

N

→ =  

= 

= 

  

While in the neutrosophic environment the indeterminacies of A1 and 

A2 are taken into calculations. 

1.21.5. Remark 

We have proven that even when the sum of the triplet 

components is equal to 1, as demanded by intuitionistic fuzzy 

environment, the results of the intuitionistic fuzzy operators are 

different from those of the neutrosophic operators – because the 

indeterminacy is ignored into the intuitionistic fuzzy operators. 

1.22. Simple Counterexample 1, Showing Different Results between 

Neutrosophic Operators and Intuitionistic Fuzzy Operators Applied 

on the Same Sets (with component sums > 1 or < 1) 

Let the universe of discourse 𝒰 = {𝑥1, 𝑥2}, and two neutrosophic sets 

included in 𝒰: 

𝐴𝑁 = {𝑥1(0.8, 0.3, 0.5), 𝑥2(0.9, 0.2, 0.6)}, and 

𝐵𝑁 = {𝑥1(0.2, 0.1, 0.3), 𝑥2(0.6, 0.2, 0.1)}. 

Whence, for 𝐴𝑁  one has, after using Atanassov and Vassiliev’s 

transformations (48)’ - (51)’: 
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; 

; 

. 

The refusal degree for 𝑥1 with respect to 𝐴𝑁 is: 

𝑅𝐴
𝐼𝐼𝐹𝑆(𝑥1) = 1 − 0.44 − 0.17 − 0.28 = 0.11. 

Then: 

𝑇𝐴
𝐼𝐼𝐹𝑆(𝑥2) =

0.9

1.8
= 0.50; 

; 

. 

The refusal degree for 𝑥2 with respect to 𝐴𝑁 is: 

𝑅𝐴
𝐼𝐼𝐹𝑆(𝑥2) = 1 − 0.50 − 0.11 − 0.33 = 0.06. 

Then: 

𝐴𝐼𝐼𝐹𝑆 = {𝑥1(0.44, 0.17, 0.28), 𝑥2(0.50, 0.11, 0.33)}. 

For 𝐵𝑁 one has: 

; 

; 

. 

The refusal degree for 𝑥1 with respect to 𝐵𝑁 is: 

𝑅𝐵
𝐼𝐼𝐹𝑆(𝑥1) = 1 − 0.18 − 0.09 − 0.27 = 0.46. 



Advances of Standard and Nonstandard Neutrosophic Theories 

45 

; 

; 

. 

The refusal degree for 𝑥2 with respect to the set 𝐵𝑁 is: 

𝑅𝐵
𝐼𝐼𝐹𝑆(𝑥2) = 1 − 0.55 − 0.18 − 0.09 = 0.18. 

Therefore: 

𝐵𝐼𝐼𝐹𝑆 = {𝑥1, (0.18, 0.09, 0.27), 𝑥2(0.55, 0.18, 0.09)}. 

Therefore, the neutrosophic sets: 

𝐴𝑁 = {𝑥1(0.8, 0.3, 0.5), 𝑥2(0.9, 0.2, 0.6)} and 

𝐵𝑁 = {𝑥1(0.2, 0.1, 0.3), 𝑥2(0.6, 0.2, 0.1)}, 

where transformed (restricted), using Atanassov and Vassiliev’s 

transformations (48)-(51), into inconsistent intuitionistic fuzzy sets 

respectively as follows: 

𝐴𝐼𝐼𝐹𝑆
(𝑡)

= {𝑥1(0.44, 0.17, 0.28), 𝑥2(0.50, 0.11, 0.33)} and 

𝐵𝐼𝐼𝐹𝑆
(𝑡)

= {𝑥1(0.18, 0.09, 0.27), 𝑥2(0.55, 0.18, 0.09)}, 

where the upper script (t) means “after Atanassov and Vassiliev’s 

transformations”. 

We shall remark that the set 𝐵𝑁, as neutrosophic set (where the sum 

of the components is allowed to also be strictly less than 1 as well), 

happens to be in the same time an inconsistent intuitionistic fuzzy set, or 

. 

Therefore, 𝐵𝑁 transformed into 𝐵𝐼𝐼𝐹𝑆
(𝑡)

 was a distortion of 𝐵𝑁, since we 

got different IIFS components: 
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Similarly: 

 

Further on, we show that the NS operators and IIFS operators, applied 

on these sets, give different results. For each individual set operation 

(intersection, union, complement/negation, inclusion/implication, and 

equality/equivalence) there exist classes of operators, not a single one. 

We choose the simplest one in each case, which is based on min / max 

(fuzzy t-norm / fuzzy t-conorm). 

1.22.1 Intersection 

Neutrosophic Sets ( min / max / max ) 

 

 

Therefore:  

. 

Inconsistent Intuitionistic Fuzzy Set ( min / max / max ) 

. 
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Since in IIFS the sum of components is not allowed to surpass 1, we 

normalize: 

. 

Therefore: 

 

Also: 

1 1( ) 0.2 0.3 ( )
N N N N N NA B A BT x I x =  = , 

while 

1 1( ) 0.18 0.17 ( )
IIFS IIFS IIFS IIFS IIFS IIFSA B A BT x I x =  = , 

and other discrepancies can be seen. 

Inconsistent Intuitionistic Fuzzy Set ( with min / min / max, as used by 

Cuong [20] in order to avoid the sum of components surpassing 1; but 

this is in discrepancy with the IIFS/PFS union that uses max / min / min, 

not max /max / min ): 

 

 

Therefore: 

 

We see that: 

, or 𝐶𝑁 ≠ 𝐶𝐼𝐼𝐹𝑆;  
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and , 𝐶𝑁 ≠ 𝐶𝐼𝐼𝐹𝑆2. Also 𝐶𝐼𝐼𝐹𝑆 

≠ 𝐶𝐼𝐼𝐹𝑆2. 

Let’s transform the above neutrosophic set 𝐶𝑁 , resulted from the 

application of the neutrosophic intersection operator, 

𝐶𝑁 = {𝑥1(0.2, 0.3, 0.5), 𝑥2(0.6, 0.2, 0.6)}, 

into an inconsistent intuitionistic fuzzy set, employing the same 

equations (48) – (50) of transformations [denoted by (t)], provided by 

Atanassov and Vassiliev, which are equivalent {using (T, I, F)-notations} 

to (48)’-(50)’ 

; 

(𝑡)𝐼𝐶
𝐼𝐼𝐹𝑆(𝑥1) =

0.3

1.5
= 0.20; 

. 

; 

; 

. 

Whence the results of neutrosophic and IIFS/PFS are totally different: 

  

and  

𝐶𝐼𝐼𝐹𝑆
(𝑡)
 ≠ {𝑥1(0.18, 0.09, 0.28), 𝑥2(0.50, 0.11, 0.33)} = 𝐶𝐼𝐼𝐹𝑆2. 
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1.22.2 Union 

Neutrosophic Sets ( max / min / min ) 

 

 

Therefore: 

. 

Inconsistent Intuitionistic Fuzzy Sets ( max / min / min [3] ) 

 

 

Therefore: 

 

a) We see that the results are totally different: 

, or 𝐷𝑁 ≠ 𝐷𝐼𝐼𝐹𝑆. 

b) Let’s transform the above neutrosophic set, 𝐷𝑁, resulted from 

the application of neutrosophic union operator, 

𝐷𝑁 = {𝑥1(0.8, 0.1, 0.3), 𝑥2(0.9, 0.2, 0.1)}, 

into an inconsistent intuitionistic fuzzy set, employing the same 

equations (48) -(50) of transformation [ denoted by (t) ], provided by 
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Atanassov and Vassiliev, which are equivalent [using (T, I, F) notations] 

to (48)’-(50)’: 

; 

; 

. 

; 

; 

. 

Whence: 

 

The results again are totally different. 

1.22.3 Corollary 

Therefore, no matter if we first transform the neutrosophic 

components into inconsistent intuitionistic fuzzy components (as 

suggested by Atanassov and Vassiliev) and then apply the IIFS operators, 

or we first apply the neutrosophic operators on neutrosophic components, 

and then later transform the result into IIFS components, in both ways the 

obtained results in the neutrosophic environment are totally different 

from the results obtained in the IIFS environment.  
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1.23. Normalization 

Further on, the authors propose the normalization of the neutrosophic 

components, where Atanassov and Vassiliev’s [6] equations (57) – (59) 

are equivalent, using neutrosophic notations, to the following. 

Let  be a universe of discourse, a set , and a generic element 

, with the neutrosophic components: 

, where 

, and 

for all x ∊ U. 

Suppose for all x ∊ U. 

Then, by the below normalization of neutrosophic components, 

Atanassov and Vassiliev obtain the following intuitionistic fuzzy 

components : 

    (57)’ 

    (58)’ 

    (59)’ 

and  

, for all x ∊ U. 
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1.23.1 Counterexample 2 

Let’s come back to the previous Counterexample 1. 

 be a universe of discourse, and let two neutrosophic 

sets included in : 

, and 

. 

Let’s normalize their neutrosophic components, as proposed by 

Atanassov and Vassiliev, in order to restrain them to intuitionistic fuzzy 

components: 

 

since the indeterminacy (called hesitant degree in IFS) is neglected. 

 

since the indeterminacy (hesitance degree) is again neglected. 

The intuitionistic fuzzy operators are applied only on truth-

membership and false-nonmembership (but not on indeterminacy). 
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1.23.2 Intersection 

Intuitionistic Fuzzy Intersection ( min / max ) 

 

after adding the indeterminacy which is what’s left up to 1, i.e. 

. 

 

after adding the indeterminacy. 

The results of NS and IFS intersections are clearly very different: 

 

Even more distinction, between the NS intersection and IFS 

intersection of the same elements (whose sums of components equal 1) 

one obtains 

unequal results, using the (min / max / max) operator:  

  

while 

 

 {after ignoring the 

indeterminacy in IFS} 
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1.23.3 Union 

Intuitionistic Fuzzy Union ( max / min / min ) 

 

after adding the indeterminacy. 

 

after adding the indeterminacy. 

The results of NS and IFS unions are clearly very different: 

 

Even more distinction, for the NS and IFS union of the same elements: 

 

while 

 

= (0.50,0.31)  {after adding indeterminacy} 

 

1.24. Indeterminacy Makes a Big Difference between NS and IFS 

The authors [6] assert that, 

“Therefore, the NFS can be represented by an IFS” (page 5), 



Advances of Standard and Nonstandard Neutrosophic Theories 

55 

but this is not correct, since it should be: 

The NFS (neutrosophic fuzzy set ≡single-valued neutrosophic set) 

can be restrained (degraded) to an IFS (intuitionistic fuzzy set), yet the 

independence of components is lost and the results of the aggregation 

operators are totally different between the neutrosophic environment and 

intuitionistic fuzzy environment, since Indeterminacy is ignored by IFS 

operators. 

Since in single-valued neutrosophic set the neutrosophic components 

are independent (their sum can be up to 3, and if a component increases 

or decreases, it does not change the others), while in intuitionistic fuzzy 

set the components are dependent (in general if one changes, one or both 

the other components change in order to keep their sum equal to 1). Also, 

applying the neutrosophic operators is a better aggregation since the 

indeterminacy (I) is involved into all neutrosophic (complement/negation, 

intersection, union, inclusion / inequality / implication, equality / 

equivalence) operators while all intuitionistic fuzzy operators ignore (do 

not take into calculation) the indeterminacy. 

That is why the results after applying the neutrosophic operators and 

intuitionistic fuzzy operators on the same sets are different as proven 

above. 

1.25. Paradoxes cannot be Represented by the Intuitionistic Fuzzy 

Logic 

No previous set/logic theories, including IFS or Intuitionistic Fuzzy 

Logic (IFL), since the sum of components was not allowed above 1, could 

characterize a paradox, which is a proposition that is true (T = 1) and false 

(F = 1) simultaneously, therefore the paradox is 100% indeterminate (I = 

1). In Neutrosophic Logic (NL) a paradoxical proposition PNL is 

represented as: PNL(1, 1, 1).  

If one uses Atanassov and Vassiliev’s transformations (for example 

the normalization) [6], we get PIFL(1/3, 1/3, 1/3), but this one cannot 



Florentin Smarandache 

56 

represent a paradox, since a paradox is 100% true and 100% false, not 33% 

true and 33% false. 

1.26. Single-Valued Atanassov’s Intuitionistic Fuzzy Set of second 

type, also called Single-Valued Pythagorean Fuzzy Set 

Single-Valued Atanassov’s Intuitionistic Fuzzy Sets of second type 

(AIFS2) [23], also called Single-Valued Pythagorean Fuzzy Set (PyFS) 

[24], is defined as follows (using T, I, F notations for the components): 

Definition of IFS2 (PyFS) 

It is a set AAIFS2 ≡ APyFS from the universe of discourse U such that: 

AAIFS2 ≡ APyFS = {<x, TA(x), FA(x)> | x ∊ U}, 

where, for all x ∊ U, the functions TA(x), FA(x) : U → [0, 1], represent 

the degree of membership (truth) and degree on nonmembership (falsity) 

respectively, that satisfy the conditions: 

2 20 ( ) ( ) 1A AT x F x + 
, 

whence the hesitancy degree is: 

2 2( ) 1 ( ) ( ) [0,1]A A AI x T x F x= − − 
. 

1.27. Single-Valued Refined Pythagorean Fuzzy Set (RPyFS) 

We propose now for the first time the Single-Valued Refined 

Pythagorean Fuzzy Set (RPyFS): 

1 2 1 2

2 { ( ( ), ( ),..., ( ); ( ), ( ),..., ( )), 3, }p s

RAIFS RPyFS A A A A A AA A x T x T x T x F x F x F x p s x U= = +    

where p and s are positive nonzero integers, and for all x ∊ U, the 

functions 
1 2 1 2( ), ( ),..., ( ), ( ), ( ),..., ( )p s

A A A A A AT x T x T x F x F x F x : U → [0, 1], 

represent the degrees of sub-membership (sub-truth) of types 1, 2, …, p, 

and degrees on sub-nonmembership (sub-falsity) of types 1, 2, …, s 

respectively, that satisfy the condition: 
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2 2

1 1

0 ( ) ( ) 1
p s

j l

A AT F +   , 

whence the refined hesitancy degree is: 

2 2

1 1

( ) 1 ( ) ( ) [0,1]
p s

j l

A A AI x T F= − −   . 

The Single-Valued Refined Pythagorean Fuzzy Set is a particular case 

of the Single-Valued Refined Neutrosophic Set.  

1.28. The components of Atanassov’s Intuitionistic Fuzzy Set of 

second type (Pythagorean Fuzzy Set) are not Independent 

Princy R and Mohana K assert in [23] that: 

“the truth and falsity values and hesitancy value can 

be independently considered as membership and 

non-membership and hesitancy degrees 

respectively”. 
But this is untrue, since in IFS2 (PyFS) the components are not 

independent, because they are connected (dependent on each other) 

through this inequality:  

2 2( ) ( ) 1A AT x F x+ 
. 

1.29. Counterexample 3 

If T = 0.9, then T2 = 0.92 = 0.81, whence F2 ≤ 1 - T2 = 1 - 0.81 = 0.19,  

or 0.19 0.44F   .  

Therefore, if T = 0.9, then F is restricted to be less than equal to 0.19 . 

While in NS if T = 0.9, F can be equal to any number in [0, 1], F can 

be even equal to 1. 

Also, hesitancy degree clearly depends on T and F, because the 

formula of hesitancy degree is an equation depending on T and F, as 

below: 
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2 2( ) 1 ( ) ( ) [0,1]A A AI x T x F x= − − 
. 

If T = 0.9 and F = 0.2, then hesitancy  

2 21 0.9 0.2 0.15 0.39I = − − =  . 

Again, in NS if T = 0.9 and F = 0.2, I can be equal to any number in 

[0, 1], not only to 0.15 . 

1.30. Neutrosophic Set is a Generalization of Pythagorean Fuzzy Set 

In the definition of PyFS, one has TA(x), FA(x) ∊ [0, 1], which involves 

that  

TA(x)2, FA(x)2 ∊ [0, 1] too; 

we denote 
2 2( ) ( ) , ( ) ( )NS NS

A A A AT x T x F x F x= = , and 

2 2 2( ) ( ) 1 ( ) ( ) [0,1]NS

A A A AI x I x T x F x= = − −  , where “NS” stands for 

Neutrosophic Set. 

Therefore, one gets: ( ) ( ) ( ) 1NS NS NS

A A AT x I x F x+ + = , 

which is a particular case of the neutrosophic set, since in NS the sum 

of the components can be any number between 0 and 3, hence into PyFS 

has been chosen the sum of the components be equal to 1. 

1.31. Spherical Fuzzy Set (SFS) 

Definition of Spherical Fuzzy Set 

A Single-Valued Spherical Fuzzy Set (SFS) [25, 26], of the universe 

of discourse U, is defined as follows: 

ASFS = {<x, TA(x), IA(x), FA(x)> | x ∊ U}, 

where, for all x ∊ U, the functions TA(x), IA(x), FA(x) : U → [0, 1], 

represent the degree of membership (truth), the degree of hesitancy, and 

degree on nonmembership (falsity) respectively, that satisfy the 

conditions: 
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2 2 20 ( ) ( ) ( ) 1A A AT x I x F x + + 
, 

whence the refusal degree is: 

2 2 2( ) 1 ( ) ( ) ( ) [0,1]A A A AR x T x I x F x= − − − 
 

1.32. Single-Valued n-HyperSpherical Fuzzy Set (n-HSFS) 

Smarandache (2019) generalized for the first time the spherical fuzzy 

set to n-hyperspherical fuzzy set. 

  Definition of n-HyperSpherical Fuzzy Set. 

A Single-Valued n-HyperSpherical Fuzzy Set (n-HSFS), of the 

universe of discourse U, is defined as follows: 

An-HSFS = {<x, TA(x), IA(x), FA(x)> | x ∊ U}, 

where, for all x ∊ U, the functions TA(x), IA(x), FA(x) : U → [0, 1], 

represent the degree of membership (truth), the degree of hesitancy, and 

degree on nonmembership (falsity) respectively, that satisfy the 

conditions: 

0 ( ) ( ) ( ) 1n n n

A A AT x I x F x + + 
, for n ≥ 1,  

whence the refusal degree is: 

( ) 1 ( ) ( ) ( ) [0,1]n n n

A A A AR x T x I x F x= − − − 
. 

It is clear that 2-HyperSpherical Fuzzy Set (i.e. when n = 2) is a 

spherical fuzzy set. 

1.33. The n-HyperSpherical Fuzzy Set is a particular case of the 

Neutrosophic Set 

Because, TA(x), IA(x), FA(x) ∊ [0, 1] implies that, for n ≥ 1 one has 

( ), ( ), ( ) [0,1]n n n

A A AT x I x F x   too, so they are neutrosophic components 

as well; therefore each n-HSFS is a NS. But the reciprocal is not true, 

since if at least one component is 1 and from the other two components 
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at least one is > 0, for example TA(x) = 1, and IA(x) > 0, FA(x) ∊ [0, 1], 

then ( ) ( ) ( ) 1n n n

A A AT x I x F x+ +   for n ≥ 1. Therefore, there are infinitely 

many triplets T, I, F that are NS components, but they are not n-HSFS 

components. 

1.34. The components of the Spherical Fuzzy Set are not 

Independent 

Princy R and Mohana K assert in [23] that: 

“In spherical fuzzy sets, while the squared sum 

of membership, non-membership and hesitancy 

parameters can be between 0 and 1, each of them 

can be defined between 0 and 1 independently.” 

But this is again untrue, the above parameters cannot be defined 

independently. 

1.35. Counterexample 4 

If T = 0.9 then F cannot be for example equal to 0.8, 

since 0.92 + 0.82 = 1.45 > 1, 

but the sum of the squares of components is not allowed to be greater 

than 1. 

So F depends on T in this example. 

Two components are independent if no matter what value gets one 

component will not affect the other component’s value. 

1.36. Neutrosophic Set is a generalization of the Spherical Fuzzy Set 

In [25] Gündoğlu and Kahraman assert about: 

“superiority of SFS [i.e. Spherical Fuzzy Set] with 

respect to Pythagorean, intuitionistic fuzzy and 

neutrosophic sets”; 

also: 
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“SFSs are a generalization of Pythagorean Fuzzy Sets 

(PFS) and neutrosophic sets”. 

While it is true that the spherical fuzzy set is a generalizations of 

Pythagorean fuzzy set and of intuitionistic fuzzy set, it is false that 

spherical fuzzy set is a generalization of neutrosophic set.  

Actually it’s the opposite: neutrosophic set is a generalization of 

spherical fuzzy set. We prove it bellow. 

Proof 

In the definition of the spherical fuzzy set one has: 

TA(x), IA(x), FA(x) ∊ [0, 1], which involves that TA(x)2, IA(x)2, FA(x)2 

∊ [0, 1] too.  

Let’s denote: 

 
2 2 2( ) ( ) , ( ) ( ) , ( ) ( )NS NS NS

A A A A A AT x T x I x I x F x F x= = = ,  

where “NS” stands for neutrosophic set, whence we obtain, using SFS 

definition: 

0 ( ) ( ) ( ) 1NS NS NS

A A AT x I x F x + + 
, 

which is a particular case of the single-valued neutrosophic set, where 

the sum of the components T, I, F can be any number between 0 and 3. 

Now we can choose the sum up to 1. 

1.37. Counterexample 5 

If we take TA(x) = 0.9, IA(x) = 0.4, FA(x) = 0.5, for some given element 

x, which are neutrosophic components, they are not spherical fuzzy set 

components because 0.92 + 0.42 + 0.52 = 1.22 > 1. 

There are infinitely many values for TA(x), IA(x), FA(x) in [0, 1] whose 

sum of squares is strictly greater than 1, therefore they are not spherical 

fuzzy set components, but they are neutrosophic components. 
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The elements of a spherical fuzzy set form a 1/8 of a sphere of radius 

1, centred into the origin O(0,0,0) of the Cartesian system of coordinates, 

on the positive Ox (T), Oy (I), Oz (F) axes.  

While the standard neutrosophic set is a cube of side 1, that has the 

vertexes: (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1). 

The neutrosophic cube strictly includes the 1/8 fuzzy sphere. 

1.38. Single-Valued Refined Spherical Fuzzy Set (RSFS) 

We introduce now for the first time the Single-Valued Refined 

Spherical Fuzzy Set. 

1 2 1 2

1 2

{ ( ( ), ( ),..., ( ); ( ), ( ),..., ( );

( ), ( ),..., ( )), 4, },

p r

RSFS A A A A A A

s

A A A

A x T x T x T x I x I x I x

F x F x F x p r s x U

=

+ +  
 

where p, r, s are nonzero positive integers, and for all x ∊ U, the 

functions  

1 2 1 2 1 2( ), ( ),..., ( ), ( ), ( ),..., ( ), ( ), ( ),..., ( )p r s

A A A A A A A A AT x T x T x I x I x I x F x F x F x

:  U → [0, 1], represent the degrees of sub-membership (sub-truth) of 

types 1, 2, …, p, the degrees of sub-hesitancy of types 1, 2, …, r, and 

degrees on sub-nonmembership (sub-falsity) of types 1, 2, …, s 

respectively, that satisfy the condition: 

2 2 2

1 1 1

0 ( ) ( ) ( ) 1
p s s

j k l

A A AT I F + +   
, 

whence the refined refusal degree is: 

2 2 2

1 1 1

( ) 1 ( ) ( ) ( ) [0,1]
p s s

j k l

A A A AR x T I F= − − −   
. 

The Single-Valued Refined Spherical Fuzzy Set is a particular case of 

the Single-Valued Refined Neutrosophic Set. 
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1.39. Single-Valued Spherical Neutrosophic Set 

Spherical Neutrosophic Set (SNS) was introduced by Smarandache 

[27] in 2017. 

A Single-Valued Spherical Neutrosophic Set (SNS), of the universe of 

discourse U, is defined as follows: 

ASNS = {<x, TA(x), IA(x), FA(x)> | x ∊ U}, 

where, for all x ∊ U, the functions TA(x), IA(x), FA(x) : U → [0, 3 ], 

represent the degree of membership (truth), the degree of indeterminacy, 

and degree on nonmembership (falsity) respectively, that satisfy the 

conditions: 

2 2 20 ( ) ( ) ( ) 3A A AT x I x F x + + 
. 

The Spherical Neutrosophic Set is a generalization of Spherical Fuzzy 

Set, because we may restrain the SNS’s components to the unit interval 

TA(x), IA(x), FA(x) ∊ [0, 1],  

and the sum of the squared components to 1, i.e. 

2 2 20 ( ) ( ) ( ) 1A A AT x I x F x + +  . 

Further on, if replacing IA(x) = 0 into the Spherical Fuzzy Set, we 

obtain as particular case the Pythagorean Fuzzy Set. 

1.40. Single-Valued n-HyperSpherical Neutrosophic Set (n-HSNS) 

Definition of n-HyperSpherical Neutrosophic Set (Smarandache, 2019) 

We introduce now for the first time the Single-Valued n-

HyperSpherical Neutrosophic Set (n-HSNS), which is a generalization of 

the Spherical Neutrosophic Set and of n-HyperSpherical Fuzzy Set, of the 

universe of discourse U, for n ≥ 1, is defined as follows: 

An-HNS = {<x, TA(x), IA(x), FA(x)> | x ∊ U}, 

where, for all x ∊ U, the functions TA(x), IA(x), FA(x) : U → [0, 3n ], 

represent the degree of membership (truth), the degree of indeterminacy, 
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and degree on nonmembership (falsity) respectively, that satisfy the 

conditions: 

0 ( ) ( ) ( ) 3n n n

A A AT x I x F x + +  . 

1.41. Single-Valued Refined Refined n-HyperSpherical 

Neutrosophic Set (R-n-HSNS) 

We introduce now for the first time the Single-Valued Refined n-

HyperSpherical Neutrosophic Set (R-n-HSNS), which is a generalization 

of the n-HyperSpherical Neutrosophic Set and of Refined n-

HyperSpherical Fuzzy Set. 

On the universe of discourse U, for n ≥ 1, we define it as: 

1 2 1 2

1 2

{ ( ( ), ( ), ..., ( ); ( ), ( ), ..., ( );

( ), ( ), ..., ( )), 4, },

p r

R n HSNS A A A A A A

s

A A A

A x T x T x T x I x I x I x

F x F x F x p r s x U

− − =

+ +  
 

where p, r, s are nonzero positive integers, and for all x ∊ U, the 

functions  

1 2 1 2 1 2( ), ( ),..., ( ), ( ), ( ),..., ( ), ( ), ( ),..., ( )p r s

A A A A A A A A AT x T x T x I x I x I x F x F x F x : U→[0, 
1/nm ], 

represent the degrees of sub-membership (sub-truth) of types 1, 2, …, p, 

the degrees of sub-indeterminacy of types 1, 2, …, r, and degrees on sub-

nonmembership (sub-falsity) of types 1, 2, …, s respectively, that satisfy 

the condition: 

1 1 1

0 ( ) ( ) ( )
p r s

j n k n l n

A A AT I F m + +    , where p + r + s = m. 

1.42. Neutrosophic Set is a Generalization of q-Rung Orthopair 

Fuzzy Set (q-ROFS) 

Definition of q-Rung Orthopair Fuzzy Set. 

Using the same T, I, F notations one has as follows. 
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A Single-Valued q-Rung Orthopair Fuzzy Set (q-ROFS) [28], of the 

universe of discourse U, for a given real number q ≥ 1, is defined as 

follows: 

Aq-ROFS = {<x, TA(x), FA(x)> | x ∊ U}, 

where, for all x ∊ U, the functions TA(x), FA(x) : U → [0, 1], represent 

the degree of membership (truth), and degree on nonmembership (falsity) 

respectively, that satisfy the conditions: 

0 ( ) ( ) 1q q

A AT x F x + 
. 

Since TA(x), FA(x) ∊ [0, 1], then for any real number q ≥ 1 one has 

( ) , ( ) [0,1]q q

A AT x F x   too. 

Let’s denote: ( ) ( ) , ( ) ( )NS q NS q

A A A AT x T x F x F x= = , whence it results 

that: 

0 ( ) ( ) 1NS NS

A AT x F x +  , where what’s left may be Indeterminacy. 

But this is a particular case of the neutrosophic set, where the sum of 

components T, I, F can be any number between 0 and 3, and for q-ROFS 

is it taken to be up to 1. Therefore, any Single-Valued q-Rung Orthopair 

Fuzzy Set is also a Neutrosophic Set, but the reciprocal is not true. See 

the next counterexample. 

1.43. Counterexample 6. 

Let’s consider a real number 1 ≤ q < ∞, and a set of single-valued 

triplets of the form 

 (T, I, F), with T, I, F ∊ [0, 1] that represent the components of the 

elements of a given set. 

The components of the form (1, F), with F > 0, and of the form (T, 1), 

with T > 0, constitute NS components as follows: (1, I, F), with F > 0 

and any I ∊ [0, 1], and respectively  
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(T, I, 1), with T > 0 and any I ∊ [0, 1], since the sum of the components 

is allowed to be greater than 1, i.e. 1 + I + F > 1 and respectively T + I 

+ 1 > 1. 

But they cannot be components of the elements of a q-ROFS set, since: 

1q + Fq = 1 + Fq > 1, because F > 0 and 1 ≤ q < ∞;  but in q-ROFS 

the sum has to be ≤ 1. 

Similarly, Tq + 1q = Tq + 1 > 1, because T > 0 and 1 ≤ q < ∞;  but in 

q-ROFS the sum has to be ≤ 1. 

1.44. Refined q-Rung Orthopair Fuzzy Set (R-q-ROFS) 

We propose now for the first time the Single-Valued Refined q-Rung 

Orthopair Fuzzy Set (R-q-ROFS): 

1 2 1 2{ ( ( ), ( ),..., ( ), ( ), ( ),..., ( )), 3, },p s

R q ROFS A A A A A AA x T x T x T x F x F x F x p s x U− − = +    

where p and s are positive nonzero integers, and for all x ∊ U, the 

functions 
1 2 1 2( ), ( ),..., ( ), ( ), ( ),..., ( )p s

A A A A A AT x T x T x F x F x F x : U → [0, 1], 

represent the degrees of sub-membership (sub-truth) of types 1, 2, …, p, 

and degrees on sub-nonmembership (sub-falsity) of types 1, 2, …, s 

respectively, that satisfy the condition: 

1 1

0 ( ) ( ) 1
p s

j q l q

A AT F +   , for q ≥ 1,  

whence the refined hesitancy degree is: 

1/

1 1

( ) [1  ( ) ( ) ] [0,1].
p s

j q l q q

A A AI x T F= − −    

The Single-Valued Refined q-Rung Fuzzy Set is a particular case of 

the Single-Valued Refined Neutrosophic Set.  

1.45. Regret Theory is a Neutrosophication Model 

Regret Theory (2010) [29] is actually a Neutrosophication (1998) 

Model, when the decision making area is split into three parts, the 
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opposite ones (upper approximation area, and lower approximation area) 

and the neutral one (border area, in between the upper and lower area). 

1.46. Grey System Theory as a Neutrosophication 

A Grey System [30] is referring to a grey area (as <neutA> in 

neutrosophy), between extremes (as <A> and <antiA> in neutrosophy). 

According to the Grey System Theory, a system with perfect 

information (<A>) may have a unique solution, while a system with no 

information (<antiA>) has no solution. In the middle (<neutA>), or grey 

area, of these opposite systems, there may be many available solutions 

(with partial information known and partial information unknown) from 

which an approximate solution can be extracted. 

1.47. Three-Ways Decision as particular cases of Neutrosophication 

and of Neutrosophic Probability [31, 32, 33, 34, 35, 36] 

1.47.1 Neutrosophication 

Let <A> be an attribute value, <antiA> the opposite of this attribute 

value, and <neutA> the neutral (or indeterminate) attribute value between 

the opposites <A> and <antiA>. 

For examples: <A> = big, then <antiA> = small, and <neutA> = 

medium; we may rewrite: 

(<A>, <neutA>, <antiA>) = (big, medium, small); 

or (<A>, <neutA>, <antiA>) = (truth (denoted as T), indeterminacy 

(denoted as I), falsehood (denoted as F) ) as in Neutrosophic Logic, 

or (<A>, <neutA>, <antiA>) = ( membership, indeterminate-

membership, monmembership ) as in Neutrosophic Set, 

or (<A>, <neutA>, <antiA>) = ( chance that an event occurs,  

indeterminate-chance that the event occurs or not,  chance that the event 

does not occur ) as in Neutrosophic Probability, 

and so on. 
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And let’s by “Concept” to mean: an item, object, idea, theory, region, 

universe, set, notion etc. that is characterized by this attribute. 

The process of neutrosophication {Smarandache, 2019, [37]} means: 

a) converting a Classical Concept  

{ denoted as (1<A>, 0<neutA>, 0<antiA>)-ClassicalConcept, or 

ClassicalConcept(1<A>, 0<neutA>, 0<antiA>) }, which means that the concept 

is, with respect to the above attribute,  

100% <A>, 0% <neutA>, and 0% <antiA>, 

into a Neutrosophic Concept  

{ denoted as (T<A>, I<neutA>, F<antiA>)-NeutrosophicConcept, or 

NeutrosophicConcept(T<A>, I<neutA>, F<antiA>) }, which means that the 

concept is, with respect to the above attribute, 

T% <A>, I% <neutA>, and F% <antiA>, 

which more accurately reflects our imperfect, non-idealistic reality,  

where all T, I, F are subsets of [0, 1] with no other restriction; 

- using Triangular / Pentagonal / Polygonal (etc. other function) 

Numbers. 

- employing neutrosophic IF-THEN rules into reasoning. 

b) or converting a Fuzzy Concept, or Intuitionistic Fuzzy Concept into 

a Neutrosophic Concept; 

c) or converting other Concepts such as Inconsistent Intuitionistic 

Fuzzy (Picture Fuzzy, Ternary Fuzzy) Concept, or Pythagorean Fuzzy 

Concept, or Spherical Fuzzy Concept, or q-Rung Orthopair Fuzzy etc.  

into a Neutrosophic Concept or into a Refined Neutrosophic Concept 

(i.e. T1% <A1>, T2 % <A2>, …;  I1 % <neutA1>, I2 % <neutA2>, …; and 

F1 % <antiA1>, F2 % <antiA2>, …),  

where all T1, T2, …; I1, I2, …; F1, F2, … are subsets of [0, 1] with no 

other restriction. 



Advances of Standard and Nonstandard Neutrosophic Theories 

69 

d) or converting a crisp real number ( r ) into a neutrosophic real 

number of the form  

r = a + bI, where “I” means (literal or numerical) indeterminacy, a 

and b are real numbers, and “a” represents the determinate part of the 

crisp real number r, while bI the indeterminate part of r; 

e) or converting a crisp complex number ( c ) into a neutrosophic 

complex number of the form c = a1+ b1i +(a2 + b2i)I = a1+a2I + (b1 +b2I)i, 

where “I” means (literal or numerical) indeterminacy, 1i = − , with a1, 

a2, b1, b2 real numbers, and “a1+ b1i” represents the determinate part of 

the complex real number c, while a2 + b2i the indeterminate part of c; 

(we may also interpret that as:  a1 is the determinate part of the real-

part of c, and b1 is the determinate part of the imaginary-part of c; while 

a2 is the indeterminate part of the real-part of c, and b2 is the indeterminate 

part of the imaginary-part of c); 

f) converting a crisp, fuzzy, or intuitionistic fuzzy, or inconsistent 

intuitionistic fuzzy (picture fuzzy, ternary fuzzy set), or Pythagorean 

fuzzy, or spherical fuzzy, or q-rung orthopair fuzzy number and other 

numbers into a quadruple neutrosophic number of the form a + bT + cI + 

dF, where a, b, c, d are real or complex numbers, while T, I, F are the 

neutrosophic components. 

g) splitting a set (or a region) into three parts (two opposites <A> and 

<antiA>, and one neutral <neutA> in between them), with respect to a 

given attribute. 

h) splitting a set (or a region) into n ≥4 parts (one group of parts <A1>, 

<A2>, … opposite to another group of parts <antiA1>, <antiA1>, …, and 

a third group of parts <neutA1>, <neutA2>, … as a neutral group of parts 

in between the opposite groups), with respect to a given attribute. 

While the process of deneutrosophication means going backwards 

with respect to any of the above processes of neutrosophication. 
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Example 1: 

Let the attribute <A> = cold temperature, then <antiA> = hot 

temperature, and <neutA> = medium temperature. 

Let the concept be a country M, such that its northern part (30% of 

country’s territory) is cold, its southern part is hot (50%), and in the 

middle there is a buffer zone with medium temperature (20%). We write: 

M( 0.3cold temperature, 0.2medium temperature, 0.5hot temperature ) 

where we took single-valued numbers for the neutrosophic 

components TM = 0.3, IM = 0.2, FM = 0.5, and the neutrosophic 

components are considered dependent; their sum is equal to 1. 

1.47.2  Three-Ways Decision is a particular case of Neutrosophication 

Neutrosophy (based on <A>, <neutA>, <antiA>) was proposed by 

Smarandache [1] in 1998, and Three-Ways Decision by Yao [31] in 2009. 

In Three-Ways Decision, the universe set is split into three different 

distinct areas, in regard to the decision process, representing: 

Acceptance, Noncommitment, and Rejection respectively. 

In this case, the decision attribute value <A> = Acceptance, whence 

<neutA> = Noncommitment, and <antiA> = Rejection. 

The classical concept = UniverseSet. 

Therefore, we got the NeutrosophicConcept ( T<A>, I<neutA>, F<antiA> ), 

denoted as:  

UniverseSet( TAcceptance, INoncommitment, FRejection ), 

where TAcceptance = universe set’s zone of acceptance, INoncommitment = 

universe set’s zone of noncomitment (indeterminacy),  FRejection = universe 

set’s zone of rejection. 

1.47.3 Three-Ways Decision as a particular case of Neutrosophic 

Probability 

Let’s consider the event, taking a decision on a universe set.  
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According to Neutrosophic Probability (NP) [1, 11] one has: 

NP(decision) = ( the universe set’s elements for which the chance of 

the decision may be accept;   the universe set’s elements for which there 

may be an indeterminate-chance of the decision;  the universe set’s 

elements for which the chance of the decision may be reject ). 

1.47.4 Refined Neutrosophy  

Refined Neutrosophy was introduced by Smarandache [9] in 2013 and 

it is described as follows:  

<A> is refined (split) into subcomponents <A1>, <A2>, …, <Ap>; 

<neutA> is refined (split) into subcomponents <neutA1>, 

<neutA2>, …, <neutAr>;  

and <antiA> is refined (split) into subcomponents <antiA1>, 

<antiA2>, …, <antiAs>; 

where p, r, s ≥ 1 are integers, and p + r + s ≥ 4. 

Refined Neutrosophy is a generalization of Neutrosophy. 

Example 2: 

If <A> = voting in country M, them <A1> = voting in Region 1 of 

country M for a given candidate, <A2> = voting in Region 2 of country 

M for a given candidate, and so on. 

Similarly, <neutA1> = not voting (or casting a white or a black vote) 

in Region 1 of country M, <A2> = not voting in Region 2 of country M, 

and so on. 

And <antiA1> = voting in Region 1 of country M against the given 

candidate, <A2> = voting in Region 2 of country M against the given 

candidate, and so on. 

1.47.5 Extension of Three-Ways Decision to n-Ways Decision 

 n-Way Decision was introduced by Smarandache [37] in 2019. 
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In n-Ways Decision, the universe set is split into n ≥ 4 different distinct 

areas, in regard to the decision process, representing: 

Levels of Acceptance, Levels of Noncommitment, and Levels of 

Rejection respectively. 

Levels of Acceptance may be: Very High Level of Acceptance (<A1>), 

High Level of Acceptance (<A2>), Medium Level of Acceptance (<A3>), 

etc. 

Similarly, Levels of Noncommitment may be: Very High Level of 

Noncommitment (<neutA1>), High Level of Noncommitment 

(<neutA2>), Medium Level of Noncommitment (<neutA3>), etc. 

And Levels of Rejection may be: Very High Level of Rejection 

(<antiA1>), High Level of Rejection (<antiA2>), Medium Level of 

Rejection (<antiA3>), etc. 

Then the Refined Neutrosophic Concept  

{ denoted as (T1<A1>, T2<A2>, …, Tp<Ap>;  I1<neutA1>, I2<neutA2>, …, 

Ir<neutAr>;   

F1<antiA1>, F2<antiA2>, Fs<antiAs>)-RefinedNeutrosophicConcept,  

or RefinedNeutrosophicConcept(T1<A1>, T2<A2>, …, Tp<Ap>;  I1<neutA1>, 

I2<neutA2>, …, Ir<neutAr>;  F1<antiA1>, F2<antiA2>, Fs<antiAs>)},  

which means that the concept is, with respect to the above attribute 

value levels, 

T1% <A1>, T2% <A2>, …, Tp% <Ap>; 

I1% <neutA1>, I2% <neutA2>, …, Ir% <neutAr>; 

F1% <antiA1>, F2% <antiA2>, Fs% <antiAs>; 

which more accurately reflects our imperfect, non-idealistic reality,  

with where p, r, s ≥ 1 are integers, and p + r + s ≥ 4, 

where all T1, T2, …, Tp, I1, I2, …, Ir, F1, F2, …, Fs are subsets of 

[0, 1] with no other restriction. 
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1.48. Many More Distinctions between Neutrosophic Set (NS) and 

Intuitionistic Fuzzy Set (IFS) and other type sets 

1.48.1 Neutrosophic Set can distinguish between absolute and relative  

▪ absolute membership (i.e. membership in all possible 

worlds; we have extended Leibniz’s absolute truth to 

absolute membership), and  

▪ relative membership (membership in at least one 

world, but not in all), because 

  

while 

▪ .  

This has application in philosophy (see the neutrosophy). That’s why 

the unitary standard interval  used in IFS has been extended to the 

unitary non-standard interval  in NS.  

Similar distinctions for absolute or relative non-membership, and 

absolute or relative indeterminate appurtenance are allowed in NS. 

While IFS cannot distinguish the absoluteness from relativeness of the 

components. 

1.48.2 In NS, there is no restriction on T, I, F other than they be subsets 

of , thus: 

 . 

The inequalities (2.1) and (2.4) [17] of IFS are relaxed in NS. 

This non-restriction allows paraconsistent, dialetheist, and incomplete 

information to be characterized in NS {i.e. the sum of all three 

components if they are defined as points, or sum of superior limits of all 
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three components if they are defined as subsets can be >1 (for 

paraconsistent information coming from different sources), or < 1 for 

incomplete information}, while that information cannot be described in 

IFS because in IFS the components T (membership), I (indeterminacy), F 

(non-membership) are restricted either to t + i + f = 1 or to t
2

 + f
2 

≤ 1, if 

T, I, F are all reduced to the points (single-valued numbers) t, i, f 

respectively, or to sup T + sup I + sup F = 1 if T, I, F are subsets of [0, 1].  

Of course, there are cases when paraconsistent and incomplete 

informations can be normalized to 1, but this procedure is not always 

suitable. 

In IFS paraconsistent, dialetheist, and incomplete information cannot 

be characterized. This most important distinction between IFS and NS is 

showed in the below Neutrosophic Cube A’B’C’D’E’F’G’H’ 

introduced by J. Dezert [38] in 2002. 

Because in technical applications only the classical interval  0,1  is 

used as range for the neutrosophic parameters , ,t i f , we call the cube 

ABCDEDGH the technical neutrosophic cube and its extension 

' ' ' ' ' ' ' 'A B C D E D G H  the neutrosophic cube (or nonstandard 

neutrosophic cube), used in the fields where we need to differentiate 

between absolute and relative (as in philosophy) notions. 
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Fig. 1. Neutrosophic Cube 

 Let’s consider a 3D Cartesian system of coordinates, where t  is 

the truth axis with value range in 0,1− +   , f  is the false axis with value 

range in 0,1− +   , and similarly i   is the indeterminate axis with value 

range in 0,1− +   . 

 We now divide the technical neutrosophic cube ABCDEDGH  

into three disjoint regions: 

a) The shaded equilateral triangle BDE , whose sides are equal to 2 , 

which represents the geometrical locus of the points whose sum of the 

coordinates is 1. 

If a point Q  is situated on the sides or inside of the triangle BDE , 

then 1Q Q Qt i f+ + =  as in Atanassov-intuitionistic fuzzy set ( )A IFS− . 
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It is clear that IFS triangle is a restriction of (strictly included in) the 

NS cube. 

b) The pyramid EABD  {situated in the right side of the EBD , 

including its faces ABD (base), EBA , and EDA  (lateral faces), 

but excluding its face BDE } is the locus of the points whose sum of 

coordinates is less than 1. 

If P EABD  then 1P P Pt i f+ +   as in inconsistent intuitionistic 

fuzzy set (with incomplete information). 

c) In the left side of BDE  in the cube there is the solid 

EFGCDEBD  ( excluding BDE  ) which is the locus of points whose 

sum of their coordinates is greater than 1 as in the paraconsistent set. 

If a point R EFGCDEBD , then 1R R Rt i f+ +  . 

It is possible to get the sum of coordinates strictly less than 1 or 

strictly greater than 1. For example having three independent sources 

of information: 

- We have a source which is capable to find only the degree of 

membership of an element; but it is unable to find the degree of non-

membership; 

- Another source which is capable to find only the degree of non-

membership of an element; 

- Or a source which only computes the indeterminacy. 

Thus, when we put the results together of these sources, it is possible 

that their sum is not 1, but smaller or greater.  

Also, in information fusion, when dealing with indeterminate models 

(i.e. elements of the fusion space which are indeterminate/unknown, such 

as intersections we don’t know if they are empty or not since we don’t 

have enough information, similarly for complements of indeterminate 

elements, etc.): if we compute the believe in that element (truth), the 

disbelieve in that element (falsehood), and the indeterminacy part of that 



Advances of Standard and Nonstandard Neutrosophic Theories 

77 

element, then the sum of these three components is strictly less than 1 (the 

difference to 1 is the missing information). 

1.48.3 Relation (2.3) from interval-valued intuitionistic fuzzy set is 

relaxed in NS, i.e. the intervals do not necessarily belong to Int[0,1] but 

to [0,1], even more general to ]-0, 1+[. 

1.48.4 In NS the components T, I, F can also be nonstandard subsets 

included in the unitary nonstandard interval ]
-

0, 1
+

[, not only standard 

subsets included in the unitary standard interval [0, 1] as in IFS.  

1.48.5 NS, like dialetheism, can describe paradoxist elements, 

NS(paradoxist element) = (1, 1, 1), while IFL cannot describe a paradox 

because the sum of components should be 1 in IFS.  

1.48.6 The connectors/operators in IFS are defined with respect to T 

and F only, i.e. membership and nonmembership only (hence the 

Indeterminacy is what’s left from 1), while in NS they can be defined with 

respect to any of them (no restriction).  

But, for interval-valued intuitionistic fuzzy set one cannot find any left 

indeterminacy. 

1.48.7 Component “I”, indeterminacy, can be split into more 

subcomponents in order to better catch the vague information we work 

with, and such, for example, one can get more accurate answers to the 

Question-Answering Systems initiated by Zadeh (2003).   

{In Belnap’s four-valued logic (1977) indeterminacy is split into 

Uncertainty (U) and Contradiction (C), but they were interrelated.} 

Even more, one can split "I" into Contradiction, Uncertainty, and 

Unknown, and we get a five-valued logic. 

In a general Refined Neutrosophic Logic, T can be split into 

subcomponents T1, T2, ..., Tp, and I into I1, I2, ..., Ir, and F into F1, F2, ...,Fs, 

where p, r, s ≥ 1 and p + r + s = n ≥ 3.  Even more:  T, I, and/or F (or any 

of their subcomponents Tj , Ik, and/or Fl) can be countable or uncountable 

infinite sets.  
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1.48.8 Indeterminacy is independent from membership / truth and 

non-membership/falsehood in NS/Nl, while in IFS/IFL it is not. 

In neutrosophics there are two types of indeterminacies: 

a) Numerical Indeterminacy (or Degree of Indeterminacy), which has 

the form (t, i, f)  ≠ (1, 0, 0), where t, i, f are numbers, intervals, or subsets 

included in the unit interval   [0, 1], and it is the base for the (t, i, f)-

Neutrosophic Structures.  

b) Non-numerical Indeterminacy (or Literal Indeterminacy), which is 

the letter “I” standing for unknown (non-determinate), such that I2 = I, 

and used in the composition of the neutrosophic number N = a + bI, 

where a and b are real or complex numbers, and a is the determinate part 

of number N, while bI is the indeterminate part of N. The neutrosophic 

numbers are the base for the I-Neutrosophic Structures. 

1.48.9 NS has a better and clear terminology (name) as "neutrosophic" 

(which means the neutral part: i.e. neither true/membership nor 

false/nonmembership), while IFS's name "intuitionistic" produces 

confusion with Intuitionistic Logic, which is something different (see the 

article by Didier Dubois et al. [39], 2005).  

1.48.10 The Neutrosophic Set was extended [Smarandache, 2007] to 

Neutrosophic Overset (when some neutrosophic component is > 1), and 

to Neutrosophic Underset (when some neutrosophic component is < 0), 

and to and to Neutrosophic Offset (when some neutrosophic components 

are off the interval [0, 1], i.e. some neutrosophic component > 1 and some 

neutrosophic component < 0). In IFS the degree of a component is not 

allowed to be outside of the classical interval [0, 1]. 

This is no surprise with respect to the classical fuzzy set/logic, 

intuitionistic fuzzy set/logic, or classical and imprecise probability where 

the values are not allowed outside the interval [0, 1], since our real-world 

has numerous examples and applications of over/under/off neutrosophic 

components. 
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Example:  

In a given company a full-time employer works 40 hours per week. 

Let’s consider the last week period. 

Helen worked part-time, only 30 hours, and the other 10 hours she was 

absent without payment; hence, her membership degree was 30/40 = 0.75 

< 1. 

John worked full-time, 40 hours, so he had the membership degree 

40/40 = 1, with respect to this company.  

But George worked overtime 5 hours, so his membership degree was 

(40+5)/40 = 45/40 = 1.125 > 1. Thus, we need to make distinction 

between employees who work overtime, and those who work full-time or 

part-time. That’s why we need to associate a degree of membership 

greater than 1 to the overtime workers. 

Now, another employee, Jane, was absent without pay for the whole 

week, so her degree of membership was 0/40 = 0. 

Yet, Richard, who was also hired as a full-time, not only didn’t come 

to work last week at all (0 worked hours), but he produced, by 

accidentally starting a devastating fire, much damage to the company, 

which was estimated at a value half of his salary (i.e. as he would have 

gotten for working 20 hours). Therefore, his membership degree has to 

be less that Jane’s (since Jane produced no damage). Whence, Richard’s 

degree of membership with respect to this company was - 20/40 = - 0.50 

< 0. 

Therefore, the membership degrees > 1 and < 0 are real in our world, 

so we have to take them into consideration. 

Then, similarly, the Neutrosophic Logic / Measure / Probability / 

Statistics etc. were extended to respectively Neutrosophic 

Over/Under/Off Logic, Measure, Probability, Statistics etc. 

{Smarandache, 2007 [8]}. 
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1.48.11 Neutrosophic Tripolar (and in general Multipolar) Set and 

Logic {Smarandache, 2007 [8]} of the form: 

( <T+
1, T+

2, …, T+
n; T0; T-

-n, …, T—
-2, T-

-1 >, <I+
1, I+

2, …, I+
n; I0; I-

-n, …, 

I—
-2, I-

-1 >, <F+
1, F+

2, …, F+
n; F0; F-

-n, …, F—
-2, F-

-1 > ) 

where we have multiple positive/neutral/negative degrees of T, I, and 

F respectively. 

1.48.12 The Neutrosophic Numbers have been introduced by W.B. 

Vasantha Kandasamy and F. Smarandache [40] in 2003, which are 

numbers of the form N = a + bI, where a, b are real or complex numbers, 

while “I” is the indeterminacy part of the neutrosophic number N, such 

that I2 = I and αI+βI = (α+β)I. 

Of course, indeterminacy “I” is different from the imaginary unit i = 

1− . 

In general one has In = I if n > 0, and it is undefined if n ≤ 0. 

1.48.13 Also, Neutrosophic Refined Numbers were introduced 

(Smarandache [31], 2015) as: 

a + b1I1 + b2I2 + … + bmIm, where a, b1, b2, …, bm are real or complex 

numbers, while the I1, I2, …, Im are types of sub-indeterminacies, for m ≥ 

1. 

1.48.14 The algebraic structures using neutrosophic numbers gave 

birth to the I-Neutrosophic Algebraic Structures [see for example 

“neutrosophic groups”, “neutrosophic rings”, “neutrosophic vector 

space”, “neutrosophic matrices, bimatrices, …, n-matrices”, etc.], 

introduced by W.B. Vasantha Kandasamy, Ilanthenral K., F. 

Smarandache [41] et al. since 2003.  

 

Example of Neutrosophic Matrix: 

















+−

−+

I56I41

I3/10

5I21

. 
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Example of Neutrosophic Ring: ({a+bI, with a, b ϵ R}, +, ·), where 

of course (a+bI)+(c+dI) = (a+c)+(b+d)I, and (a+bI) · (c+dI) = (ac) + 

(ad+bc+bd)I. 

1.48.15 Also, to Refined I-Neutrosophic Algebraic Structures, 

which are structures using sets of refined neutrosophic numbers [41]. 

1.48.16 Types of Neutrosophic Graphs (and Trees) 

a-c) Indeterminacy “I” led to the definition of the Neutrosophic 

Graphs (graphs which have: either at least one indeterminate edge, or at 

least one indeterminate vertex, or both some indeterminate edge and some 

indeterminate vertex), and Neutrosophic Trees (trees which have: either 

at least one indeterminate edge, or at least one indeterminate vertex, or 

both some indeterminate edge and some indeterminate vertex), which 

have many applications in social sciences.  

Another type of neutrosophic graph is when at least one edge has a 

neutrosophic (t, i, f) truth-value. 

As a consequence, the Neutrosophic Cognitive Maps (Vasantha & 

Smarandache, 2003]) and Neutrosophic Relational Maps (Vasantha & 

Smarandache, 2004) are generalizations of fuzzy cognitive maps and 

respectively fuzzy relational maps, Neutrosophic Relational Equations 

(Vasantha & Smarandache, 2004), Neutrosophic Relational Data (Wang, 

Smarandache,  Sunderraman, Rogatko - 2008), etc. 

A Neutrosophic Cognitive Map is a neutrosophic directed graph with 

concepts like policies, events etc. as vertices, and causalities or 

indeterminates as edges.  

It represents the causal relationship between concepts. 

An edge is said indeterminate if we don’t know if it is any relationship 

between the vertices it connects, or for a directed graph we don’t know if 

it is a directly or inversely proportional relationship.  

We may write for such edge that (t, i, f) = (0, 1, 0). 
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A vertex is indeterminate if we don’t know what kind of vertex it is 

since we have incomplete information. We may write for such vertex that 

(t, i, f) = (0, 1, 0). 

Example of Neutrosophic Graph (edges V1V3, V1V5, V2V3 are 

indeterminate and they are drawn as dotted): 

 

Fig. 2. Neutrosophic Graph { with I (indeterminate) edges }  

 
and its neutrosophic adjacency matrix is: 

 























0110I

10100

110II

00I01

I0I10

 

 

Fig. 3. Neutrosophic Adjacency Matrix of the Neutrosophic Graph 
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The edges mean: 0 = no connection between vertices, 1 = connection 

between vertices, I = indeterminate connection (not known if it is, or if it 

is not). 

Such notions are not used in the fuzzy theory. 

Example of Neutrosophic Cognitive Map (NCM), which is a generalization 

of the Fuzzy Cognitive Maps. 

Let’s have the following vertices: 

C1 - Child Labor 

C2 - Political Leaders 

C3 - Good Teachers 

C4 - Poverty 

C5 - Industrialists 

C6 - Public practicing/encouraging Child Labor 

C7 - Good Non-Governmental Organizations (NGOs) 

 
 

Fig. 4. Neutrosophic Cognitive Map 

 
The corresponding neutrosophic adjacency matrix related to this 

neutrosophic cognitive map is: 
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Fig. 4. Neutrosophic Adjacency Matrix  

of the Neutrosophic Cognitive Map 

 
The edges mean: 0 = no connection between vertices, 1 = directly 

proportional connection,  

-1 = inversely proportionally connection, and I = indeterminate 

connection (not knowing what kind of relationship is between the vertices 

that the edge connects). 

Such literal indeterminacy (letter I) does not occur in previous set 

theories, including intuitionistic fuzzy set; they had only numerical 

indeterminacy. 

d)  Another type of neutrosophic graphs (and trees) [Sma-randache, 

2015, [41]]: 

An edge of a graph, let's say from A to B (i.e. how A influences B), 

may have a neutrosophic value (t, i, f), 

where t means the positive influence of A on B, 

           i means the indeterminate influence of A on B, 

    and f means the negative influence of A on B.  
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Then, if we have, let's say: A->B->C such that A->B has the 

neutrosophic value (t1, i1, f1) and B->C has the neutrosophic value (t2, i2, 

f2), then A->C has the neutrosophic value  (t1, i1, f1)/\(t2, i2. f2), where /\ is 

the AND neutrosophic operator. 

e)  Also, again a different type of graph: we can consider a vertex A 

as: t% belonging/membership to the graph, i% indeterminate membership 

to the graph, and f% nonmembership to the graph. 

f)  Any of the previous types of graphs (or trees) put together. 

g) Tripolar (and Multipolar) Graph, which is a graph whose 

vertexes or edges have the form (<T+, T0, T->, <I+, I0, I->, <F+, F0, F->) 

and respectively: (<T+
j, T0, T-

j>, <I+
j, I0, I-

j>, <F+
j, F0, F-

j>). 

1.48.17 The Neutrosophic Probability (NP), introduced in 1995, was 

extended and developed as a generalization of the classical and imprecise 

probabilities {Smarandache, 2013 [11]}.  NP of an event E  is the chance 

that event E occurs, the chance that event E doesn’t occur, and the chance 

of indeterminacy (not knowing if the event E occurs or not). 

In classical probability nsup ≤ 1, while in neutrosophic probability nsup 

≤  3+. 

In imprecise probability: the probability of an event is a subset T in [0, 

1], not a number p in     [0, 1], what’s left is supposed to be the opposite, 

subset F (also from the unit interval [0, 1]); there is no indeterminate 

subset I in imprecise probability. 

In neutrosophic probability one has, besides randomness, 

indeterminacy due to construction materials and shapes of the probability 

elements and space. 

In consequence, neutrosophic probability deals with two types of 

variables: random variables and indeterminacy variables, and two types 

of processes: stochastic process and respectively indeterminate process. 
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1.48.18 And consequently the Neutrosophic Statistics, introduced in 

1995 and developed in {Smarandache, 2014, [12]}, which is the analysis 

of the neutrosophic events. 

Neutrosophic Statistics means statistical analysis of population or 

sample that has indeterminate (imprecise, ambiguous, vague, incomplete, 

unknown) data. For example, the population or sample size might not be 

exactly determinate because of some individuals that partially belong to 

the population or sample, and partially they do not belong, or individuals 

whose appurtenance is completely unknown. Also, there are population 

or sample individuals whose data could be indeterminate. It is possible to 

define the neutrosophic statistics in many ways, because there are various 

types of indeterminacies, depending on the problem to solve.  

Neutrosophic statistics deals with neutrosophic numbers, neutrosophic 

probability distribution, neutrosophic estimation, neutrosophic regression. 

The function that models the neutrosophic probability of a random 

variable x is called neutrosophic distribution: NP(x) = ( T(x), I(x), F(x) ), 

where T(x) represents the probability that value x occurs, F(x) represents 

the probability that value x does not occur, and I(x) represents the 

indeterminate / unknown probability of value x. 

1.48.19 Also, Neutrosophic Measure and Neutrosophic Integral 

were introduced {Smarandache,  2013, [11]}. 

1.48.20 Neutrosophy {Smarandache, 1995, [1, 2, 3, 4, 5, 7]} opened 

a new field in philosophy. 

Neutrosophy is a new branch of philosophy that studies the origin, 

nature, and scope of neutralities, as well as their interactions with 

different ideational spectra. 

This theory considers every notion or idea <A> together with its 

opposite or negation <Anti-A> and the spectrum of "neutralities" <Neut-

A> (i.e. notions or ideas located between the two extremes, supporting 

neither <A> nor <Anti-A>). The <Neut-A> and <Anti-A> ideas together 

are referred to as <Non-A>. 
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According to this theory every idea <A> tends to be neutralized and 

balanced by <Anti-A> and <Non-A> ideas - as a state of equilibrium. 

In a classical way <A>, <Neut-A>, <Anti-A> are disjoint two by two. 

But, since in many cases the borders between notions are vague, 

imprecise, Sorites, it is possible that <A>, <Neut-A>, <Anti-A> (and 

<Non-A> of course) have common parts two by two as well. 

Neutrosophy is the base of neutrosophic logic, neutrosophic set, 

neutrosophic probability and statistics used in engineering applications 

(especially for software and information fusion), medicine, military, 

cybernetics, physics. 

We have extended dialectics (based on the opposites <A> and <antiA>) 

to neutrosophy (based on <A>, <antiA> and <neutA>. 

1.48.21 In consequence, we extended the thesis-antithesis-synthesis to 

thesis-antithesis-neutrothesis-neutrosynthesis {Smarandache, 2015 [41]}. 

1.48.22 Neutrosophy extended the Law of Included Middle to the Law 

of Included Multiple-Middle {Smarandache, 2014 [10]} in accordance 

with the n-valued refined neutrosophic logic. 

1.48.23 Smarandache (2015 [41]) introduced the Neutrosophic 

Axiomatic System and Neutrosophic Deducibility. 

1.48.24 Then he introduced the (t, i, f)-Neutrosophic Structure (2015 

[41]), which is a structure whose space, or at least one of its axioms (laws), 

has some indeterminacy of the form (t, i, f)  ≠ (1, 0, 0). 

Also, we defined the combined (t, i, f)-I-Neutrosophic Algebraic 

Structures, i.e. algebraic structures based on neutrosophic numbers of the 

form a + bI, but also having some indeterminacy [ of the form (t, i, f)  ≠ 

(1, 0, 0) ] related to the structure space (i.e. elements which only partially 

belong to the space, or elements we know nothing if they belong to the 

space or not) or indeterminacy     [ of the form (t, i, f)  ≠ (1, 0, 0) ] related 

to at least one axiom (or law) acting on the structure space) . 
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Even more, we generalized them to Refined (t, i, f)- Refined I-

Neutrosophic Algebraic Structures, or (tj, ik, fl)-is-Neutrosophic Algebraic 

Structures; where tj means that t has been refined to j subcomponents t1, 

t2, …, tj; similarly for ik, fl and respectively is.   

1.48.25 Smarandache and Ali [2014-2016] introduced the 

Neutrosophic Triplet Structures [42, 43, 44]. 

A Neutrosophic Triplet, is a triplet of the form:  

< a, neut(a), anti(a) >, 

where neut(a) is the neutral of a, i.e. an element (different from the 

identity element of the operation *) such that a*neut(a) = neut(a)*a = a, 

while anti(a) is the opposite of a, i.e. an element such that a*anti(a) = 

anti(a)*a = neut(a). 

 

Neutrosophy means not only indeterminacy, but also neutral (i.e. 

neither true nor false). For example we can have neutrosophic triplet 

semigroups, neutrosophic triplet loops, etc. 

Further on Smaradnache extended the neutrosophic triplet < a, neut(a), 

anti(a) > to a 

m-valued refined neutrosophic triplet, 

in a similar way as it was done for T1, T2, ...;  I1, I2, ...;  F1, F2, ... (i.e. 

the refinement of neutrosophic components). 

It will work in some cases, depending on the composition law *. It 

depends on each * how many neutrals and anti's there is for each element 

"a". 

   We may have an m-tuple with respect to the element “a” in the 

following way: 

( a;  neut1(a), neut2(a), ..., neutp(a);  anti1(a), anti2(a), ..., antip(a) ), 

where m = 1+2p,  

such that: 
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- all neut1(a), neut2(a), ..., neutp(a) are distinct two by two, and each 

one is different from the unitary element with respect to the composition 

law *; 

- also: 

a*neut1(a) = neut1(a)*a = a 

a*neut2(a) = neut2(a)*a = a 

........................................... 

a*neutp(a) = neutp(a)*a = a; 

- and 

a*anti1(a) = anti1(a)*a = neut1(a) 

a*anti2(a) = anti2(a)*a = neut2(a) 

.................................................... 

a*antip(a) = antip(a)*a = neutp(a); 
- where all anti1(a), anti2(a), ..., antip(a) are distinct two by two, and in 

case when there are duplicates, the duplicates are discarded. 

1.48.26 As latest minute development, the crisp, fuzzy, intuitionistic 

fuzzy, inconsistent intuitionistic fuzzy (picture fuzzy, ternary fuzzy), and 

neutrosophic sets were extended by Smarandache [45] in 2017 to 

plithogenic set, which is:  

A set P whose elements are characterized by many attributes’ values. 

An attribute value v has a corresponding (fuzzy, intuitionistic fuzzy, 

picture fuzzy, neutrosophic, or other types of sets) degree of appurtenance 

d(x,v) of the element x, to the set P, with respect to some given criteria. 

In order to obtain a better accuracy for the plithogenic aggregation 

operators in the plithogenic set, and for a more exact inclusion (partial 

order), a (fuzzy, intuitionistic fuzzy, picture fuzzy, or neutrosophic) 

contradiction (dissimilarity) degree is defined between each attribute 

value and the dominant (most important) attribute value. The plithogenic 

intersection and union are linear combinations of the fuzzy operators t-

norm and t-conorm, while the plithogenic complement (negation), 

inclusion (inequality), equality (equivalence) are influenced by the 

attribute values contradiction (dissimilarity) degrees. 
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1.49. Conclusion 

In this paper we proved that neutrosophic set is a generalization of 

intuitionistic fuzzy set and inconsistent intuitionistic fuzzy set (picture 

fuzzy set, ternary fuzzy set).  

By transforming (restraining) the neutrosophic components into 

intuitionistic fuzzy components, as Atanassov and Vassiliev proposed, 

the independence of the components is lost and the indeterminacy is 

ignored by the intuitionistic fuzzy aggregation operators. Also, the result 

after applying the neutrosophic operators is different from the result 

obtained after applying the intuitionistic fuzzy operators (with respect to 

the same problem to solve). 

We presented many distinctions between neutrosophic set and 

intuitionistic fuzzy set, and we showed that neutrosophic set is more 

general and more flexible than previous set theories. Neutrosophy’s 

applications in various fields such neutrosophic probability, neutrosophic 

statistics, neutrosophic algebraic structures and so on were also listed {see 

also [46]}. 

Neutrosophic Set (NS) is also a generalization of Inconsistent 

Intuitionistic Fuzzy Set (IIFS) { which is equivalent to the Picture Fuzzy 

Set (PFS) and Ternary Fuzzy Set (TFS) }, Pythagorean Fuzzy Set (PyFS) 

{Atanassov’s Intuitionistic Fuzzy Set of second type}, Spherical Fuzzy 

Set (SFS), n-HyperSpherical Fuzzy Set (n-HSFS), and q-Rung Orthopair 

Fuzzy Set (q-ROFS). And Refined Neutrosophic Set (RNS) is an 

extension of Neutrosophic Set. And all these sets are more general than 

Intuitionistic Fuzzy Set.  
Neutrosophy is a particular case of Refined Neutrosophy, and 

consequently Neutrosophication is a particular case of Refined 

Neutrosophication. Also, Regret Theory, Grey System Theory, and 

Three-Ways Decision are particular cases of Neutrosophication and of 

Neutrosophic Probability. We have extended the Three-Ways Decision to 

n-Ways Decision, which is a particular case of Refined Neutrosophy. 
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CHAPTER 2 

Refined Neutrosophy & Lattices vs. Pair Structures & 

YinYang Bipolar Fuzzy Set 
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Abstract 

In this paper, we present the lattice structures of neutrosophic theories, 

we prove that Zhang-Zhang’s YinYang Bipolar Fuzzy Set is a subclass 

of Single-Valued Bipolar Neutrosophic Set. Then we show that the Pair 

Structure is a particular case of Refined Neutrosophy, and the number of 

types of neutralities (sub-indeterminacies) may be any finite or infinite 

number. 

2.1. Introduction 

First, we prove that Klement and Mesiar’s lattices do not fit the general 

definition of neutrosophic set, and we construct the appropriate 

nonstandard neutrosophic lattices of first type (as neutrosophically 

ordered set) [23], and of second type (as neutrosophic algebraic structure, 

endowed with two binary neutrosophic laws, infN and supN) [23]. 

We also present the novelties that neutrosophy, neutrosophic logic, set, 

and probability and statistics, brought in with respect to the previous 

classical and multi-valued logics and sets, and with the classical and 

imprecise probability and statistics respectively. 

Second, we prove that Zhang-Zhang’s YinYang Bipolar Fuzzy Set is 

not equivalent with, but a subclass of Single-Valued Bipolar 

Neutrosophic Set. 

Third, we show that Montero, Bustince, Franco, Rodríguez, Gómez, 

Pagola, Fernández, and Barrenechea’s paired structure of knowledge 

representation model is a particular case of Refined Neutrosophy (a 

branch of philosophy that generalized dialectics) and of Refined 

Neutrosophic Set. We disprove again the claim that Bipolar Fuzzy Set 

(renamed as YinYang Bipolar Fuzzy Set) is the same of neutrosophic set 

as asserted by Montero et al. 

About the three types of neutralities presented by Montero et al., we 

show, by examples, and formally, that there may be any finite number or 

an infinite number of types of neutralities 𝑛, or that indeterminacy (𝐼), as 

neutrosophic component, can be refined (split) into 1 ≤ 𝑛 ≤ ∞ number 
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of sub-indeterminacies (not only 3 as Montero et al. said) as needed to 

each application to solve. 

Also, we show, besides numerous neutrosophic applications, many 

innovatory contributions to science were brought on by the neutrosophic 

theories, such as: generalization of Yin Yang Chinese philosophy and 

dialectics to neutrosophy, a new branch of philosophy that is based on the 

dynamics of opposites and their neutralities; sum of the neutrosophic 

components T, I, F up to 3; degrees of dependence / independence 

between the neutrosophic components; distinction between absolute truth 

and relative truth in neutrosophic logic; introduction of nonstandard 

neutrosophic logic, set, and probability after we have extended the 

nonstandard analysis; refinement of neutrosophic components into 

subcomponents; ability to express incomplete information, complete 

information, paraconsistent (conflicting) information; and extending the 

included middle principle to multiple-included middle principle, and so 

on. 

2.2. Notations 

≤𝑛𝑁
𝑛𝑜𝑛𝑆 means nonstandard n-tuple neutrosophic inequality; 

≤𝑛𝑁 means standard (real) n-tuple inequality; 

≤𝑁
𝑛𝑜𝑛𝑆 means nonstandard unary neutrosophic inequality; 

≤𝑁 mean standard (real) unary neutrosophic inequality; 

=𝑁 means neutrosophic equality; 

¬𝑁 means neutrosophic negation; 

∪𝑁 means neutrosophic union; 

 = means classical equality; 

 <, >, ≤, ≥ mean classical inequalities. 
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2.3. Answers to Erich Peter Klement & Radko Mesiar  

I have read the authors’ paper [1], published in August 2018, and now 

it is my duty to publicly respond. 

2.3.1. Oversimplification of Neutrosophic Set 

At page 10 (Section 3.3) in their paper, related to neutrosophic sets, 

they wrote: 

As a straightforward generalization of the product lattice 

( ), comp , for each n ∊ N the n-dimensional unit cube 

( ),n

comp , i.e., the n-dimensional product of the lattice 

(𝕀, ≤comp), can be defined by means of (1) and (2). 

The so-called “neutrosophic” sets introduced by F. 

Smarandache [93] (see also [94–97] are based on the 

bounded lattices ( )3

3,  and ( )
33, , where the orders 

3I
  and 3I

  on the unit cube I3 are defined by 

31 2 3 1 2 3( , , ) ( , , )
I

x x x y y y 
1 1x y  AND 2 2x y  AND 

3 3x y          (13) 
3

1 2 3 1 2 3 1 1( , , ) ( , , )Ix x x y y y x y    AND 2 2x y  AND 

3 3x y         (14) 

The authors have defined (1) and (2) as follows: 

           
1

,
n

i comp

i

L
=

 
 

 
 , where ( ),

ii LL   are fuzzy lattices, for all 1 ≤ 

i ≤ n,                           (1)               
and  

           1 2 1 2 1 1( , ,..., ) ( , ,..., )n comp nx x x y y y x y    AND 2 2x y

AND … AND n nx y       (2) 

The authors did not specify what type of lattices they employ: of first 

type (lattice, as a partially ordered set), or second type (lattice, as an 
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algebraic structure). Since their lattices are endowed with some inequality 

(referring to the neutrosophic case) we assume it is as first type. 

The authors have used the notations: 

𝕀 = [0, 1], 

𝕀2 = [0, 1]2, 

𝕀3 = [0, 1]3, 

and the order relationship ≤comp on 𝕀3 define as: 

(𝑥1, 𝑥2, 𝑥3) ≤comp (𝑦1, 𝑦2, 𝑦3) ⟺ 𝑥1 ≤ 𝑦1 and 𝑥2 ≤ 𝑦2 and 𝑥3 ≤ 𝑦3. 

The three lattices they constructed, that I denote by 𝐾𝐿1, 𝐾𝐿2, 𝐾𝐿3 

respectively 

𝐾𝐿1 = (𝕀
3, ≤comp), 𝐾𝐿2 = (𝕀

3, ≤𝐼3), 𝐾𝐿3 = (𝕀
3, ≤𝕀

3
),  

contain ONLY the very particular case of standard single-valued 

neutrosophic set, i.e. when the neutrosophic components 𝑇  (truth-

membership), 𝐼 (indeterminacy-membership), and 𝐹 (false-membership) 

of the generic element 𝑥(𝑇, 𝐼, 𝐹), of a neutrosophic set 𝑁, are single-

valued (crisp) numbers from the unit interval [0, 1].  

The authors have oversimplified the neutrosophic set. Neutrosophic is 

much more complex. Their lattices do not characterize the initial 

definition of the neutrosophic set ([15], 1998): a set whose elements 

have the degrees of appurtenance T, I, F, where T, I, F are standard or 

nonstandard subsets of the nonstandard unit interval: ]−0, 1+[, where 

]−0, 1+[ overpasses the classical real unit interval [0, 1] to the left and to 

the right. 

2.3.2. Neutrosophic Cube vs. Unit Cube  

Clearly, their 3 3[0,1]= ⊊]−0, 1+[3, where ]−0 = 𝜇(−0) is the left 

nonstandard monad of number 0, and 1+ = 𝜇(1+)  is the right 

nonstandard monad of number 1. 
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Fig. 1. Neutrosophic Cube

 

The unit cube 𝕀3  used by the authors does not equal the above 

neutrosophic cube. The Neutrosophic Cube A’B’C’D’E’F’G’H’ was 

introduced by J. Dezert [5] in 2002. 

2.3.3. The most general Neutrosophic Lattices 

The authors’ lattices are far from catching the most general definition 

of neutrosophic set. 

Let 𝒰  be a universe of discourse, and 𝑀 ⊂ 𝒰  be a set. Then an 

element 𝑥(𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)) ∈ 𝑀 , where 𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)  are standard 

or nonstandard subsets of nonstandard interval: ]−Ω,Ψ+ [, where Ω ≤

0 < 1 ≤ Ψ , with Ω,Ψ ∈ ℝ , whose values Ω  and Ψ  depend on each 

application, and: 

]−Ω,Ψ+[=𝑁 {𝜀, 𝑎, 𝑎
−, 𝑎−0, 𝑎+, 𝑎+0, 𝑎−+, 𝑎−0+| 𝜀, 𝑎

∈ [Ω,Ψ], 𝜀 is infinitesimal}, 

where 
m

a , 𝑚 ∈ {−,−0 ,+ ,+0 ,−+ ,−0+ } are monads or binads [6, 7]. 



Florentin Smarandache 

102 

It follows that the nonstandard neutrosophic mobinad real offset 

lattices 

(]−Ω,Ψ+[,≤𝑁
𝑛𝑜𝑛𝑆)  and (]−Ω,Ψ+[, inf𝑁, sup𝑁,

−Ω,Ψ+)  of first type 

and respectively second type are the most general (non-refined) 

neutrosophic lattices. 

While the most general refined neutrosophic lattices of first type is: 

(]−Ω,Ψ+[,≤𝑛𝑁
𝑛𝑜𝑛𝑆) , where ≤𝑛𝑁

𝑛𝑜𝑛𝑆  is the n-tuple nonstandard 

neutrosophic inequality dealing with nonstandard subsets, defined as: 

( 𝑇1(𝑥), 𝑇2(𝑥), …, 𝑇𝑝(𝑥); 𝐼1(𝑥), 𝐼2(𝑥), …, 𝐼𝑟(𝑥); 𝐹1(𝑥), 𝐹2(𝑥), …, 

𝐹𝑠(𝑥) ) ≤𝑛𝑁
𝑛𝑜𝑛𝑆 (𝑇1(𝑦), 𝑇2(𝑦), …, 𝑇𝑝(𝑦); 𝐼1(𝑦), 𝐼2(𝑦), …, 𝐼𝑟(𝑦); 𝐹1(𝑦), 

𝐹2(𝑦), …, 𝐹𝑠(𝑦)) iff 

𝑇1(𝑥) ≤𝑛𝑁
𝑛𝑜𝑛𝑆 𝑇1(𝑦), 𝑇2(𝑥) ≤𝑛𝑁

𝑛𝑜𝑛𝑆 𝑇2(𝑦), …, 𝑇𝑝(𝑥) ≤𝑛𝑁
𝑛𝑜𝑛𝑆 𝑇𝑝(𝑦);  

𝐼1(𝑥) ≥𝑛𝑁
𝑛𝑜𝑛𝑆 𝐼1(𝑦), 𝐼2(𝑥) ≥𝑛𝑁

𝑛𝑜𝑛𝑆 𝐼2(𝑦), …, 𝐼𝑟(𝑥) ≥𝑛𝑁
𝑛𝑜𝑛𝑆 𝐼𝑟(𝑦); 

𝐹1(𝑥) ≥𝑛𝑁
𝑛𝑜𝑛𝑆 𝐹1(𝑦), 𝐹2(𝑥) ≥𝑛𝑁

𝑛𝑜𝑛𝑆 𝐹2(𝑦), …, 𝐹𝑠(𝑥) ≥𝑛𝑁
𝑛𝑜𝑛𝑆 𝐹𝑠(𝑦). 

2.3.4. Distinction between Absolute Truth and Relative Truth 

The authors’ lattices are incapable of making distinctions between 

absolute truth (when 𝑇 = 1+ >𝑁 1) and relative truth (when 𝑇 = 1) in 

the sense of Leibniz, which is the essence of nonstandard neutrosophic 

logic. 

2.3.5. Neutrosophic Standard Subset Lattices 

Their three lattices are not even able to deal with standard subsets 

[including intervals [8], and hesitant (discrete finite) subsets] 𝑇, 𝐼, 𝐹 ⊆

[0, 1], since they have defined the 3D-inequalities with respect to single-

valued (crisp) numbers: 

𝑥1, 𝑥2, 𝑥3 ∈ [0, 1] and 𝑦1, 𝑦2, 𝑦3 ∈ [0, 1]. 

In order to deal with standard subsets, they should use inf / sup, i.e. 

(𝑇1, 𝐼1, 𝐹1) ≤ (𝑇2, 𝐼2, 𝐹2) ⟺ 

inf𝑇1 ≤ inf𝑇2 and sup𝑇1 ≤ sup𝑇2, 
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inf𝐼1 ≥ inf𝐼2 and sup𝐼1 ≥ sup𝐼2, 

and inf𝐹1 ≥ inf𝐹2 and sup𝐹1 ≥ sup𝐹2. 

[I have displayed the most used 3D-inequality by the neutrosophic 

community.] 

2.3.6. Nonstandard and Standard Refined Neutrosophic Lattices 

The Nonstandard Refined Neutrosophic Set ([9], 2013; [7], 2018; 

23, 2019), defined on ]−0, 1+[𝑛, strictly includes their n-dimensional unit 

cube (𝕀𝑛), and we use a nonstandard neutrosophic inequality, not the 

classical inequalities, to deal with inequalities of monads and binads, such 

as ≤𝑛𝑁
𝑛𝑜𝑛𝑆and ≤𝑁

𝑛𝑜𝑛𝑆. 

Not even the Standard Refined Single-Valued Neutrosophic Set [9] 

(2013) may be characterized with 𝐾𝐿1, 𝐾𝐿2, 𝐾𝐿3 nor with (𝕀𝑛, ≤comp), 

since the n-D neutrosophic inequality is different from n-D ≤comp, and 

from n-D extensions of ≤𝐼3 or ≤𝐼3 respectively, as follows. 

Let  𝑇 be refined into 𝑇1, 𝑇2, …, 𝑇𝑝;  

𝐼 be refined into 𝐼1, 𝐼2, …, 𝐼𝑟; 

   and 𝐹 be refined into 𝐹1, 𝐹2, …, 𝐹𝑠;  

with 𝑝, 𝑟, 𝑠 ≥ 1  are integers, and 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 4 , produced the 

following n-D neutrosophic inequality. 

Let 𝑥(𝑇1
𝑥 , 𝑇2

𝑥, … , 𝑇𝑝
𝑥;  𝐼1

𝑥 , 𝐼2
𝑥 , … , 𝐼𝑟

𝑥;  𝐹1
𝑥 , 𝐹2

𝑥 , … , 𝐹𝑠
𝑥),  

and 𝑦(𝑇1
𝑦
, 𝑇2
𝑦
, … , 𝑇𝑝

𝑦
;  𝐼1
𝑦
, 𝐼2
𝑦
, … , 𝐼𝑟

𝑦
;  𝐹1

𝑦
, 𝐹2
𝑦
, … , 𝐹𝑠

𝑦
). 

Then: 

𝑥 ≤𝑁 𝑦 ⟺ (

𝑇1
𝑥 ≤ 𝑇1

𝑦
, 𝑇2
𝑥 ≤ 𝑇2

𝑦
, … , 𝑇𝑝

𝑥 ≤ 𝑇𝑝
𝑦
;

𝐼1
𝑥 ≥ 𝐼1

𝑦
, 𝐼2
𝑥 ≥ 𝐼2

𝑦
, … , 𝐼𝑟

𝑥 ≥ 𝐼𝑟
𝑦
;

𝐹1
𝑥 ≥ 𝐹1

𝑦
, 𝐹2
𝑥 ≥ 𝐹,… , 𝐹𝑠

𝑥 ≥ 𝐹𝑠
𝑦
.

). 
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2.3.7. Neutrosophic Standard Overset/Underset/Offset Lattice 

Their three lattice 𝐾𝐿1 , 𝐾𝐿2 , 𝐾𝐿3  are no match for neutrosophic 

overset (when the neutrosophic components 𝑇, 𝐼, 𝐹 > 1 ), nor for 

neutrosophic underset (when the neutrosophic components 𝑇, 𝐼, 𝐹 < 0), 

and in general no match for the neutrosophic offset (when the 

neutrosophic components 𝑇, 𝐼, 𝐹  take values outside the unit interval 

[0, 1] as needed in real life applications [10-14] (2006-2018): 

[Ω,Ψ] with Ω ≤ 0 < 1 ≤ 𝛹. 

So, a lattice may similarly be built on the non-unitary neutrosophic 

cube [𝜑, 𝜓]3. 

2.3.8. Sum of Neutrosophic Components up to 3 

The authors say nothing on the novelty of neutrosophic theories that 

the sum of single-valued neutrosophic components 𝑇 + 𝐼 + 𝐹 ≤ 3, 

extended up to 3, and similarly the corresponding inequality when T, I, F 

are subsets of [0, 1]: 

sup𝑇 + sup𝐼 + sup𝐹 ≤ 3, 

for neutrosophic set, neutrosophic logic, and neutrosophic probability 

never done before in the previous classic logic and multiple-valued logics 

and set theories, nor in classical or imprecise probabilities. 

This makes a big difference, since for a single-valued neutrosophic set 

𝑆 all unit cube [0, 1]3 is fulfilled with points, each point 𝑃(𝑎, 𝑏, 𝑐) into 

the unit cube may represent the neutrosophic coordinates (𝑎, 𝑏, 𝑐) of an 

element 𝑥(𝑎, 𝑏, 𝑐) ∈ 𝑆, which was not the case for previous logics, sets, 

and probabilities. 

Which is not the case for the Picture Fuzzy Set (B.C. Cuong, [25], 

2013) whose domain is 
1

6
 of the unit cube (a cube corner): 

𝔻∗ = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝕀
3|𝑥1 + 𝑥2 + 𝑥3 ≤ 1}, 

while for Intuitionistic Fuzzy Set (K. Atanassov, [24], 1986) 

𝔻𝐴 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝕀
3|𝑥1 + 𝑥2 + 𝑥3 = 1}, 
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where 𝑥1  = membership degree, 𝑥2  = hesitant degree, and 𝑥3  = 

nonmembership degree, whose domain is the main cubic diagonal 

triangle that connects the vertices: (1, 0, 0), (0, 1, 0), and (0, 0,1), i.e. 

triangle BDE (its sides and its interior) in previous Fig. 1. 

2.3.9. Etymology of Neutrosophy and Neutrosophic 

The authors write ironically twice, in between quotations, 

“neutrosophic”, because they did not read the etymology [15] of the word 

published into my first book (1998), etymology which also appears into 

Denis Howe’s 1999 The Free Online Dictionary of Computing [16], and 

afterwards repeated by many researchers from the neutrosophic 

community in their published papers: 

Neutrosophy [16]: 

<philosophy> (From Latin "neuter" - neutral, Greek 

"sophia" - skill/wisdom) A branch of philosophy, 

introduced by Florentin Smarandache in 1980, which 

studies the origin, nature, and scope of neutralities, as 

well as their interactions with different ideational 

spectra. 

Neutrosophy considers a proposition, theory, event, 

concept, or entity, "A" in relation to its opposite, "Anti-

A" and that which is not A, "Non-A", and that which is 

neither "A" nor "Anti-A", denoted by "Neut-A". 

Neutrosophy is the basis of neutrosophic logic, 

neutrosophic probability, neutrosophic set, and 

neutrosophic statistics. 

While neutrosophic means what is derived/resulted from neutrosophy. 

Unlike the “intuitionistic|” and “picture fuzzy” notions, the notion of 

neutrosophic was carefully and meaningfully chosen, coming from 

neutral (or indeterminate; denoted by <neutA>) between two opposites, 

〈𝐴〉 and 〈anti𝐴〉, which made the main distinction between neutrosophic 

logic / set / probability, and the previous fuzzy, intuitionistic fuzzy logics 

and sets, i.e.:  
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- for neutrosophic logic neither true nor false, but neutral (or 

indeterminate) in between them;  

- similarly for neutrosophic set: neither membership nor non-

membership, but in between (neutral, or indeterminate); 

- and analogously  for neutrosophic probability: chance that 

an event 𝐸 occurs, chance that the event 𝐸 does not occur, 

and indeterminate (neutral) chance of the event 𝐸  of 

occurring or not occuring. 

Their irony is malicious and ungrounded.  

2.3.10. Neutrosophy as Extension of Dialectics 

Let 〈𝐴〉 be a concept, notion, idea, theory or so on. 

Then 〈anti𝐴〉 is the opposite of 〈𝐴〉, while 〈neut𝐴〉 is the neutral (or 

indeterminate) part between them. 

While in philosophy Dialectics is the dynamics of opposites (〈𝐴〉 and 

〈anti𝐴〉 ), Neutrosophy is an extension of dialectics, in other words 

neutrosophy is the dynamics of opposites and their neutrals (〈𝐴〉, 〈anti𝐴〉, 

〈neut𝐴〉), because the neutrals play an important role in our world, 

interfering in one side or the other of the opposites. 

2.3.11. Refined Neutrosophic Set and Lattice 

At page 11, Klement and Mesiar ([1], 2018) assert that:  

“Considering, for 𝑛 > 3, lattices which are isomorphic 

to (𝐿𝑛(𝕀),≤𝑐𝑜𝑚𝑝) , further generalizations of 

“neutrosophic” sets can be introduced. 

The authors are uninformed that a generalization was done long before, 

in 2013 when we have published a paper [9] that introduced for the first 

time the refined neutrosophic set / logic / probability, where T, I, F were 

refined into 𝑛 neutrosophic subcomponents: 

𝑇1, 𝑇2, …, 𝑇𝑝; 𝐼1, 𝐼2, …, 𝐼𝑟; 𝐹1, 𝐹2, …, 𝐹𝑠,  
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with 𝑝, 𝑟, 𝑠 ≥ 1 are integers and 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 4. 

But in our lattice (𝕀𝑛, ≤𝑛𝑁), the neutrosophic inequality is adjusted to 

the categories of sub-truths, sub-indeterminacies, and sub-falsehood 

respectively. 

(𝑇1(𝑥), 𝑇2(𝑥), …, 𝑇𝑝(𝑥); 𝐼1(𝑥), 𝐼2(𝑥), …, 𝐼𝑟(𝑥); 𝐹1(𝑥), 𝐹2(𝑥), …, 

𝐹𝑠(𝑥)) ≤𝑛𝑁 (𝑇1(𝑦), 𝑇2(𝑦), …, 𝑇𝑝(𝑦); 𝐼1(𝑦), 𝐼2(𝑦), …, 𝐼𝑟(𝑦); 𝐹1(𝑦), 

𝐹2(𝑦), …, 𝐹𝑠(𝑦)) iff 

𝑇1(𝑥) ≤ 𝑇1(𝑦), 𝑇2(𝑥) ≤ 𝑇2(𝑦), …, 𝑇𝑝(𝑥) ≤ 𝑇𝑝(𝑦);  

𝐼1(𝑥) ≥ 𝐼1(𝑦), 𝐼2(𝑥) ≥ 𝐼2(𝑦), …, 𝐼𝑟(𝑥) ≥ 𝐼𝑟(𝑦);  

𝐹1(𝑥) ≥ 𝐹1(𝑦), 𝐹2(𝑥) ≥ 𝐹2(𝑦), …, 𝐹𝑠(𝑥) ≥ 𝐹𝑠(𝑦). 

Therefore,  ≤𝑛𝑁  is different from the n-D inequalitties ≤comp, and 

from ≤𝕀𝑛  and ≤𝕀
𝑛

 (extending from authors inequalities ≤𝕀3  and ≤𝕀
3
 

respectively). 

2.3.12. Nonstandard Refined Neutrosophic Set and Lattice 

Even more, Nonstandard Refined Neutrosophic Set / Logic / 

Probability (which include infinitesimals, monads, and closed monads, 

binads and closed binads) has no connection and no isomorphism 

whatsoever with any of the authors’ lattices or extensions of their lattices 

for 2D and 3D to nD. 

2.3.13. Nonstandard Neutrosophic Mobinad Real Lattice 

We have built (2018) a more complex Nonstandard Neutrosophic 

Mobinad Real Lattice, on the nonstandard mobinad unit interval ]−0, 1+[ 

defined as: 

]−0, 1+[= {𝜀, 𝑎, 𝑎−, 𝑎−0, 𝑎+, 𝑎+0, 𝑎−+, 𝑎−0+| with 0 ≤ 𝑎 ≤ 1, 𝑎

∈ ℝ, and 𝜀 > 0, 𝜀 infinitesimal, ε ∈ ℝ∗} 

which is both nonstandard neutrosophic lattice of first type (as 

partially ordered set, under neutrosophic inequality ≤𝑁) and lattice of 
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second type (as algebraic structure, endowed with two binary nonstandard 

neutrosophic laws: inf𝑁 and sup𝑁). 

Now, ]−0, 1+[3 is a nonstandard unit cube, with much higher density 

than [0, 1]3 and which comprise not only real numbers 𝑎 ∈ [0, 1] but also 

infinitesimals 𝜀 > 0 and monads and binads neutrosophically included in 

]−0, 1+[. 

2.3.14. New ideas brought by the neutrosophic theories, never done before 

— The sum of the neutrosophic components is up to 3 (previously the 

sum was up to 1); 

— Degree of independence and dependence between the neutrosophic 

components T, I, F, making their sum 𝑇 + 𝐼 + 𝐹 to vary between 0 and 3. 

For example, when T, I, F are totally dependent with each other, then 

𝑇 + 𝐼 + 𝐹 ≤ 1, so we obtain the particular cases of intuitionistic fuzzy 

set (when 𝑇 + 𝐼 + 𝐹 = 1) and picture set when 𝑇 + 𝐼 + 𝐹 ≤ 1. 

— Nonstandard analysis used in order to be able to distinguish 

between absolute and relative (truth, membership, chance). 

— Refinement of the components into sub-components: 

(𝑇1, 𝑇2, … , 𝑇𝑝;  𝐼1, 𝐼2, … , 𝐼𝑟;  𝐹1, 𝐹2, … , 𝐹𝑠), 

with the newly introduced the Refined Neutrosophic Logic / Set / 

Probability. 

— Ability to express incomplete information (𝑇 + 𝐼 + 𝐹 < 1) and 

paraconsistent (conflicting) and subjective information (𝑇 + 𝐼 + 𝐹 > 1). 

— Law of Included Middle explicitly/independently expressed as 

〈neut𝐴〉 (indeterminacy, neutral). 

— Law of Included Middle expanded to the Law of Included Multiple-

Middles within the refined neutrosophic set and logic and probability. 

- A large array of applications [21, 22] in a variety of fields, after 

two decades from their foundation ([15], 1998), such as:  Artificial 

Intelligence, Information Systems, Computer Science, Cybernetics, 
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Theory Methods, Mathematical Algebraic Structures, Applied 

Mathematics, Automation, Control Systems, Communication, Big 

Data, Engineering, Electrical, Electronic, Philosophy, Social Science, 

Psychology, Biology, Biomedical, Engineering, Medical Informatics, 

Operational Research, Management Science, Imaging Science, 

Photographic Technology, Instruments, Instrumentation, Physics, 

Optics, Economics, Mechanics, Neurosciences, Radiology Nuclear, 

Medicine, Medical Imaging, Interdisciplinary Applications, 

Multidisciplinary Sciences etc. 

As we can see, Klement’s and Mesiar’s claim that neutrosophic set (I 

do not talk herein about intuitionistic fuzzy set, picture fuzzy set, and 

Pythagorean fuzzy set that they also criticized) is not a new result… is far 

from the truth. 

2.4. Neutrosophy vs. Yin Yang Philosophy 

Ying Han, Zhengu Lu, Zhenguang Du, Gi Luo, and Sheng Chen [3] 

have defined the so-called “YinYang bipolar fuzzy set” (2018). 

But “YinYang bipolar” is already a pleonasm, because in Taoist 

Chinese philosophy, from the 6th century BC, Yin and Yang is already a 

bipolarity, between: negative (Yin) / positive (Yang), or feminine (Yin) / 

masculine (Yang). 

Dialectics was derived, much later in time, from Yin Yang. 

Neutrosophy, as the dynamicity and harmony between opposites (Yin 

<A> and Yang (antiA>) together with their neutralities (things which are 

neither Yin nor Yang, or things which are blends of both: <neutA>) is an 

extension of Yin Yang Chinese philosophy. Neutrosophy came naturally, 

since in our world into the dynamicity and conflict and cooperation and 

even ignorance between opposites the neutrals are attracted and play an 

important role. 
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2.4.1. Yin Yang Bipolar Fuzzy Set is The Bipolar Fuzzy Set 

The authors sincerely recognize that: 

”In the existing papers, YinYang bipolar fuzzy set also 

was called bipolar fuzzy set [5] and bipolar-valued fuzzy 

set [13, 16].” 

See these papers cited at our References below as [17, 18, 19]. 

We prove that the YinYang bipolar fuzzy set is not equivalent with 

neutrosophic set, but a particular case of the bipolar neutrosophic set.  

The authors [3] say that: 

“Denote IP = [0 , 1] and IN = [ −1 , 0] , and 

~ ~ ~ ~ ~

{ ( , ) | , }
P N P N

P NL I I    = =   , 

then 
~

  is called YinYang bipolar fuzzy number.  

(YinYang bipolar fuzzy set) X = {x1 , ···, xn} represents the finite 

discourse. YinYang bipolar fuzzy set in X is defined by the mapping 

~ ~ ~

: , ( ), ( ) , .
P N

A X L x A x A x x X
 

→ →   
 

 

Where the functions 
~ ~

: , ( )
P P

P PA X I x A x I→ →  and 

~ ~

: , ( )
N N

N NA X I x A x I→ →  define the satisfaction degree of the 

element x ∈ X to the property, and the implicit counter-property to the 

YinYang bipolar fuzzy set 
~

A  in X , respectively” (see [3], page 2). 

With simpler notations, the above set L is equivalent to: 

L = {(a, b), with a ∊ [0, 1], b ∊ [-1, 0]}, and the authors denote (a, b) 

as YinYang bipolar fuzzy number. 

Further on, again with simpler notations, the so-called YinYang 

bipolar fuzzy set in  



Advances of Standard and Nonstandard Neutrosophic Theories 

111 

X = {x1, …, xn} is equivalent to: 

X = {x1(a1, b1), …, xn(an, bn)}, where all a1, …,an ∊ [0, 1], and  

all b1, …, bn ∊ [-1, 0]}. 

Clearly, thus is the bipolar fuzzy set; no need to baptize it “YinYang 

bipolar fuzzy set”. 

The authors added that: “Montero et al. pointed that neutrosophic set 

is equivalent to the YinYang bipolar fuzzy set in syntax”. 

But, the bipolar fuzzy set is not equivalent to the neutrosophic set at 

all. The bipolar fuzzy set is actually a particular case of the bipolar 

neutrosophic set, defined as (keeping the previous notations): 

X = {x1( (a1, b1), (c1, d1), (e1, f1) ), …, xn( (an, bn), (cn, dn), (en, fn) )}, 

where  

all a1, …,an, c1, …, cn, e1, …,en ∊ [0, 1], and all b1, …, bn, d1, …, dn, f1, 

…, fn ∊ [-1, 0]}; 

for a generic xj( (aj, bj),(cj, dj), (ej, fj) ) ∊ X, 1 ≤ j ≤ n, 

ai = positive membership degree of xi, and bi = negative membership 

degree of xi; 

ci = positive indeterminate-membership degree of xi, and di = negative 

indeterminate membership degree of xi; 

ei = positive nonmembership degree of xi, and fi = negative 

nonmembership degree of xi. 

Using notations adequate to the neutrosophic environment, one has: 

Let 𝒰 be a universe of discourse, and 𝑀 ⊂ 𝒰 be a set. 𝑀 is a single-

valued bipolar fuzzy set (that authors call YinYang bipolar fuzzy set) if 

for any element 𝑥(𝑇(𝑥)
+ , 𝑇(𝑥)

− ) ∈ 𝑀 , 𝑇(𝑥)
+ ∈ [0, 1] , and 𝑇(𝑥)

− ∈ [−1, 0] , 

where 𝑇(𝑥)
+  is the positive membership of 𝑥 , and 𝑇(𝑥)

−  is the negative 

membership of 𝑥..     (BFS)      

The authors write that:  
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“Montero et al. pointed that neutrosophic set [22] is 

equivalent to the YinYang bipolar fuzzy set in syntax 

[17]”. 

Montero et al.’s paper is cited below at References as [4]. 

If somebody says something, it doesn’t mean it is true, they have to 

verify. Actually, it is untrue, since the neutrosophic set is totally different 

from the so-called YinYang bipolar fuzzy set. 

Let 𝒰  be a universe of discourse, and 𝑀 ⊂ 𝒰  be a set, if for any 

element 𝑥(𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)) ∈ 𝑀. 

𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)  are standard or nonstandard real subsets of the 

nonstandard real subsets of the nonstandard real unit interval ]−0, 1+[.  

(NS) 

Clearly, the definitions (BFS) and (NS) are totally different. In the so-

called YinYang bipolar fuzzy set there is no indeterminacy 𝐼(𝑥), no 

nonstandard analysis involved, and the neutrosophic components may be 

subsets as well. 

2.4.2. Single-Valued Bipolar Fuzzy Set as particular case of Single-Valued 

Bipolar Neutrosophic Set 

The Single-Valued Bipolar Fuzzy Set (alias YinYang Bipolar Fuzzy 

Set) is a particular case of the Single-Valued Bipolar Neutrosophic Set, 

employed by the neutrosophic community, and defined as follows: 

Let 𝒰 be a universe of discourse, and 𝑀 ⊂  𝒰 be a set. 𝑀 is a single-

valued bipolar neutrosophic set, if for any element: 

𝑥(𝑇(𝑥)
+ , 𝑇(𝑥)

− ; 𝐼(𝑥)
+ , 𝐼(𝑥)

− ; 𝐹(𝑥)
+ , 𝐹(𝑥)

− ) ∈ 𝑀, 

𝑇(𝑥)
+ , 𝐼(𝑥)

+ , 𝐹(𝑥)
+ ∈ [0, 1], 

and 𝑇(𝑥)
− , 𝐼(𝑥)

− , 𝐹(𝑥)
− ∈ [−1, 0]. 

2.4.3. Dependent Indeterminacy vs. Independent Indeterminacy 

The authors say:  
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“Attanassov’s intuitionistic fuzzy set [4] perfectly 

reflects indeteminacy but not bipolarity”. 

We disagree, since Atanassov’s intuitionistic fuzzy set [24] perfectly 

reflects hesitancy between membership and nonmembership not 

indeterminacy, since hesitancy is dependent on membership and 

nonmembership: 𝐻 = 1 − 𝑇 − 𝐹, where H = hesitancy, T = membership, 

and F = nonmembership. 

It is the single-valued neutrosophic set that “perfectly reflects 

indeterminacy”, since indeterminacy ( 𝐼 ) in the neutrosophic set is 

independent from membership (𝑇) and from nonmembership (𝐹). 

On the other hand, neutrosophic set perfectly reflects the bipolarity 

membership/nonmembership as well, since the membership (𝑇 ) and 

nonmembership (𝐹) are independent of each other. 

2.4.4. Dependent Bipolarity vs. Independent Bipolarity 

The bipolarity in single-valued fuzzy set and intuitionistic fuzzy set 

is dependent (restrictive), in the sense that if the truth-membership is 𝑇, 

then it involves that the falsehood-nonmembership 𝐹 ≤ 1 − 𝑇 while the 

bipolarity in single-valued neutrosophic set is independent 

(nonrestrictive): if the truth-membership 𝑇 ∈ [0, 1] , the falsehood-

nonmebership is not influenced at all, so also 𝐹 ∈ [0, 1]. 

2.4.5. Equilibriums and Neutralities 

Again: 

“While, in semantics, the YinYang bipolar fuzzy set 

suggests equilibrium , and neutrosophic set suggests a 

general neutrality . Al- though, neutrosophic set has been 

successfully applied to medical diagnosis [9, 27], from 

above analysis and the conclusion in [31] , we see that 

YinYang bipolar fuzzy set is obvious the suitable model 

to bipolar disorder diagnosis and will be adopted in this 

paper.” 
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I’d like to add that single-valued bipolar neutrosophic set suggests: 

—three types of equilibrium, between: 𝑇(𝑥)
+  and 𝑇(𝑥)

− , 𝐼(𝑥)
+  and 𝐼(𝑥)

− , and 

𝐹(𝑥)
+  and 𝐹(𝑥)

− ; 

— and two types of neutralities (indeterminacies) between 𝑇(𝑥)
+  and 

𝐹(𝑥)
+ , and between 𝑇(𝑥)

−  and 𝐹(𝑥)
− . 

Therefore, the single-valued bipolar neutrosophic set is 3⨯2 = 6 times 

more complex and more flexible than the YinYang bipolar fuzzy set. Due 

to higher complexity, flexibility and capability of catching more details 

(such as falsehood-nonmembership, and indeterminacy) the single-

valued bipolr neutrosophic set is more suitable than YinYang bipolar 

fuzzy set to be used in bipolar disorder diagnosis. 

2.4.6. Zhang-Zhang’s Bipolar Model is not equivalent with the 

Neutrosophic Set 

Montero et al. [4] wrote: 

“Zhang-Zhang’s bipolar model is therefore equivalent to 

the neutrosophic sets proposed by Smarandache [70]” (p. 

56).  

This sentence is false, and we proved previously that what Zhang & 

Zhang proposed in 2004 is a subclass of the single-valued bipolar 

neutrosophic set. 

2.4.7. Tripolar and Multipolar Neutrosophic Sets 

Not talking on the fact that in 2016 we have extended our bipolar 

neutrosophic set to tripolar and even multipolar neutrosophic sets [12], so 

more general than bipolar fuzzy model. 

2.4.8. Neutrosophic Overset / Underset / Offset 

Not talking that the unit interval [0, 1] was extended in 2006 below 0 

and above 1 into the neutrosophic overset/underset/offset: [Ω,Ψ] with 

Ω ≤ 0 < 1 ≤ 𝛹 (as explained above). 
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2.4.9. Neutrosophic Algebraic Structures 

The Montero et al. continue:  

“Notice also that none of these two equivalent models 

include any formal structure, as claimed in [48]”. 

First, we have proved previously that these two models (Zhang-

Zhang’s bipolar fuzzy set, and neutrosophic logic) are not equivalent at 

all. Zhang-Zhang’s bipolar fuzzy set is a subclass of a particular type of 

neutrosophic set, called single-valued bipolar neutrosophic set. 

Second, since 2013, Kandasamy and Smarandache have developed 

various algebraic structures (such as neutrosophic semigroup, 

neutrosophic group, neutrosophic ring, neutrosophic field, neutrosophic 

vector space, etc.) [20] on the set of neutrosophic numbers: 

SR  = {𝑎 + 𝑏𝐼|,where 𝑎, 𝑏 ∈ ℝ, and 𝐼 = indeterminacy, 𝐼2 = 𝐼} , 

where ℝ is the set of real numbers. 

And extended on: 

SC = {𝑎 + 𝑏𝐼|,where 𝑎, 𝑏 ∈ 𝐶, and 𝐼 = indeterminacy, 𝐼2 = 𝐼} , 

where C is the set of complex numbers. 

But until 2016 [year of Montero et al.’s published paper], I did not 

developed a formal structure on neutrosophic set, Montero et al. are right. 

Yet, in 2018 and consequently at the beginning of 2019, we developed, 

then generalized and proved that the neutrosophic set has a structure of 

lattice of first type (as neutrosophically partially ordered set): 

(]−0, 1+[,≤𝑁) , where ]−0, 1+[  is the nonstandard neutrosophic 

mobinad (monads & binads) real unit interval, and ≤𝑁 is the nonstandard 

neutrosophic inequality. 

Moreover, 

(]−0, 1+[, inf𝑁, sup𝑁,
− 0, 1+), 
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has also the structure of bound lattice of second type (as algebraic 

structure), under two binary laws inf𝑁  (nonstandard neutrosophic 

infimum) and sup𝑁 (nontandard neutrosophic supremum). 

2.4.10. Neutrality (<neutA>) 

Montero et al. continue: 

„…the selected denominations within each model might 

suggest different underlying structures: while the model 

proposed by Zhang and Zhang suggests conflict between 

categories (a specific type of neutrality different from 

Atanassov’s indeterminacy), Smarandache suggests a 

general neutrality that should perhaps jointly cover some 

of the specific types of neutrality considered in our paired 

approach.” 

In neutrosophy and neutrosophic set / logic / probability, the neutrality 

<neutA> means everything in between <A> and <antiA>, everything 

which is neither <A> nor <antiA>, or everything which is a blending of 

<A> and <antiA>. 

Further on, in Refined Neutrosophy and Refined Neutrosophic Set / 

Logic / Probability [9], the neutrality <neutA> was split (refined) in 2013 

into sub-neutralities (or sub-indeterminacies), such as: <neutA1>, 

<neutA2>, …, <neutAn> whose number could be finite or infinite – 

depending on each application to solve. 

Thus, the paired structure becomes a particular case of refined 

neutrosophy (see next). 

2.5. The Pair Structure as a particular case of Refined Neutrosophy 

J. Montero, H. Bustince, C. Franco, J. T. Rodriguez, D. Gomez, M. 

Pagola, J. Fernandez, E. Barrenchea [4] in 2016 have defined a paired 

structure: 
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“composed by a pair of opposite concepts and three 

types of neutrality as primary valuations”: 

L = {concept, opposite, indeterminacy, ambivalence, 

conflict}.” 

Therefore, each element 𝑥 ∈ 𝑋, where 𝑋 is a universe of discourse, is 

characterized by a degree function, with respect to each attribute value 

from 𝐿: 

𝜇: 𝑋 → [0, 1]5, 

𝜇(𝑥) = (𝜇1(𝑥), 𝜇2(𝑥), 𝜇3(𝑥), 𝜇4(𝑥), 𝜇5(𝑥)), 

where  𝜇1(𝑥) represents the degree of 𝑥 with respect to the concept; 

𝜇2(𝑥)  represents the degree of 𝑥  with respect to the 

opposite (of the concept); 

𝜇3(𝑥)  represents the degree of 𝑥  with respect to 

‘indeterminacy’; 

𝜇4(𝑥)  represents the degree of 𝑥  with respect to 

‘ambivalence’; 

𝜇5(𝑥)  represents the degree of 𝑥  with respect to 

‘conflict’. 

But this paired structure is a particular case of Refined Neutrosophy. 

2.5.1. Antonym vs Negation 

Firstly, Dialectics is the dynamics of opposites, let’s denote them by 

〈𝐴〉 and 〈anti𝐴〉, where 〈𝐴〉 may be an item, a concept, attribute, idea, 

theory, and so on; while 〈anti𝐴〉 is the opposite of 〈𝐴〉. 

Secondly, Neutrosophy ([15], 1998), as a generalization of Dialectics, 

and new branch of philosophy, is the dynamics of opposites and their 

neutralities (denoted by 〈neut𝐴〉 ). Therefore, Neutrosophy is the 

dynamics of 〈𝐴〉, 〈anti𝐴〉, and 〈neut𝐴〉. 

〈neut𝐴〉 means everything which is neither 〈𝐴〉 nor 〈anti𝐴〉, or which 

is a mixture of them, or which is indeterminate, vague, unknown. 
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The antonym of  〈𝐴〉 is 〈anti𝐴〉.  

The negation of 〈𝐴〉 (which we denote by 〈non𝐴〉) is what is not 〈𝐴〉, 

therefore:  

¬𝑁〈𝐴〉 = 〈𝑛𝑜𝑛𝐴〉 =𝑁 〈𝑛𝑒𝑢𝑡𝐴〉 ∪𝑁 〈𝑎𝑛𝑡𝑖𝐴〉. 

We preferred to use the lower index N (neutrosophic) because we deal 

with items, concepts, attributes, ideas, theories etc., such as 〈𝐴〉 and in 

consequence its derivates 〈anti𝐴〉, 〈neut𝐴〉, 〈non𝐴〉, whose borders are 

ambiguous, vague, not clearly delimited. 

2.5.2. Refined Neutrosophy as extension of Neutrosophy 

Thirdly, Refined Neutrosophy ([9], 2013), as an extension of 

Neutrosophy, and refined branch of philosophy, is the dynamics of 

refined opposites: 

〈𝐴1〉, 〈𝐴2〉, …, 〈𝐴𝑝〉 with 〈anti𝐴1〉, 〈anti𝐴2〉, …, 〈anti𝐴𝑠〉, and their 

refined neutralities: 〈neut𝐴1〉, 〈neut𝐴2〉, …, 〈neut𝐴𝑟〉, for integers p, r, 

𝑠 ≥ 1,  

and 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 4. 

Therefore, the item 〈𝐴〉 has been split into sub-items 〈𝐴𝑗〉, 1 ≤ 𝑗 ≤ 𝑝, 

the 〈anti𝐴〉 into sub-(anti-items) 〈anti𝐴𝑘〉, 1 ≤ 𝑙 ≤ 𝑠 , and the 〈neut𝐴〉 

into sub-(neutral-items) 〈neut𝐴𝑙〉, 1 ≤ 𝑘 ≤ 𝑟. 

2.5.3. Qualitative Scale as particular case of Refined Neutrosophy 

Montero et al.’s qualitative scale is a particular case of Refined 

Neutrosophy, when the neutralities are split into three parts: 

L = {concept, opposite, indeterminacy, ambivalence, conflict}  

   = {<A>, <antiA>, <neutA1>, <neutA2>, <neutA3>}, 

where of course:  

<A> = concept, <antiA> = opposite, <neutA1> = 

indeterminacy,  

<neutA2> = ambivalence, <neutA3> = conflict. 
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Yin Yang, Dialectics, Neutrosophy, and Refined Neutrosophy (the last 

one having only 〈neut𝐴〉  as refined component), are bipolar: 〈𝐴〉  and 

〈anti𝐴〉 are the poles. 

Montero et al.’s qualitative scale is bipolar (‘concept’, and its 

‘opposite’). 

2.5.4. Multi-Subpolar Refined Neutrosophy 

But the Refined Neutrosophy, whose at least one of 〈𝐴〉 or 〈anti𝐴〉 is 

refined, is multi-subpolar. 

2.5.5. Multidimensional Fuzzy Set as particular case of Refined 

Neutrosophic Set 

Montero et al. defined the Multidimensional Fuzzy Set AL as: 

{ ;( ( )) | }t s s LA x x x X =    , 

where X is the universe of discourse, L = the previous qualitative scale, 

and ( )s x ∊ S, where S is a valuation scale (in most cases S = [0, 1]), 

( )s x is the degree of x with respect to s ∊ L. 

A Single-Valued Neutrosophic Set is defined as follows. Let 𝒰 be a 

universe of discourse, and 𝑀 ⊂ 𝒰 a set. For each element 

𝑥(𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)) ∈ 𝑀, 

𝑇(𝑥) ∈ [0, 1] is the degree of truth-membership of element 𝑥  with 

respect to the set 𝑀; 

𝐼(𝑥) ∈ [0, 1] is the degree of indeterminacy-membership of element 

𝑥 with respect to the set 𝑀; 

and 𝐹(𝑥) ∈ [0, 1]  is the degree of falsehood-nonmembership of 

element 𝑥 with respect to the set 𝑀. 

Let’s refine 𝐼(𝑥) as 𝐼1(𝑥), 𝐼2(𝑥), 𝐼3(𝑥) ∈ [0, 1] sub-indeterminacies. 

Whence we get a single-valued refined neutrosophic set. 
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( ) ( )concept x T x =  (truth-membership), 

( ) ( )opposite x F x = (falsehood-nonmembership), 

indeterminacy 1( ) ( )x I x = (first sub-indeterminacy), 

ambivalence 2( ) ( )x I x = (second sub-indeterminacy), 

conflict 3( ) ( )x I x = (third sub-indeterminacy). 

The Single-Valued Refined Neutrosophic Set is defined as follows. Let 

𝒰 be a universe of discourse, and 𝑀 ⊂ 𝒰 a set. For each element 

𝑥 (𝑇1(𝑥), 𝑇2(𝑥),… , 𝑇𝑝(𝑥); 𝐼1(𝑥), 𝐼2(𝑥),… , 𝐼𝑟(𝑥); 𝐹1(𝑥), 𝐹2(𝑥),… , 𝐹𝑠(𝑥))

∈ 𝑀 

𝑇𝑗(𝑥), 1 ≤ 𝑗 ≤ 𝑝, are degrees of subtruth-submembership of element 

𝑥 with respect to the set 𝑀; 

𝐼𝑘(𝑥), 1 ≤ 𝑘 ≤ 𝑟 , are degrees of subindeterminacy-membership of 

element 𝑥 with respect to the set 𝑀; 

and 𝐹𝑙(𝑥) , 1 ≤ 𝑙 ≤ 𝑠 , are degrees of subfalsehood-

subnonmembership of element 𝑥 with respect to the set 𝑀, 

where integers p, r, 𝑠 ≥ 1, and 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 4. 

Therefore, Montero et al.’s multidimensional fuzzy set is a particular 

case of the refined neutrosophic set, when 𝑝 = 1, 𝑟 = 3, and 𝑠 = 1, 

whence 𝑛 = 1 + 3 + 1 = 5. 

2.5.6. Plithogeny and Plithogenic Set 

Fourthly, in 2017 and 2018 [26 - 29], the Neutrosophy was extended 

to Plithogeny, which is multipolar, being the dynamics and hermeneutics 

[methodological study and interpretation] of many opposites and/or their 

neutrals, together with non-opposites: 

〈𝐴〉, 〈neut𝐴〉, 〈anti𝐴〉; 

〈𝐵〉, 〈neut𝐵〉, 〈anti𝐵〉; etc. 
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〈𝐶〉, 〈𝐷〉, etc. 

And consequently the Plithogenic Set was introduced, as a 

generalization of Crisp, Fuzzy, Intuitionistic Fuzzy, and Neutrosophic 

Sets.  

Unlike previous sets defined, whose elements were characterized by 

the attribute ‘appurtenance’ (to the set), which has only one (membership), 

or two (membership, nonmembership), or three (membership, 

nonmembership, indeterminacy) attribute values respectively, for the 

Plithogenic Set each element may be characterized by a multi-attribute, 

with any number of attribute values. 

2.5.7. Refined Neutrosophic Set as Unifying View of Opposite Concepts 

Montero et al.’s statement from their paper Abstract:  

“we propose a consistent and unifying view to all those 

basic knowledge representation models that are based on 

the existence of two somehow opposite fuzzy concepts”. 

With respect to “unifying” claim, their statement is not true, since, as 

we proved before, their paired structure together with three types on 

neutralities (indeterminacy, ambivalence, conflict) is a simple 

particular case of the refined neutrosophic set.  

The real unifying view nowadays is the Refined Neutrosophic Set. 

{I was notified about this paired structure article by Dr. Said Broumi, 

who forwarded it to me.} 

2.5.8. Counter-Example to Paired Structure 

As a counter-example to the paired structure, it cannot catch a simple 

voting scenario. 

The election for the United States President from 2016: Donald Trump 

vs. Hillary Clinton. USA has 50 states and since in the country there is 

used an Electoral vote, not a Popular vote, it is required to know the 

winner of each state. 
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There were two opposite candidates. 

The candidate that receives in a state more votes than the other 

candidate, gets all the points of that state. 

As in neutrosophic set, there are three possibilities: 

𝑇 = percentage of USA people voting for Mr. Trump; 

𝐼 = percentage of USA people not voting, or voting but giving either 

a blank vote (not selecting any candidate) or a black vote (cutting all 

candidates); 

𝐹 = percentage of USA people voting against Mr. Trump. 

The opposite concepts, using Montero et al.’s knowledge 

representation, are T (voting for, or truth-membership) and F (voting 

against, or false-membership). But 𝑇 > 𝐹, or 𝑇 = 𝐹, or 𝑇 < 𝐹, that the 

Paired Structure can catch, mean only the Popular vote, which does not 

count in the United States. 

Actually, it happened that 𝑇 < 𝐹 in the US 2016 presidential election, 

or Mr. Trump lost the Popular vote, but he won the Presidency at the 

Electoral vote! 

The paired structure is not capable to refine the opposite concepts (𝑇 

and 𝐹 ), while the indeterminate ( 𝐼 ) could be refined by the paired 

structure only in three parts. 

Therefore, the paired structure is not a unifying view of all basic 

knowledge that use opposite fuzzy concepts. But the refined neutrosophic 

set / logic / probability do. 

Using the refined neutrosophic set and logic, and splits (refines) 𝑇, 𝐼, 

and 𝐹 as: 

𝑇𝑗 = percentage of American state 𝑆𝑗 people voting for Mr. Trump; 

𝐼𝑗 = percentage of American state 𝑆𝑗 people not voting, or casting a 

blank vote or a black vote; 
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𝐹𝑗 =  percentage of American state 𝑆𝑗  people voting against Mr. 

Trump, 

with 𝑇𝑗, 𝐼𝑗, 𝐹𝑗 ∈ [0, 1] and 𝑇𝑗 + 𝐼𝑗 + 𝐹𝑗 = 1, for all 𝑗 ∈ {1, 2,… , 50}. 

Therefore, one has: 

(𝑇1, 𝑇2, … , 𝑇50;  𝐼1, 𝐼2, … , 𝐼50;  𝐹1, 𝐹2, … , 𝐹50). 

On the other hand, due to the fact that the sub-indeterminacies 𝐼1 , 

𝐼2, …, 𝐼50 did not count towards the winner or looser (only maybe for 

indeterminate voting statistics), it is not mandatory to refine 𝐼. We could 

simply refine as: 

(𝑇1, 𝑇2, … , 𝑇50;  𝐼;  𝐹1, 𝐹2, … , 𝐹50). 

2.5.9. Finite Number and Infinite Number of Neutralities 

Montero et al.: 

 „(…) we emphasize the key role of certain 

neutralities in our knowledge representation models, 

as pointed out by Atanassov [4] , Smarandache [70] 

and others. But notice that our notion of neutrality 

should not be confused with the neutral value in a 

traditional sense (see [22,–24,36,54] , among 

others). Instead, we will stress the existence of 

different kinds of neutrality that emerge (in the sense 

of [11] ) from the semantic relation between two 

opposite concepts (and notice also that we refer to a 

neutral category that does not entail linearity 

between opposites).” 

In neutrosophy, and consequently in neutrosophic set, logic, and 

probability, between the opposite items (concepts, attributes, ideas, etc.) 

〈𝐴〉 and 〈anti𝐴〉  there may be a large number of 

neutralities/indeterminacies (all together denoted by 〈neut𝐴〉  even an 

infinite spectrum – depending on the application to solve. 
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We agree with different kinds of neutralities and indeterminacies 

(vague, ambiguous, unknown, incomplete, contradictory, linear and non-

linear information, and so on), but the authors display only three 

neutralities. 

In our everyday life and in practical applications there are more 

neutralities, indeterminacies, even infinitely many. 

Let’s see another example (besides the previous about Electoral 

voting), where there may be any number of subindeterminacies / 

subneutralities). 

The opposite concepts attributes are: 〈𝐴〉 = white, 〈anti𝐴〉 = black, 

while neutral concepts in between may be: 

〈neut𝐴1〉 =  yellow, 〈neut𝐴2〉 =  orange, 〈neut𝐴3〉 =  red, 

〈neut𝐴4〉 = violet, 〈neut𝐴5〉 = green, 〈neut𝐴6〉 = blue.  

Therefore we have six neutralities. 

Example with infinitely many neutralities: 

— the opposite concepts: 〈𝐴〉 = white, 〈anti𝐴〉 = black; 

— the neutralities: 〈neut𝐴1,2,…,∞〉 =  the whole light spectrum 

between white and black, measured in nanometers (nn) [a nanometer is a 

billionth part of a meter]. 

2.6. Conclusion 

The neutrosophic community thank the authors for their critics and 

interest in the neutrosophic environment, and we wait for new comments 

and critics, since as Winston Churchill had said: the eagles fly higher 

against the wind.  
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CHAPTER 3 

About Nonstandard Neutrosophic Logic 

(Answers to Imamura’s “Note on the Definition of 

Neutrosophic Logic”) 
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Abstract 

In order to more accurately situate and fit the neutrosophic logic into 

the framework of nonstandard analysis, we present the neutrosophic 

inequalities, neutrosophic equality, neutrosophic infimum and supremum, 

neutrosophic standard intervals, including the cases when the 

neutrosophic logic standard and nonstandard components T, I, F get 

values outside of the classical unit interval [0, 1], and a brief evolution of 

neutrosophic operators. The paper intends to answer Imamura’s criticism 

that we found benefic in better understanding the nonstandard 

neutrosophic logic – although the nonstandard neutrosophic logic was 

never used in practical applications. 

3.1 Uselessness of Nonstandard Analysis in Neutrosophic Logic, Set, 

Probability, et al. 

Imamura’s discussion [1] on the definition of neutrosphic logic is 

welcome, but it is useless, since from all neutrosophic papers and books 

published, from all conference presentations, and from all MSc and PhD 

theses defended around the world, etc. (more than one thousand) in the 

last two decades since the first neutrosophic research started (1998-2018), 

and from hundreds of neutrosophic researchers, not even a single one ever 

used the nonstandard form of neutrosophic logic, set, or probability and 

statistics in no occasion (extended researches or applications). 

All researchers, with no exception, have used the Standard 

Neutrosophic Set and Logic [so no stance whatsoever of Nonstandard 

Neutrosophic Set and Logic], where the neutrosophic components T, I, F 

are subsets of the standard unit interval [0, 1]. 

Even more, for simplifying the calculations, the majority of 

researchers have utilized the Single-Valued Neutrosophic Set and Logic 

{when T, I, F are single numbers from [0, 1]}, on the second place was 

Interval-Valued Neutrosophic Set and Logic {when T, I, F are intervals 

included in [0, 1]}, and on the third one the Hesitant Neutrosophic Set 

and Logic {when T, I, F were discrete finite sets included in [0, 1]}. 
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In this direction, there have been published papers on single-valued 

“neutrosophic standard sets” [12, 13, 14], where the neutrosophic 

components are just standard real numbers, considering the particular 

case when 0 ≤ T + I + F ≤ 1 (in the most general case 0 ≤ T + I + F ≤ 3). 

Actually, Imamura himself acknowledges on his paper [1], page 4, that: 

“neutrosophic logic does not depend on transfer, so the 

use of non-standard analysis is not essential for this logic, 

and can be eliminated from its definition”. 

Entire neutrosophic community has found out about this result and has 

ignored the non-standard analysis in the studies and applications of 

neutrosophic logic for two decades. 

3.2 Applicability of Neutrosophic Logic et al. vs. Theoretical 

Nonstandard Analysis 

Neutrosophic logic, set, measure, probability, statistics and so on were 

designed with the primordial goal of being applied in practical fields, such 

as: 

Artificial Intelligence, Information Systems, Computer 

Science, Cybernetics, Theory Methods, Mathematical 

Algebraic Structures, Applied Mathematics, Automation, 

Control Systems, Big Data, Engineering, Electrical, 

Electronic, Philosophy, Social Science, Psychology, 

Biology, Biomedical, Engineering, Medical Informatics, 

Operational Research, Management Science, Imaging 

Science, Photographic Technology, Instruments, 

Instrumentation, Physics, Optics, Economics, Mechanics, 

Neurosciences, Radiology Nuclear, Medicine, Medical 

Imaging, Interdisciplinary Applications, 

Multidisciplinary Sciences etc. [2], 

while nonstandard analysis is mostly a pure mathematics. 
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Since 1990, when I emigrated from a political refugee camp in Turkey 

to America, working as a software engineer for Honeywell Inc., in 

Phoenix, Arizona State, I was advised by American co-workers to do 

theories that have practical applications, not pure-theories and 

abstractizations as “art pour art”. 

3.3 Theoretical Reason for the Nonstandard Form of 

Neutrosophic Logic 

The only reason I have added the nonstandard form to neutrosophic 

logic (and similarly to neutrosophic set and probability) was in order to 

make a distinction between Relative Truth (which is truth in some Worlds, 

according to Leibniz) and Absolute Truth (which is truth in all possible 

Words, according to Leibniz as well) that occur in philosophy. 

Another possible reason may be when the neutrosophic degrees of 

truth, indeterminacy, or falsehood are infinitesimally determined, for 

example a value infinitesimally bigger than 0.8 (or 0.8+), or 

infinitesimally smaller than 0.8 (or -0.8). But these can easily be 

overcome by roughly using interval neutrosophic values, for example 

(0.80, 0.81) and (0.79, 0.80) respectively. 

I wanted to get the neutrosophic logic as general as possible [6], 

extending all previous logics (Boolean, fuzzy, intuitionistic fuzzy logic, 

intuitionistic logic, paraconsistent logic, dialethism), and to have it able 

to deal with all kind of logical propositions (including paradoxes, 

nonsensical propositions, etc.). 

That’s why in 2013 I extended the Neutrosophic Logic to Refined 

Neutrosophic Logic [ from generalizations of 2-valued Boolean logic to 

fuzzy logic, also from the Kleene’s and Lukasiewicz’s and Bochvar’s 3-

symbol valued logics or Belnap’s 4-symbol valued logic to the most 

general n-symbol or n-numerical valued refined neutrosophic logic, for 

any integer n ≥ 1 ], the largest ever so far, when some or all neutrosophic 

components T, I, F were respectively split/refined into neutrosophic 
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subcomponents: T1, T2, …; I1, I2, …; F1, F2, … which were deduced from 

our everyday life [3]. 

3.4 From Paradoxism movement to Neutrosophy branch of 

philosophy and then to Neutrosophic Logic 

I started first from Paradoxism (that I founded in 1980’s as a 

movement based on antitheses, antinomies, paradoxes, contradictions in 

literature, arts, and sciences), then I introduced the Neutrosophy (as 

generalization of Dialectics, neutrosophy is a branch of philosophy 

studying the dynamics of triads, inspired from our everyday life, triads 

that have the form: 

<A>,  

its opposite <antiA>,  

and their neutrals <neutA>,     (3.1) 

where <A> is any item or entity [4]. 

(Of course, we take into consideration only those triads that make 

sense in our real and scientific world.) 

The Relative Truth neutrosophic value was marked as 1, while the 

Absolute Truth neutrosophic value was marked as 1+ (a tinny bigger than 

the Relative Truth’s value):  

1+>N 1,  

where >N is a neutrosophic inequality, meaning 1+ is neutrosophically 

bigger than 1. 

Similarly for Relative Falsehood / Indeterminacy (which falsehood / 

indeterminacy in some Worlds), and Absolute Falsehood / Indeterminacy 

(which is falsehood / indeterminacy in all possible worlds). 

3.5. Introduction to Nonstandard Analysis [15, 16] 

An infinitesimal number (ε) is a number ε such that: 

|ε|<1/n, 
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for any non-null positive integer n. An infinitesimal is close to zero, and 

so small that it cannot be measured. 

The infinitesimal is a number smaller, in absolute value, than anything 

positive nonzero. 

Infinitesimals are used in calculus. 

An infinite number (ω) is a number greater than anything: 

1 + 1 + 1 + … + 1 (for any finite number terms)  (3.2) 

The infinites are reciprocals of infinitesimals. 

The set of hyperreals (non-standard reals), denoted as R*, is the 

extension of set of the real numbers, denoted as R, and it comprises the 

infinitesimals and the infinites, that may be represented on the hyperreal 

number line 

1/ε = ω/1.        (3.3) 

The set of hyperreals satisfies the transfer principle, which states that 

the statements of first order in R are valid in R* as well. 

A monad (halo) of an element a ε ∈ R*, denoted by μ(a), is a subset 

of numbers infinitesimally close to a. 

Let’s denote by R+
* the set of positive nonzero hyperreal numbers. 

We consider the left monad and right monad, and we have introduced 

the binad [5]: 

Left Monad { that we denote, for simplicity, by (-a) or only –a } is 

defined as: 

μ(-a) = (-a) = –a =  

= {a - x, x ∊ R+
* | x is infinitesimal}.   (3.4)  

Right Monad { that we denote, for simplicity, by (a+) or only by a+ } 

is defined as: 

μ(a+) = (a+) = a+ =  

= {a + x, x ∊ R+
* | x is infinitesimal}.   (3.5) 
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Bimonad { that we denote, for simplicity, by (-a+) or only –a+ } 

is defined as: 

μ(-a+) = (-a+) = -a+ = {a - x, x ∊ R+* | x is infinitesimal} 

 {a + x, x ∊ R+* | x is infinitesimal}  

= { a  x , x ∊ R+* | x is infinitesimal}.  (3.6) 

The left monad, right monad, and the bimonad are subsets of R*. 

3.6. Neutrosophic Strict Inequalities 

We recall the neutrosophic inequality which is needed for the 

inequalities of nonstandard numbers. 

Let α, β be elements in a partially ordered set M. 

We have defined the neutrosophic strict inequality 

α >N β       (3.7) 

and read as 

“α is neutrosophically greater than β”   (3.8) 

if α in general is greater than β, 

or α is approximately greater than β, 

or subject to some indeterminacy (unknown or unclear ordering 

relationship between α and β) or subject to some contradiction (situation 

when α is smaller than or equal to β) α is greater than β. 

It means that in most of the cases, on the set M, α is greater than β. 

And similarly for the opposite neutrosophic strict inequality α <N β. 

3.7. Neutrosophic Equality 

We have defined the neutrosophic inequality 

α =N β       (3.9) 

and read as 

“α is neutrosophically equal to β”    (3.10) 
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if α in general is equal to β, 

or α is approximately equal to β, 

or subject to some indeterminacy (unknown or unclear ordering 

relationship between α and β)  

or subject to some contradiction (situation when α is not equal to 

β) α is equal to β. 

It means that in most of the cases, on the set M,  

α is equal to β. 

3.8. Neutrosophic (Non-Strict) Inequalities 

Combining the neutrosophic strict inequalities with neutrosophic 

equality, we get the ≥N and ≤N neutrosophic inequalities. 

Let α, β be elements in a partially ordered set M. 

The neutrosophic (non-strict) inequality 

α ≥N β       (3.11) 

and read as 

“α is neutrosophically greater than or equal to β”  (3.12) 

if 

α in general is greater than or equal to β, 

or α is approximately greater than or equal to β, 

or subject to some indeterminacy (unknown or unclear ordering 

relationship between α and β) or subject to some contradiction (situation 

when α is smaller than β) α is greater than or equal to β. 

It means that in most of the cases, on the set M, α is greater than or 

equal to β. 

And similarly for the opposite neutrosophic (non-strict) inequality α 

≤N β. 
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3.9. Neutrosophically Ordered Set   

Let M be a set. (M, <N) is called a neutrosophically ordered set if: 

 α, β ∊ M, one has:  

either α <N β, or α =N β, or α >N β.    (3.13) 

3.10. Neutrosophic Nonstandard Inequalities 

Let P(R*) be the power-set of R*. Let’s endow (P(R*), <N) with 

a neutrosophic inequality Let a,b  R , where R is the set of (standard) 

real numbers. 

And let (-a), (a+), (-a+)  P(R*), and (-b), (b+), (-b+)  P(R*), 

be the left monads, right monads, and the bimonads of the 

elements (standard real numbers) a and b respectively. Since all 

monads are subsets, we may treat the single real numbers a = [a, 

a] and b = [b, b] as subsets too. 

P(R*) is a set of subsets, and thus we deal with neutrosophic 

inequalities between subsets. 

i) If the subset α has many of its elements above all elements of the 

subset β, 

then α >N β (partially). 

ii) If the subset α has many of its elements below all elements of the 

subset β, 

then α <N β (partially). 

iii) If the subset α has many of its elements equal with elements of the 

subset β, 

then α =N β (partially). 

If the subset α verifies i) and iii) with respect to subset β, then α ≥N β. 

If the subset α verifies ii) and iii) with respect to subset β, then α ≤N β. 

If the subset α verifies i) and ii) with respect to subset β,  
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+ + 

then there is no neutrosophic order (inequality) between α and β. 

{ For example, between (-a+) and a there is no neutrosophic order. } 

Similarly, if the subset α verifies i), ii) and iii) with respect to subset 

β, then there is no neutrosophic order (inequality) between α and β. 

3.11. Open Neutrosophic Research 

The quantity or measure of “many of its elements” of the above i), ii), 

and iii) conditions depends on each neutrosophic application and on its 

neutrosophic experts. 

For the neutrosophic nonstandard inequalities, we propose based on 

the above three conditions the following: 

(-a) <N  a <N  (a+)      (3.14) 

because x  R
*
, a − x  a  a + x , where x is of course a (nonzero) 

positive infinitesimal (the above double neutrosophic inequality actually 

becomes a double classical standard real inequality for each fixed 

positive infinitesimal). 

(-a) ≤N  (-a+) ≤N  (a+)     (3.15) 

This double neutrosophic inequality may be justified due to (-

a+) = (-a)  (a+), so: 

(-a)  ≤N   (-a)  (a+) ≤N   (a+)    (3.16) 

whence the left side of the inequality middle term coincides with the 

inequality first term, while the right side of the inequality middle term 

coincides with the third inequality term. 

If a > b, which is a (standard) classical real inequality, then we have 

the following neutrosophic nonstandard inequalities: 

a >N (-b),  a >N (b+),  a >N (-b+);    (3.17) 

(-a) >N b, (-a) >N (-b), (-a) >N (b+),  (-a) >N (-b+);  (3.18) 

(a+) >N b, (a+) >N (-b),   

(a+) >N (b+),  (a+) >N (-b+);     (3.19) 

(-a+) >N b, (-a+) >N (-b),   

(-a+) >N (b+),  (-a+) >N (-b+).     (3.20) 
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If a ≥ b, which is a (standard) classical real inequality, then we have 

the following neutrosophic nonstandard inequalities: 
 

a ≥N (-b);       (3.21) 

(-a) ≥N (-b);       (3.22) 

(a+) ≥N (-b), (a+) ≥N b, a+) ≥N (b+),   

(a+) ≥N (-b+);      (3.23) 

(-a+) ≥N (-b),  (-a+) ≥N (-b+).     (3.24) 

And similarly for <N and ≤N neutrosophic nonstandard inequalities. 

3.12. Neutrosophic Nonstandard Equalities 

Let a, b be standard real numbers; if a = b that is a (classical) standard 

equality, then: 

(-a) =N (-b), (a+) =N (b+), (-a+) =N (-b+).   (3.25) 

3.13. Neutrosophic Infimum and Neutrosophic Supremum 

As an extension of the classical infimum and classical supremum, and 

using the neutrosophic inequalities and neutrosophic equalities, we define 

the neutrosophic infimum ( denoted as infN ) and the neutrosophic 

supremum ( denoted as supN ). 

3.13.1 Neutrosophic Infimum. 

Let (S, <N) be a set that is neutrosophically partially ordered, and M a 

subset of S. 

The neutrosophic infimum of M, denoted as infN(M) is the 

neutrosophically greatest element in S that is neutrosophically less than 

or equal to all elements of M. 

3.13.2 Neutrosophic Supremum. 

Let (S, <N) be a set that is neutrosophically partially ordered, and M a 

subset of S. 
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The neutrosophic supremum of M, denoted as supN(M) is the 

neutrosophically smallest element in S that is neutrosophically greater 

than or equal to all elements of M. 

3.14. Classical Infimum and Supremum vs. Neutrosophic Infimum 

and Supremum 

Giving the definitions of neutrosophic components from my book [5]: 

“Let T, I, F be standard or non-standard real subsets of ]-0, 1+[, 

with sup T = t_sup, inf T = t_inf, sup I = i_sup, inf I = i_inf, 

sup F = f_sup, inf F = f_inf, 

and n_sup = t_sup+i_sup+f_sup, n_inf = t_inf+i_inf+f_inf.” 

Imamura argues (page 3) that: 

“Subsets of R∗, even bounded, may have neither infima nor 

suprema, because the transfer principle ensures the existences of 

infima and suprema only for internal sets.” 

This is true from a classical point of view, yet according to the 

definitions of the neutrosophic inequalities, the neutrosophic infimum and 

supremum do exist for the nonstandard intervals, for example: 

infN ( ]-a, b+[ ) = -a, and supN ( ]-a, b+[ ) = b+.   (3.26) 

Indeed, into my definition above I had to clearly mention that we talk 

neutrosophically [mea culpa] by inserting an “N” standing for 

neutrosophic (infN and supN): 

Let T, I, F be standard or non-standard real subsets of ]-0, 1+[, 

with supN T = t_sup, infN T = t_inf, supN I = i_sup, infN I = i_inf, 

supN F = f_sup, infN F = f_inf,  

and n_sup = t_sup+i_sup+f_sup, n_inf = t_inf+i_inf+f_inf. 

I was more prudent when I presented the sum of single valued standard 

neutrosophic components, saying: 
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 

Let T, I, F be single valued numbers, T, I, F ∊ [0, 1], such that 0 ≤ T + 

I + F ≤ 3. 

A friend alerted me: “If T, I, F are numbers in [0, 1], of course their 

sum is between 0 and 3.” 

“Yes, I responded, I afford this tautology, because if I did not mention 

that the sum is up to 3, readers would take for granted that the sum T + I 

+ F is bounded by 1, since that is in all logics and in probability!” 

3.15. Notations 

Imamura is right when criticizing my confusion of notations between 

hyperreals (numbers) and monads (subsets). I was rather informal than 

formal at the beginning. 

By –a and b+ most of times I wanted to mean the subsets of left monad 

and right monad respectively. Taking an arbitrary positive infinitesimal ε, 

and writing –a = a-ε and b+ = b+ε was actually picking up a 

representative from each class (monad). 

Similarly, representations of the monads by intervals were not quite 

accurate from a classical point of view: 

(-a) = (a-ε, a),      (3.27) 

(b+) = (b, b+ε),      (3.28) 

(-a+) = (a-ε, a)  (b, b+ε),     (3.29) 

but they were rather neutrosophic equalities (approximations): 

(-a) =N (a-ε, a),      (3.30) 

(b+) =N (b, b+ε),      (3.31) 

(-a+)=N (a-ε, a)  (b, b+ε).     (3.32) 

3.16. Nonarchimedean Ordered Field 

At pages 5-6 of note [1], Imamura proposed the following 

Nonarchimedean Ordered Field K:  



Florentin Smarandache 

142 

+ 

+ 


     

“Let x, y ∊ K. x and y are said to be infinitely close (denoted by 

a  b ) if a - b is infinitesimal. We say that x is roughly 

smaller than y (and write x
 

y ) if x < y or x  y.” 

An ordered field is called nonarchimedian field, if it has non-null 

infinitesimals. 

While it is a beautiful definition to consider that x and y are infinitely 

close (denoted by a  b) if a - b is infinitesimal, it produces confusions 

into the nonstandard neutrosophic logic. Why? Because one cannot 

distinguish any-longer between –a, a, and a+ (which is essential in, and 

the flavor of, nonstandard neutrosophic logic, in order to differentiate the 

relative truth/indeterminacy/falsehood from absolute 

truth/indeterminacy/falsehood respectively), since one gets that: 

(-a)  a  (a+)      (3.33) 

or with the simplest notations: 

-a  a  a+.        (3.34) 

Proof 

x  R
*

, a − (a − x) = x = infinitesimal,  

whence a  (-a)                                                                            (3.35) 

and x  R
* 

, (a + x) − a = x = infinitesimal,  

whence a+  a.                                                                             (3.36) 

For the definition of nonstandard interval ]-a, b+[, Imamura 

proposes at page 6: 

“For a, b ∊ K the set ]-a, b+[K is defined as follows: 

]-a, b+[K= {x  K | a
 

x


b}.” 

In nonstandard neutrosophic logic and set, we may have not only ]-a, 

b+[, but various forms of nonstandard intervals: 



Advances of Standard and Nonstandard Neutrosophic Theories 

143 


     


     

m1   m2 

] a, b[       (3.37) 

where m1 and m2 stand for: left monads (
-
), right monads (

+
), or bimonads 

(
- +

), in all possible combinations (in total 3  3 = 9 possibilities). 

Yet, Imamura’s definition cannot be adjusted for all above 

nonstandard intervals, for example the nonstandard intervals of the 

form ]a+, -b[, because if one writes 

]a+, b-[K = {x  K | a
 
x


b}    (3.38) 

one arrives at proving that 

]-a, b+[K   ]a+, b-[K     (3.39) 

which is obviously false, since: –a is below a and hence below a+, and 

in the same way b+ is above b and hence above –b  {one gets a bigger 

nonstandard interval included in or equal to a smaller nonstandard 

interval}. This occurs because –a  a+ and b+  b- (in Imamura’s 

notation). 

3.17. Nonstandard Unit Interval 

Imamura cites my work: 

“by “−a” one signifies a monad, i.e., a set of hyper-real 

numbers in non-standard analysis: 

(−a) = { a − x ∈ R∗ | x is infinitesimal } , 

and similarly “b+” is a hyper monad: 

(b+) = { b + x ∈ R∗ | x is infinitesimal } . ([5] p. 141; [6] p. 9)” 

But these are inaccurate, because my exact definitions of monads, 

since my 1998 first world neutrosophic publication {see [5], page 9; and 

[6], pages 385 - 386}, were: 

“(−a) = { a – x: x ∈ R+∗ | x is infinitesimal },  

and similarly “b+” is a hyper monad: 
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(b+) = { b + x: x ∈ R+∗ | x is infinitesimal }” 

Imamura says that: 

“The correct definitions are the following: 

(−a) = { a − x ∈ R∗ | x is positive infinitesimal },  

(b+) = { b + x ∈ R∗ | x is positive infinitesimal }.” 

I did not have a chance to see how my article was printed in 

Proceedings of the 3rd Conference of the European Society for Fuzzy 

Logic and Technology [7], that Imamura talks about, maybe there were 

some typos, but Imamura can check the Multiple Valued Logic / An 

International Journal [6], published in England in 2002 (ahead of the 

European Conference from 2003, that Imamura cites) by the prestigious 

Taylor & Francis Group Publishers, and clearly one sees that it is: R+
* 

(so, x is a positive infinitesimal into the above formulas), therefore there 

is no error. 

Then Imamura continues: 

“Ambiguity of the definition of the nonstandard unit interval. 

Smarandache did not give any explicit definition of the 

notation ]−0, 1+[ in [5] (or the notation ⫦−0, 1+⫣ in [6]). He 

only said: 

Then, we call ] −0, 1+ [ a non-standard unit interval. 

Obviously, 0 and 1, and analogously non-standard numbers 

infinitely small but less than 0 or infinitely small but greater 

than 1, belong to the non-standard unit interval. ([5] p. 141; [6] 

p. 9).” 

Concerning the notations I used for the nonstandard intervals as ⫦ ⫣ 

or ] [, it was imperative to employ notations different from the classical 

[ ] or ( ) intervals, since the extremes of the nonstandard unit interval were 

unclear, vague. I thought it was easily understood that: 

]−0, 1+[  = (-0)  [0, 1]  (1+).     (3.40) 

Or, using the previous neutrosophic inequalities, we may write: 
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]−0, 1+[ = {x ∊ R*, -0 ≤N x ≤N 1+}.    (3.41) 

Imamura says that: 

“Here −0 and 1+ are particular real numbers defined in the 

previous paragraph: 

−0 = 0−ε and 1+ = 1+ ε, where ε is a fixed non-negative 

infinitesimal.” 

This is untrue, I never said that “ε is a fixed non-negative infinitesimal”, 

ε was not fixed, I said that for any real numbers a and b {see again [5], 

page 9; and [6], pages 385 - 386}: 

“(−a) = { a – x: x ∈ R+∗ | x is infinitesimal },  

(b+) = { b + x: x ∈ R+∗ | x is infinitesimal }”. 

Therefore, once we replace a = 0 and b = 1 we get: 

(−0) = { 0 – x: x ∈ R+
∗ | x is infinitesimal },  

(1+) = { 1 + x: x ∈ R+
∗ | x is infinitesimal }. 

Thinking out of box, inspired from the real world, was the first intent, 

i.e. allowing neutrosophic components (truth / indeterminacy / falsehood) 

values be outside of the classical (standard) unit real interval [0, 1] used 

in all previous (Boolean, multi-valued etc.) logics if needed in 

applications, so neutrosophic component values < 0 and > 1 had to occurs 

due to the Relative / Absolute stuff, with: 

-0 <N 0  and  1+ >N 1.     (3.42) 

Later on, in 2007, I found plenty of cases and real applications in 

Standard Neutrosophic Logic and Set (therefore, not using the 

Nonstandard Neutrosophic Logic and Set), and it was thus possible the 

extension of the neutrosophic set to Neutrosophic Overset (when some 

neutrosophic component is > 1), and to Neutrosophic Underset (when 

some neutrosophic component is < 0), and to Neutrosophic Offset (when 

some neutrosophic components are off the interval [0, 1], i.e. some 

neutrosophic component > 1 and some neutrosophic component < 0).  
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Then, similar extensions to respectively Neutrosophic Over/Under/Off 

Logic, Measure, 

Probability, Statistics etc. [8, 17, 18, 19], extending the unit interval [0, 1] 

to 

[Ψ, Ω], with Ψ ≤ 0 < 1 ≤ Ω,     (3.43) 

where Ψ, Ω are standard real numbers. 

Imamura says, ref. the definition of neutrosophic logic that: 

“In this logic, each proposition takes a value of the form (T, 

I, F), where T, I, F are subsets of the nonstandard unit 

interval ]−0, 1+[ and represent all possible values of Truthness, 

Indeterminacy and Falsity of the proposition, respectively.” 

Unfortunately, this is not exactly how I defined it. 

In my first book {see [5], p. 12; or [6] pp. 386 – 387} it is stated: 

“Let T, I, F be real standard or non-standard subsets of ]-0, 1+[“ 

meaning that T, I, F may also be “real standard” not only real non-

standard. 

In The Free Online Dictionary of Computing, 1999-07-29, edited by 

Denis Howe from England, it is written: 

Neutrosophic Logic: 

<logic> (Or "Smarandache logic") A generalization of fuzzy logic 

based on Neutrosophy. A proposition is t true, i indeterminate, and f false, 

where t, i, and f are real values from the ranges T, I, F, with no restriction 

on T, I, F, or the sum n=t+i+f. Neutrosophic logic thus generalizes: 

- intuitionistic logic, which supports incomplete theories (for 0<n<100, 

0<=t,i,f<=100); 

- fuzzy logic (for n=100 and i=0, and 0<=t,i,f<=100); 

- Boolean logic (for n=100 and i=0, with t,f either 0 or 100); 

- multi-valued logic (for 0<=t,i,f<=100); 
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- paraconsistent logic (for n>100, with both t,f<100); 

- dialetheism, which says that some contradictions are true (for 

t=f=100 and i=0; some paradoxes can be denoted this way). 

Compared with all other logics, neutrosophic logic introduces a 

percentage of "indeterminacy" - due to unexpected parameters hidden in 

some propositions. It also allows each component t,i,f to "boil over" 100 

or "freeze" under 0. For example, in some tautologies t>100, called 

"overtrue".  ["Neutrosophy / Neutrosophic probability, set, and logic", F. 

Smarandache, American Research Press, 1998]. 

As Denis Howe said in 1999, the neutrosophic components t, i, f are 

“real values from the ranges T, I, F”, not nonstandard values or 

nonstandard intervals. And this was because nonstandard ones were not 

important for the neutrosophic logic (the Relative/Absolute plaid no role 

in technological and scientific applications and future theories). 

3.18. The Logical Connectives ∧, ∨, → 

Imamura’s critics of my first definition of the neutrosophic operators 

is history for long ago. 

All fuzzy, intuitionistic fuzzy, and neutrosophic logic operators are 

inferential approximations, not written in stone. They are improved from 

application to application. 

Let’s denote: 

∧F, ∧N, ∧P representing respectively the fuzzy conjunction, 

neutrosophic conjunction, and plithogenic conjunction; 

Similarly 

∨F, ∨N, ∨P representing respectively the fuzzy disjunction, 

neutrosophic disjunction, and plithogenic disjunction, 

and 

→F, →N, →P representing respectively the fuzzy implication, 

neutrosophic implication, and plithogenic implication. 
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I agree that my beginning neutrosophic operators (when I applied the 

same fuzzy t-norm, or the same fuzzy t-conorm, to all neutrosophic 

components T, I, F) were less accurate than others developed later by the 

neutrosophic community researchers. This was pointed out since 2002 by 

Ashbacher [9] and confirmed in 2008 by Rivieccio [10]. They observed 

that if on T1 and T2 one applies a fuzzy t-norm, on their opposites F1 and 

F2 one needs to apply the fuzzy t-conorm (the opposite of fuzzy t-norm), 

and reciprocally. 

About inferring I1 and I2, some researchers combined them in the 

same directions as T1 and T2. 

Then: 

(T1, I1, F1) ∧N (T2, I2, F2) =  

= (T1 ∧F T2, I1 ∧F I2, F1 ∨F F2),    (3.44) 

(T1, I1, F1) ∨N (T2, I2, F2) = 

= (T1 ∨F T2, I1 ∨F I2, F1 ∧F F2),    (3.45)  

(T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = 

= (F1 ∨F T2, I1 ∨F I2, T1 ∧ F F2);    (3.46) 

others combined I1 and I2 in the same direction as F1 and F2 (since 

both I and F are negatively qualitative neutrosophic components), the 

most used one: 

(T1, I1, F1) ∧N (T2, I2, F2) = 

= (T1 ∧F T2, I1∨F I2, F1 ∨F F2),    (3.47) 

(T1, I1, F1) ∨N (T2, I2, F2) =  

= (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2),    (3.48)  

(T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = 

= (F1 ∨F T2, I1 ∧F I2, T1 ∧ F F2).    (3.49) 

Now, applying the neutrosophic conjunction suggested by Imamura: 
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“This causes some counterintuitive phenomena. Let A be a 

(true) proposition with value ({ 1 } , { 0 } , { 0 }) and let B be 

a (false) proposition with value ({ 0 } , { 0 } , { 1 }). 

Usually we expect that the falsity of the conjunction A ∧ B 

is { 1 }. However, its actual falsity is { 0 }.” 

we get: 

(1, 0, 0) ∧N (0, 0, 1) = (0, 0, 1),    (3.50) 

which is correct (so the falsity is 1). 

Even more, recently, in an extension of neutrosophic set to plithogenic 

set [11] (which is a set whose each element is characterized by many 

attribute values), the degrees of contradiction c( , ) between the 

neutrosophic components T, I, F have been defined (in order to facilitate 

the design of the aggregation operators), as follows: 

c(T, F) = 1 (or 100%, because they are totally opposite), c(T, I) = c(F, 

I) = 0.5 (or 50%, because they are only half opposite), then: 

(T1, I1, F1) ∧P (T2, I2, F2) = 

= (T1 ∧F T2, 0.5(I1∧F I2) + 0.5(I1∨F I2), F1 ∨F F2),  (3.51) 

(T1, I1, F1) ∨P (T2, I2, F2) = 

= (T1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2), F1 ∧F F2).  (3.52) 

(T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) 

= (F1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2), T1 ∧ F F2).  (3.53) 

Conclusion 

We thank very much Dr. Takura Imamura for his interest and critics 

of Nonstandard Neutrosophic Logic, which eventually helped in 

improving it. {In the history of mathematics, critics on nonstandard 

analysis, in general, have been made by Paul Halmos, Errett Bishop, 

Alain Connes and others.} We hope we’ll have more dialogues on the 

subject in the future. 



Florentin Smarandache 

150 

References 

[1] Takura Imamura, Note on the Definition of Neutrosophic Logic, 

arxiv.org, 7 Nov. 2018. 

[2] Xindong Peng and Jingguo Dai, A bibliometric analysis of 

neutrosophic set: two decades review from 1998 to 2017, Artificial 

Intelligence Review, Springer, 18 August 2018; 

http://fs.unm.edu/BibliometricNeutrosophy.pdf [3] Florentin 

Smarandache, n-Valued Refined Neutrosophic Logic and Its Applications 

in Physics, Progress in Physics, 143-146, Vol. 4, 2013; 

http://fs.unm.edu/n-ValuedNeutrosophicLogic-PiP.pdf 

[4] F. Smarandache, Neutrosophy, A New Branch of Philosophy, 

<Multiple Valued Logic / An International Journal>, USA, ISSN 1023-

6627, Vol. 8, No. 3, pp. 297-384, 2002. 

[5] Florentin Smarandache, Neutrosophy. / Neutrosophic Probability, 

Set, and Logic, ProQuest Information & Learning, Ann Arbor, Michigan, 

USA, 105 p., 1998; http://fs.unm.edu/eBook-Neutroosphics6.pdf. 

[6] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic, 

<Multiple Valued Logic / An International Journal>, USA, ISSN 1023-

6627, Vol. 8, No. 3, pp. 385-438, 2002. {The whole issue of this journal 

is dedicated to Neutrosophy and Neutrosophic Logic.} 

[7] Florentin Smarandache, Definition of neutrosophic logic — a 

generalization of the intuitionistic fuzzy logic, Proceedings of the 3rd 

Conference of the European Society for Fuzzy Logic and Technology, 

2003, pp. 141–146. 

[8] Florentin Smarandache, Neutrosophic Overset, Neutrosophic 

Underset, and Neutrosophic Offset. Similarly for Neutrosophic Over-

/Under-/Off- Logic, Probability, and Statistics, 168 p., Pons Editions, 

Bruxelles, Belgique, 2016; 

https://arxiv.org/ftp/arxiv/papers/1607/1607.00234.pdf 

[9] Charles Ashbacher, Introduction to Neutrosophic Logic, ProQuest 

Information & Learning, Ann Arbor, 2002, 

http://fs.unm.edu/IntrodNeutLogic.pdf 



Advances of Standard and Nonstandard Neutrosophic Theories 

151 

[10] Umberto Rivieccio, Neutrosophic logics: Prospects and 

problems, Fuzzy Sets and Systems, v. 159, issue 14, 1860–1868, 2008. 

[11] Florentin Smarandache: Plithogeny, Plithogenic Set, Logic, 

Probability, and Statistics, Pons Publishing House, Brussels, Belgium, 

141 p., 2017; arXiv.org (Cornell University), Computer Science - 

Artificial Intelligence, 03Bxx: 

https://arxiv.org/ftp/arxiv/papers/1808/1808.03948.pdf 

[12] Nguyen Xuan Thao, Florentin Smarandache, (I, T)-Standard 

neutrosophic rough set and its topologies properties, Neutrosophic Sets 

and Systems, Vol. 14, 2016, pp. 65-70; doi.org/10.5281/zenodo.570892 

http://fs.unm.edu/NSS/RoughStandardNeutrosophicSets.pdf 

[13] Nguyen Xuan Thao, Bui Cong Cuong, Florentin Smarandache, 

Rough Standard Neutrosophic Sets: An Application on Standard 

Neutrosophic Information Systems, Neutrosophic Sets and Systems, Vol. 

14, 2016, pp. 80-92; doi.org/10.5281/zenodo.570890 

http://fs.unm.edu/NSS/RoughStandardNeutrosophicSets.pdf 

[14] Bui Cong Cuong, Pham Hong Phong, Florentin Smarandache, 

Standard Neutrosophic Soft Theory - Some First Results, Neutrosophic 

Sets and Systems, Vol. 12, 2016, pp. 80-91; 

doi.org/10.5281/zenodo.571149 

http://fs.unm.edu/NSS/StandardNeutrosophicSoftTheory.pdf 

[15] Insall, Matt and Weisstein, Eric W. Nonstandard Analysis. From 

MathWorld--A Wolfram Web Resource.  

http://mathworld.wolfram.com/NonstandardAnalysis.html 

[16] Insall, Matt. Transfer Principle. From MathWorld--A Wolfram 

Web Resource, created by Eric W. Weisstein.  

http://mathworld.wolfram.com/TransferPrinciple.html 

[17] F. Smarandache, Applications of Neutrosophic Sets in Image 

Identification, Medical Diagnosis, Fingerprints and Face Recognition 

and Neutrosophic Overset/Underset/Offset, COMSATS Institute of 

Information Technology, Abbottabad, Pakistan, December 26th, 2017; 

http://fs.unm.edu/NSS/RoughStandardNeutrosophicSets.pdf
http://mathworld.wolfram.com/TransferPrinciple.html


Florentin Smarandache 

152 

[18] F. Smarandache, Interval-Valued Neutrosophic Oversets, 

Neutrosophic Understes, and Neutrosophic Offsets, International Journal 

of Science and Engineering Investigations, Vol. 5, Issue 54, 1-4, July 

2016. 

[19] F. Smarandache, Operators on Single-Valued Neutrosophic 

Oversets, Neutrosophic Undersets, and Neutrosophic Offsets, Journal of 

Mathematics and Informatics, Vol. 5, 63-67, 2016.  

 

 

 

[Florentin Smarandache: About Nonstandard Neutrosophic Logic 

(Answers to Imamura 'Note on the Definition of Neutrosophic Logic'), 

pp. 1-16, Cornell University, New York City, USA. Submitted on 24 Nov 

2018 (v1), last revised 13 Feb 2019 (v2). Abstract: 

https://arxiv.org/abs/1812.02534v2. Full paper: 

https://arxiv.org/ftp/arxiv/papers/1812/1812.02534.pdf] 

 

 

 

https://arxiv.org/abs/1812.02534v2
https://arxiv.org/ftp/arxiv/papers/1812/1812.02534.pdf


Advances of Standard and Nonstandard Neutrosophic Theories 

153 

CHAPTER 4 

Extended Nonstandard Neutrosophic Logic, Set, and 

Probability based on Extended Nonstandard Analysis  

 

 



Florentin Smarandache 

154 

Abstract 

We extend for the second time the Nonstandard Analysis by adding 

the left monad closed to the right, and right monad closed to the left, while 

besides the pierced binad (we introduced in 1998) we add now the 

unpierced binad - all these in order to close the newly extended 

nonstandard space under nonstandard addition, nonstandard subtraction, 

nonstandard multiplication, nonstandard division, and nonstandard power 

operations. Then, we extend the Nonstandard Neutrosophic Logic, 

Nonstandard Neutrosophic Set, and Nonstandard Probability on this 

Extended Nonstandard Analysis space - that we prove it is a nonstandard 

neutrosophic lattice of first type (endowed with a nonstandard 

neutrosophic partial order) as well as a nonstandard neutrosophic lattice 

of second type (as algebraic structure, endowed with two binary 

neutrosophic laws, infN and supN). Many theorems, new terms 

introduced, better notations for monads and binads, and examples of 

nonstandard neutrosophic operations are given. 

Keywords 

Nonstandard Analysis; Extended Nonstandard Analysis; Open and 

Closed Monads to the Left/Right; Pierced and Unpierced Binads; 

MoBiNad Set; infinitesimals; infinities; nonstandard reals; standard 

reals; Nonstandard Neutrosophic Lattices of First Type (as poset) and 

Second Type (as algebraic structure); Nonstandard Neutrosophic Logic; 

Extended Nonstandard Neutrosophic Logic; Nonstandard Arithmetic 

Operations; Nonstandard Unit Interval; Nonstandard Neutrosophic 

Infimum; Nonstandard Neutrosophic Supremum. 

4.1. Short Introduction 

In order to more accurately situate and fit the neutrosophic logic into 

the framework of extended nonstandard analysis, we present the 

nonstandard neutrosophic inequalities, nonstandard neutrosophic 

equality, nonstandard neutrosophic infimum and supremum, nonstandard 

neutrosophic intervals, including the cases when the neutrosophic logic 

standard and nonstandard components T, I, F get values outside of the 



Advances of Standard and Nonstandard Neutrosophic Theories 

155 

classical unit interval [0, 1], and a brief evolution of neutrosophic 

operators. 

4.2. Theoretical Reason for the Nonstandard Form of 

Neutrosophic Logic  

The only reason we have added the nonstandard form to neutrosophic 

logic (and similarly to neutrosophic set and probability) was in order to 

make a distinction between Relative Truth (which is truth in some Worlds, 

according to Leibniz) and Absolute Truth (which is truth in all possible 

Words, according to Leibniz as well) that occur in philosophy.  

Another possible reason may be when the neutrosophic degrees of 

truth, indeterminacy, or falsehood are infinitesimally determined, for 

example a value infinitesimally bigger than 0.8 (or 0.8+), or 

infinitesimally smaller than 0.8 (or -0.8). But these can easily be 

overcome by roughly using interval neutrosophic values, for example 

(0.80, 0.81) and (0.79, 0.80) respectively.  

4.3. Why the Sum of Neutrosophic Components is up to 3 

I was more prudent when I presented the sum of single valued standard 

neutrosophic components, saying: 

Let T, I, F be single valued numbers, T, I, F ∊ [0, 1], such that: 

0 ≤ T + I + F ≤ 3.      (4.1) 

The sum of the single-valued neutrosophic components, T + I + F is 

up to 3 since they are considered completely (100%) independent of each 

other [28]. But if, let’s say, two components T and F are completely 

(100%) dependent, then T + F  ≤ 1 (as in fuzzy and intuitionistic fuzzy 

logics), and let’s assume the neutrosophic middle component I is 

completely (100%) independent from T and F, then I ≤ 1, whence T + F 

+ I ≤ 1 + 1 = 2. 
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But the degree of dependence/independence between T, I, F all 

together, or taken two by two, may be, in general, any number between 0 

and 1. 

4.4. Neutrosophic Components Outside the Unit Interval [0, 1] 

Thinking out of box, inspired from the real world, was the first intent, 

i.e. allowing neutrosophic components (truth / indeterminacy / falsehood) 

values be outside of the classical (standard) unit real interval [0, 1] used 

in all previous (Boolean, multi-valued etc.) logics if needed in 

applications, so neutrosophic component values < 0 and > 1 had to occurs 

due to the Relative / Absolute stuff, with: 

-0 <N 0   and   1+ >N 1.     (4.2)                                                                           

Later on, in 2007, I found plenty of cases and real applications in 

Standard Neutrosophic Logic and Set (therefore, not using the 

Nonstandard Neutrosophic Logic and Set), and it was thus possible the 

extension of the neutrosophic set to Neutrosophic Overset (when some 

neutrosophic component is > 1), and to Neutrosophic Underset (when 

some neutrosophic component is < 0), and to Neutrosophic Offset (when 

some neutrosophic components are off the interval [0, 1], i.e. some 

neutrosophic component > 1 and some neutrosophic component < 

0).  Then, similar extensions to respectively Neutrosophic 

Over/Under/Off Logic, Measure, Probability, Statistics etc. [8, 17, 18, 19], 

extending the unit interval [0, 1] to: [Ψ, Ω], with Ψ ≤ 0 < 1 ≤ Ω,  (4.3)                                                                

where Ψ, Ω are standard real numbers. 

4.5. Refined Neutrosophic Logic, Set, and Probability 

We wanted to get the neutrosophic logic as general as possible [6], 

extending all previous logics (Boolean, fuzzy, intuitionistic fuzzy logic, 

intuitionistic logic, paraconsistent logic, dialethism), and to have it able 

to deal with all kind of logical propositions (including paradoxes, 

nonsensical propositions, etc.).  
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That’s why in 2013 we extended the Neutrosophic Logic to Refined 

Neutrosophic Logic [ from generalizations of 2-valued Boolean logic to 

fuzzy logic, also from the Kleene’s and Lukasiewicz’s and Bochvar’s 3-

symbol valued logics or Belnap’s 4-symbol valued logic to the most 

general n-symbol or n-numerical valued refined neutrosophic logic, for 

any integer n ≥ 1 ], the largest ever so far, when some or all neutrosophic 

components T, I, F were respectively split/refined into neutrosophic 

subcomponents: T1, T2, …; I1, I2, …; F1, F2, … which were deduced from 

our everyday life [3]. 

4.6. From Paradoxism movement to Neutrosophy branch of 

philosophy and then to Neutrosophic Logic 

We started first from Paradoxism (that I founded in 1980’s as a 

movement based on antitheses, antinomies, paradoxes, contradictions in 

literature, arts, and sciences), then we introduced the Neutrosophy (as 

generalization of Dialectics of Hegel and Marx, which is actually the 

ancient YinYang Chinese philosophy), neutrosophy is a branch of 

philosophy studying the dynamics of triads, inspired from our everyday 

life, triads that have the form:  

<A>, its opposite <antiA>, and their neutrals <neutA>, (4.4) 

where <A> is any item or entity [4].  

(Of course, we take into consideration only those triads that make 

sense in our real and scientific world.) 

The Relative Truth neutrosophic value was marked as 1, while the 

Absolute Truth neutrosophic value was marked as 1+ (a tinny bigger than 

the Relative Truth’s value):  

1+ >N 1, where >N  is a neutrosophic inequality, meaning 1+ is 

neutrosophically bigger than 1. 

Similarly for Relative Falsehood / Indeterminacy (which falsehood / 

indeterminacy in some Worlds), and Absolute Falsehood / Indeterminacy 

(which is falsehood / indeterminacy in all possible worlds). 
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4.7. Introduction to Nonstandard Analysis [25, 15, 16] 

An infinitesimal [or infinitesimal number] ( ) is a number   such 

that | | 1/ n  , for any non-null positive integer n. An infinitesimal is 

close to zero, and so small that it cannot be measured.  

The infinitesimal is a number smaller, in absolute value, than anything 

positive nonzero. 

Infinitesimals are used in calculus. 

An infinite [or infinite number] ( ω ) is a number greater than anything:  

1 + 1 + 1 + … + 1 (for any finite number terms)   (4.5) 

The infinites are reciprocals of infinitesimals. 

The set of hyperreals (or non-standard reals), denoted as R*, is the 

extension of set of the real numbers, denoted as R, and it comprises the 

infinitesimals and the infinites, that may be represented on the hyperreal 

number line  

1/ε = ω/1.           (4.6) 

The set of hyperreals satisfies the transfer principle, which states that 

the statements of first order in R are valid in R* as well. 

A monad (halo) of an element a ∊ R*, denoted by μ(a), is a subset of 

numbers infinitesimally close to a. 

4.8. First Extension of Nonstandard Analysis 

Let’s denote by R+
* the set of positive nonzero hyperreal numbers. 

We consider the left monad and right monad, and the (pierced) binad 

that we have introduced as extension in 1998 [5]: 

Left Monad { that we denote, for simplicity, by (-a) or only –a } is 

defined as: 

μ(-a) = (-a) = –a = a
−

= {a - x, x ∊ R+
* | x is infinitesimal}.  (4.7) 
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Right Monad { that we denote, for simplicity, by (a+) or only by a+ } 

is defined as: 

μ(a+) = (a+) = a+ = a
+

= {a + x, x ∊ R+
* | x is infinitesimal}.  (4.8) 

Pierced Binad { that we denote, for simplicity, by (-a+) or only –a+ } 

is defined as: 

μ(-a+) = (-a+) = -a+ = a
−+

= 

        = {a - x, x ∊ R+
* | x is infinitesimal}  {a + x, x ∊ R+

* | x is infinitesimal} 

     = { a x , x ∊ R+
* | x is infinitesimal}.   (4.9) 

The left monad, right monad, and the pierced binad are subsets of R*. 

4.9. Second Extension of Nonstandard Analysis 

For necessity of doing calculations that will be used in nonstandard 

neutrosophic logic in order to calculate the nonstandard neutrosophic 

logic operators (conjunction, disjunction, negation, implication, 

equivalence) and in order to have the Nonstandard Real MoBiNad Set 

closed under arithmetic operations, we extend now for the time: the left 

monad to the Left Monad Closed to the Right, the right monad to the 

Right Monad Closed to the Left; and the Pierced Binad to the Unpierced 

Binad, defined as follows: 

Left Monad Closed to the Right 

0 0 0

a a a
− − −   

= = =   
   

{a – x | x = 0, or x ∊ R+
*  

and x is infinitesimal} = μ(-a)  {a} = (-a)  {a}  

= –a  {a}.        (4.10)                          

Right Monad Closed to the Left 

0 0 0

a a a
+ + +   

= = =   
   

{a + x | x = 0, or x ∊ R+
*  
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and x is infinitesimal} = μ(a+)  {a} = (a+)  {a}  

= a+  {a}.        (4.11)                          

Unpierced Binad 

0 0 0

a a a
− + − + − +   

= = =   
   

{a – x | x ∊ R+
* and x is infinitesimal} 

 {a + x | x ∊ R+
* and x is infinitesimal}  {a} =  

= { a x  | x = 0, or x ∊ R+
* and  x is infinitesimal}  

=  μ(-a+)  {a} = (-a+)  {a} = -a+  {a}    (4.12)   

The element {a} has been included into the left monad, right monad, 

and pierced binad respectively. 

4.10. Nonstandard Neutrosophic Function 

In order to be able to define equalities and inequalities in the sets of 

monads, and in the sets of binads, we construct a nonstandard 

neutrosophic function that approximates the monads and binads to tiny 

open (or half open and half closed respectively) standard real intervals as 

below. It is called ‘neutrosophic’ since it deals with indeterminacy: 

unclear, vague monads and binads, and the function approximates them 

with some tiny real subsets.  

Taking an arbitrary infinitesimal:  

ε1 > 0,  

and writing –a = a-ε1, a+ = a+ε1,  

and –a+ = a  ε1,                                        (4.13) 

or taking an arbitrary infinitesimal ε2 ≥ 0,  

and writing 

        (4.14) 

we meant actually picking up a representative from each class of the 

monads and of the binads respectively. 

0 0 0

2 2 2 2( , ], [ , ), ( , )a a a a a aa a a   
− + − +

= − = + = − +
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Representations of the monads and binads by intervals is not quite 

accurate from a classical point of view, but it is an approximation that 

helps in finding a partial order and computing nonstandard arithmetic 

operations on the elements of the nonstandard set NRMB. 

Let ε be a generic positive infinitesimal, while a be a generic standard 

real number. 

Let P(R) be the power set of the real number set R. 

μN: NRMB →  P(R)       (4.15) 

For any a ∊ R, the set of real numbers, one has: 

μN( (-a) ) =N (a - ε, a),      (4.16) 

μN( (a+) ) =N (a, a + ε),      (4.17) 

μN( (-a+) ) =N (a- ε, a) ∪ (a, a + ε)     (4.18) 

0

0

0

( , ],

[ , ),

( , ),

N N

N N

N N

a a

a a

a a

a

a

a

 

 

  

−

+

− +

  
= −  

  

  
= +  

  

  
= − +  

            (4.19-4.20-4.21) 

    (4.22) 

in order to set it as real interval too. 

4.11. General Notations for Monads and Binads 

Let a ∊ R be a standard real number. We use the following general 

notation for monads and binads: 

0 0 0

{ , , , , , , }
m

a a a a a a a a
− − + + −+ − +

 and by convention 
0

a a= ;    (4.23) 

or m ∊ { , -, -0, +, +0, -+, -0+} = {0, -, -0, +, +0, -+, -0+};   (4.24) 

0

( ) [ , ],N N N Na a a a a 
  

= = =  
  
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therefore “m” above a standard real number “a” may mean anything: a 

standard real number (0, or nothing above), a left monad (-), a left monad 

closed to the right (-0), a right monad (+), a right monad closed to the left 

(0+), a pierced binad (-+), or a unpierced binad (-0+) respectively. 

The notations of monad’s and binad’s diacritics above (not laterally) 

the number a as  

0 0 0

, , , , ,a a a a a a
− − + + −+ − +

       (4.25) 

are the best, since they also are designed to avoid confusion for the case 

when the real number a is negative.  

For example, if a = -2, then the corresponding monads and binads are 

respectively represented as: 

0 0 0

2, 2, 2, 2, 2, 2- - - - - -
− − + + −+ − +

.      (4.26) 

4.12. Classical and Neutrosophic Notations 

Classical notations on the set of real numbers:  

<, ≤, >, ≥, ˄, ˅, →, ↔, ∩, ∪, ⊂, ⊃, ⊆, ⊇, =, ∊,  

+, −, , , ^, *       (4.27) 

Operations with real subsets: ⊛     (4.28) 

Neutrosophic notations on nonstandard sets (that involve 

indeterminacies, approximations, vague boundaries):   

<N, ≤N, >N, ≥N, ˄N, ˅N, →N, ↔N, ∩N, ∪N, ⊂N, ⊃N, ⊆N, ⊇N, =N, ∊N 

+ N, − N, , ^N, *N      (4.29) 

4.13. Neutrosophic Strict Inequalities 

We recall the neutrosophic strict inequality which is needed for the 

inequalities of nonstandard numbers. 

Let α, β be elements in a partially ordered set M. 

We have defined the neutrosophic strict inequality  

 

,N N 
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α >N β        (4.30)                                                                                                                                      

and read as  

“α is neutrosophically greater than β” 

if α in general is greater than β,  

or α is approximately greater than β,  

or subject to some indeterminacy (unknown or unclear ordering 

relationship between α and β) or subject to some contradiction (situation 

when α is smaller than or equal to β) α is greater than β. 

It means that in most of the cases, on the set M, α is greater than β. 

And similarly for the opposite neutrosophic strict inequality α <N β. 

        (4.31) 

4.14. Neutrosophic Equality 

We have defined the neutrosophic inequality  

α =N β        (4.32)                                                                                                                                  

and read as  

“α is neutrosophically equal to β” 

if α in general is equal to β,  

or α is approximately equal to β,  

or subject to some indeterminacy (unknown or unclear ordering 

relationship between α and β) or subject to some contradiction (situation 

when α is not equal to β) α is equal to β.  

It means that in most of the cases, on the set M, α is equal to β. 

4.15. Neutrosophic (Non-Strict) Inequalities 

Combining the neutrosophic strict inequalities with neutrosophic 

equality, we get the ≥N and ≤N neutrosophic inequalities. 

Let α, β be elements in a partially ordered set M. 

The neutrosophic (non-strict) inequality  
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α ≥N β        (4.33)                                                                                                                                  

and read as  

“α is neutrosophically greater than or equal to β” 

if  

α in general is greater than or equal to β,  

or α is approximately greater than or equal to β,  

or subject to some indeterminacy (unknown or unclear ordering 

relationship between α and β) or subject to some contradiction (situation 

when α is smaller than β) α is greater than or equal to β. 

It means that in most of the cases, on the set M, α is greater than or 

equal to β. 

And similarly for the opposite neutrosophic (non-strict) inequality α 

≤N β.        (4.34) 

4.16. Neutrosophically Ordered Set 

Let M be a set. (M, <N) is called a neutrosophically ordered set if: 

  α, β ∊ M, one has: either α <N β, or α =N β, or α >N β.  (4.35) 

4.17. Neutrosophic Infimum and Neutrosophic Supremum 

As an extension of the classical infimum and classical supremum, and 

using the neutrosophic inequalities and neutrosophic equalities, we define 

the neutrosophic infimum ( denoted as infN ) and the neutrosophic 

supremum ( denoted as supN ). 

Neutrosophic Infimum 

Let (S, <N) be a set that is neutrosophically partially ordered, and M a 

subset of S. The neutrosophic infimum of M, denoted as infN(M) is the 

neutrosophically greatest element in S that is neutrosophically less than 

or equal to all elements of M. 
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Neutrosophic Supremum 

 Let (S, <N) be a set that is neutrosophically partially ordered, and 

M a subset of S. The neutrosophic supremum of M, denoted as supN(M) 

is the neutrosophically smallest element in S that is neutrosophically 

greater than or equal to all elements of M. 

4.18. Definition of Nonstandard Real MoBiNad Set 

Let ℝ be the set of standard real numbers, ℝ∗ the set of hyper-reals (or 

non-standard reals) which consists of infinitesimals and infinites. 

The Nonstandard Real MoBiNad Set is now defined, for the first time, 

as follows: 

𝑁𝑅𝑀𝐵 =𝑁

{
 
 

 
 𝜀,𝜔, 𝑎, ( 

−𝑎) , (−𝑎0), (𝑎+), ( 0𝑎+), (−𝑎+), (−𝑎0+) 
| where 𝜀 are infinitesimals,

with 𝜀 ∈ ℝ∗;  𝜔 =
1

𝜀
are infinites,

with 𝜔 ∈ ℝ∗; and 𝑎 are real numbers, with 𝑎 ∈ ℝ }
 
 

 
 

     

                                                                                (4.36) 

Therefore: 

𝑁𝑅𝑀𝐵 =𝑁 ℝ
∗ ∪ ℝ ∪ 𝜇(−ℝ) ∪ 𝜇(−ℝ0) ∪ 𝜇(ℝ+) ∪ 𝜇(0ℝ+) 

∪ 𝜇(−ℝ+) ∪ 𝜇(−ℝ0 +),     (4.37) 

where   

𝜇(−ℝ) is the set of all real left monads, 

𝜇(−ℝ0) is the set of all real left monads closed to the right, 

𝜇(ℝ+) is the set of all real right monads, 

𝜇(0ℝ+) is the set of all real right monads closed to the left, 

𝜇(−ℝ+) is the set of all real pierced binads, 

and   

𝜇(−ℝ0 +) is the set of all real unpierced binads. 

Also,  
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𝑁𝑅𝑀𝐵 =𝑁 {𝜀, 𝜔,
m

a  |

where 𝜀, 𝜔 ∈ ℝ∗, 𝜀 are infinitesimals,

𝜔 =
1

𝜀
 are infinities;  𝑎 ∈ ℝ;

and 𝑚 ∈ {  ,− ,− 0 ,+ ,+ 0 ,− + ,− 0 + } 

} (4.38) 

NRMB is closed under addition, subtraction, multiplication, division 

[except division by 
m

a   , with a = 0 and 𝑚 ∈ {  ,− ,− 0 ,+ ,+ 0 ,− + ,− 0 + }], 

and power  

{

2

1

m

b
m

a

 
 
 
  

 
   with:  either a > 0 , or a = 0 and b > 0, or a < 0 but 

p
b

r
=

(irreducible fraction) and p, r are integers with r an odd positive number, 

r ∊ {1, 3, 5, …} }. 

These mobinad (nonstandard) above operations are reduced to set 

operations, using Set Analysis and Neutrosophic Analysis (both 

introduced by the author [24, page 11], which are generalizations of 

Interval Analysis), and they deal with sets that have indeterminacies. 

4.19. Etymology of MoBiNad 

MoBiNad comes from monad + binad, introduced now for the first 

time. 

4.20. Definition of Nonstandard Complex MoBiNad Set 

The Nonstandard Complex MoBiNad Set, introduced here for the 

first time, is defined as: 

𝑁𝐶𝑀𝐵 =𝑁 {𝛼 + 𝛽𝑖| where 𝑖 = √−1;  𝛼, 𝛽 ∈ 𝑁𝑅𝑀𝐵}.  (4.39) 

4.21. Definition of Nonstandard Neutrosophic Real MoBiNad Set 

The Nonstandard Neutrosophic Real MoBiNad Set, introduced 

now for the first time, is defined as: 
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𝑁𝑁𝑅𝑀𝐵 =𝑁 {
𝛼 + 𝛽𝐼| where 𝐼 = literal indeterminacy,

𝐼2 = 𝐼;  𝛼, 𝛽 ∈ 𝑁𝑅𝑀𝐵
}. (4.40) 

4.22. Definition of Nonstandard Neutrosophic Complex MoBiNad 

Set 

The Nonstandard Neutrosophic Complex MoBiNad Set, 

introduced now for the first time, is defined as: 

𝑁𝑁𝐶𝑀𝐵 =𝑁 {
𝛼 + 𝛽𝐼| where 𝐼 = literal indeterminacy,

𝐼2 = 𝐼;  𝛼, 𝛽 ∈ 𝑁𝐶𝑀𝐵
}.    (4.41) 

4.23. Properties of the Nonstandard Neutrosophic Real Mobinad Set 

Since in nonstandard neutrosophic logic we use only the nonstandard 

neutrosophic real mobinad set, we study some properties of it. 

Theorem 1 

The nonstandard real mobinad set (𝑁𝑅𝑀𝐵, ≤𝑁 ), endowed with the 

nonstandard neutrosophic inequality is a lattice of first type [as partially 

ordered set (poset)]. 

Proof 

The set 𝑁𝑅𝑀𝐵 is partially ordered, because [except the two-element 

subsets of the form {𝑎, a
−+

} , and {𝑎,
0

a
− +

} ,with 𝑎 ∈

ℝ, beetwen which there is no order] all other elements are ordered: 

If 𝑎 < 𝑏, where 𝑎, 𝑏 ∈ ℝ, then: 
1 2m m

Na b , for any monads or binads 

𝑚1, 𝑚2 ∈𝑁 { ,
− ,− 0 ,+ ,0+ ,− + ,− 0 + }.     (4.42) 

If 𝑎 = 𝑏, one has: 

–𝑎 <𝑁 𝑎,        (4.43) 

𝑎− <𝑁 𝑎
+,        (4.44) 

𝑎 <𝑁 𝑎
+,        (4.45) 
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–𝑎 ≤𝑁
–𝑎+,        (4.46) 

–𝑎+ ≤𝑁 𝑎
+,        (4.47) 

and there is no neutrosophic ordering relationship between 𝑎 and –𝑎+ ,  

nor between a and 
0

a
− +

 (that is why ≤𝑁 on 𝑁𝑅𝑀𝐵 is a partial ordering 

set).                                (4.48)                                                       

If 𝑎 > 𝑏, then: 
1 2m m

Na b ,  

for any monads or binads 𝑚1, 𝑚2.       (4.49) 

Any two-element set {𝛼, 𝛽} ⊂𝑁 𝑁𝑅𝑀𝐵  has a neutrosophic 

nonstandard infimum (meet, or greatest lower bound) that we denote 

by inf𝑁, and a neutrosophic nonstandard supremum (joint, or least 

upper bound) that we denote by sup𝑁, where both 

inf𝑁{𝛼, 𝛽} and sup𝑁{𝛼, 𝛽} ∈ 𝑁𝑅𝑀𝐵.     (4.50) 

For the non-ordered elements 𝑎 and –𝑎+: 

inf𝑁{𝑎,
− 𝑎+ } =𝑁

–𝑎 ∈𝑁 𝑁𝑅𝑀𝐵,     (4.51) 

sup𝑁{𝑎,
− 𝑎+ } =𝑁 𝑎

+ ∈𝑁 𝑁𝑅𝑀𝐵.     (4.52) 

And similarly for non-ordered elements 𝑎 and –𝑎0 +: 

inf𝑁{𝑎,
− 𝑎0 +} =𝑁

–𝑎 ∈𝑁 𝑁𝑅𝑀𝐵,     (4.53) 

sup𝑁{𝑎,
− 𝑎0 +} =𝑁 𝑎

+ ∈𝑁 𝑁𝑅𝑀𝐵.     (4.54) 

Dealing with monads and binads which neutrosophically are real 

subsets with indeterminate borders, and similarly 𝑎 = [𝑎, 𝑎]  can be 

treated as a subset, we may compute infN and supN of each of them. 

inf𝑁(
−𝑎) =𝑁

–𝑎 and sup𝑁(
−𝑎) =𝑁

–𝑎;    (4.55) 

inf𝑁(𝑎
+) =𝑁 𝑎

+ and sup𝑁(𝑎
+) =𝑁 𝑎

+;    (4.56) 

inf𝑁(
−𝑎+) =𝑁

–𝑎 and sup𝑁(
−𝑎+) =𝑁 𝑎

+;    (4.57) 

inf𝑁(
−𝑎0 +) =𝑁

–𝑎 and sup𝑁(
−𝑎0 +) =𝑁 𝑎

+.    (4.58) 

Also, inf𝑁(𝑎) =𝑁 𝑎 and sup𝑁(𝑎) =𝑁 𝑎.    (4.59) 
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If 𝑎 < 𝑏, then 
1 2m m

Na b , whence inf𝑁 {
1m

a ,
2m

b } =𝑁 inf𝑁
1m

a
 
 
 

  

and sup𝑁 {
1m

a ,
2m

b } =𝑁 sup𝑁
2m

b
 
 
 

,    (4.60) 

which are computed as above. 

Similarly, if 𝑎 > 𝑏, with 
1m

a >𝑁
2m

b .     (4.61) 

If 𝑎 = 𝑏, then: 

inf𝑁 {
1m

a ,
2m

a } =𝑁 the neutrosophically smallest (<𝑁) element among 

 inf𝑁 {
1m

a } and inf𝑁 {
2m

a }.      (4.62) 

While sup𝑁 {
1m

a ,
2m

a } =𝑁 the neutrosophically greatest (>𝑁) element 

among  

sup𝑁 {
1m

a } and sup𝑁 {
2m

a }.      (4.63) 

Examples: 

inf𝑁(
−𝑎, 𝑎+) =𝑁

–𝑎 and sup𝑁(
−𝑎, 𝑎+) =𝑁 𝑎

+;  (4.64) 

inf𝑁(
−𝑎,− 𝑎+) =𝑁

–𝑎 and sup𝑁(
−𝑎,− 𝑎+) =𝑁 𝑎

+;   (4.65) 

inf𝑁(
−𝑎+, 𝑎+) =𝑁

–𝑎 and sup𝑁(
−𝑎+, 𝑎+) =𝑁 𝑎

+.   (4.66) 

Therefore, (𝑁𝑅𝑀𝐵, ≤𝑁) is a nonstandard real mobinad lattice of first 

type (as partially ordered set). 

Consequence 

If we remove all pierced and unpierced binads from 𝑁𝑅𝑀𝐵 and we 

denote the new set by 
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𝑁𝑅𝑀 = {
ɛ, 𝜔, 𝑎,− 𝑎,− 𝑎0, 𝑎+,0 𝑎+,

where ɛ are infinitesimals,𝜔 are infinites, and 𝑎 ∈ ℝ
}  we 

obtain a totally neutrosophically ordered set. 

Theorem 2 

Any finite non-empty subset 𝐿 of (𝑁𝑅𝑀𝐵,≤𝑁) is also a sublattice of 

first type. 

Proof 

It is a consequence of any classical lattice of first order (as partially 

ordered set). 

Theorem 3 

(𝑁𝑅𝑀𝐵, ≤𝑁) is not bounded neither to the left nor to the right, since it 

does not have a minimum (bottom, or least element), nor a maximum 

(top, or greatest element). 

Proof 

Straightforward, since NRMB includes the set of real number R = (-

∞,+∞) which is clearly unbounded to the left and right-hand sides. 

Theorem 4 

(𝑁𝑅𝑀𝐵, inf𝑁, sup𝑁), where inf𝑁 and sup𝑁 are two binary operations, 

dual to each other, defined before, is a lattice of second type (as an 

algebraic structure). 

Proof 

We have to show that the two laws inf𝑁 and sup𝑁 are commutative, 

associative, and verify the absorption laws. 

Let 𝛼, 𝛽, 𝛾 ∈ 𝑁𝑅𝑀𝐵 be two arbitrary elements. 

Commutativity Laws 

i) inf𝑁{𝛼, 𝛽} N= inf𝑁{𝛽, 𝛼}.      (4.67) 
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ii) sup𝑁{𝛼, 𝛽} N= sup𝑁{𝛽, 𝛼}.     (4.68) 

Their proofs are straightforward. 

Associativity Laws 

inf𝑁{𝛼, inf𝑁{𝛽, 𝛾}} N=  inf𝑁{inf𝑁{𝛼, 𝛽}, 𝛾}.    (4.69) 

Proof 

i) inf𝑁{𝛼, inf𝑁{𝛽, 𝛾}} N= inf𝑁{𝛼, 𝛽, 𝛾},     

(4.70) 

and 

inf𝑁{inf𝑁{𝛼, 𝛽}, 𝛾} N= inf𝑁{𝛼, 𝛽, 𝛾},     (4.71) 

where we have extended the binary operation inf𝑁 to a trinary operation 

inf𝑁. 

ii) sup𝑁{𝛼, sup𝑁{𝛽, 𝛾}} N=  sup𝑁{sup𝑁{𝛼, 𝛽}, 𝛾}   (4.72) 

Proof 

 sup𝑁{𝛼, sup𝑁{𝛽, 𝛾}} N= sup𝑁{𝛼, 𝛽, 𝛾},    (4.73) 

and 

sup𝑁{sup𝑁{𝛼, 𝛽}, 𝛾} N= sup𝑁{𝛼, 𝛽, 𝛾},    (4.74) 

where similarly we have extended the binary operation sup𝑁 to a trinary 

operation sup𝑁. 

Absorption Laws (as peculiar axioms to the theory of lattice) 

i) We need to prove that inf𝑁{𝛼, sup𝑁{𝛼, 𝛽}} N= 𝛼.   (4.75) 

Let 𝛼 ≤𝑁 𝛽, then inf𝑁{𝛼, sup𝑁{𝛼, 𝛽}} =𝑁 inf𝑁{𝛼, 𝛽} =𝑁 𝛼. (4.76) 

Let 𝛼 >𝑁 𝛽, then inf𝑁{𝛼, sup𝑁{𝛼, 𝛽}} =𝑁 inf𝑁{𝛼, 𝛼} =𝑁 𝛼. (4.77) 
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ii) Now, we need to prove that sup𝑁{𝛼, inf𝑁{𝛼, 𝛽}} N= 𝛼.  (4.78) 

Let 𝛼 ≤𝑁 𝛽, then sup𝑁{𝛼, inf𝑁{𝛼, 𝛽}} =𝑁 sup𝑁{𝛼, 𝛼} =𝑁 𝛼. (4.79) 

Let 𝛼 >𝑁 𝛽, then sup𝑁{𝛼, inf𝑁{𝛼, 𝛽}} =𝑁 sup𝑁{𝛼, 𝛽} =𝑁 𝛼. (4.80) 

Consequence 

The binary operations inf𝑁 and sup𝑁 also satisfy the idempotent laws: 

inf𝑁{𝛼, 𝛼} =𝑁 𝛼,       (4.81) 

sup𝑁{𝛼, 𝛼} =𝑁 𝛼.       (4.82) 

Proof 

The axioms of idempotency follow directly from the axioms of 

absorption proved above. Thus, we have proved that (NRMB, infN, supN) is 

a lattice of second type (as algebraic structure). 

4.24. Definition of General Nonstandard Real MoBiNad Interval 

Let 𝑎, 𝑏 ∈ ℝ, with −∞ < 𝑎 ≤ 𝑏 < ∞,    (4.83) 

 ]−𝑎, 𝑏+[𝑀𝐵= {𝑥 ∈ 𝑁𝑅𝑀𝐵,
− 𝑎 ≤𝑁 𝑥 ≤𝑁 𝑏

+}.  (4.84) 

As particular edge cases: 

]−𝑎, 𝑎+[𝑀𝐵=𝑁 {
−𝑎, 𝑎,− 𝑎+, 𝑎+} , a discrete nonstandard real set of 

cardinality 4.       (4.85) 

] , [ { }MB Na a a− − −= ;      (4.86)                                                                                                                         

]𝑎+, 𝑎+[𝑀𝐵 =𝑁 {𝑎
+};     (4.87) 

]𝑎, 𝑎+[𝑀𝐵 =𝑁 {𝑎, 𝑎
+};     (4.88) 

]−𝑎, 𝑎[𝑀𝐵=𝑁 {
−𝑎, 𝑎};     (4.89) 

]−𝑎,− 𝑎+[𝑀𝐵=𝑁 {
−𝑎,− 𝑎+, 𝑎+} , where 𝑎 ∉]−𝑎,− 𝑎+[𝑀𝐵  since 𝑎 ≰𝑁

–

𝑎+ (there is no relation of order between 𝑎 and –𝑎+);  (4.90) 

]−𝑎+, 𝑎+[𝑀𝐵=𝑁 {
−𝑎+, 𝑎+}.     (4.91) 
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Theorem 5 

( ]−𝑎, 𝑏+[,≤𝑁) is a nonstandard real mobinad sublattice of first type 

(poset).        (4.92) 

Proof 

Straightforward since   ]−𝑎, 𝑏+[ is a sublattice of the lattice of first 

type NRMB.  

Theorem 6 

( ]−𝑎, 𝑏+[, inf𝑁, sup𝑁,
− 𝑎, 𝑏+) is a nonstandard bounded real mobinad 

sublattice of second type (as algebraic structure).  

(4.93) 

Proofs 

]−𝑎, 𝑏+[𝑀𝐵 as a nonstandard subset of 𝑁𝑅𝑀𝐵 is also a poset, and for 

any two-element subset {𝛼, 𝛽} ⊂𝑁 ]
−0, 1+[𝑀𝐵  (4.94) 

one obviously has the triple neutrosophic nonstandard inequality: 

 –𝑎 ≤𝑁 inf𝑁{𝛼, 𝛽} ≤𝑁 sup𝑁{𝛼, 𝛽} ≤𝑁 𝑏
+,    (4.95) 

whence ( ]−𝑎, 𝑏+[𝑀𝐵≤𝑁) is a nonstandard real mobinad sublattice of first 

type (poset), or sublattice of 𝑁𝑅𝑀𝐵. 

Further on, ]−𝑎, 𝑏+[, endowed with two binary operations inf𝑁  and 

sup𝑁, is also a sublattice of the lattice 𝑁𝑅𝑀𝐵, since the lattice axioms 

(Commutative Laws, Associative Laws, Absortion Laws, and Idempotent 

Laws) are clearly verified on ]−𝑎, 𝑏+[.  

The nonstandard neutrosophic modinad Identity Join Element 

(Bottom) is –𝑎, and the nonstandard neutrosophic modinad Identity Meet 

Element (Top) is 𝑏+, 

or inf𝑁]
−𝑎, 𝑏+[=𝑁

–𝑎 and sup𝑁]
−𝑎, 𝑏+[=𝑁 𝑏

+.   (4.96) 

The sublattice Identity Laws are verified below. 

Let 𝛼 ∈𝑁]
−𝑎, 𝑏+[, whence –𝑎 ≤𝑁 𝛼 ≤𝑁 𝑏

+.    (4.97) 

Then: 
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 inf𝑁{𝛼, 𝑏
+} =𝑁 𝛼, and sup𝑁{𝛼,

− 𝑎} =𝑁 𝛼.    (4.98) 

4.25. Definition of Nonstandard Real MoBiNad Unit Interval 

]−0, 1+[𝑀𝐵=𝑁 {𝑥 ∈ 𝑁𝑅𝑀𝐵,
− 0 ≤𝑁 𝑥 ≤𝑁 1

+}   (4.99) 

 =𝑁 {

0 0 0

, , , , , , ,a a a a a a a
− − + + −+ − +

 | where 𝜀 are infinitesimals,

𝜀 ∈ ℝ∗, with 𝜀 > 0, and 𝑎 ∈ [0, 1]

}.  (4.100) 

This is an extension of the previous definition (1998) of nonstandard 

unit interval 

 ]−0, 1+[=𝑁 (
−0) ∪ [0, 1] ∪ (1+)     (4.101) 

Associated to the first published definitions of neutrosophic set, logic, 

and probability was used. 

One has: ]−0, 1+[⊂𝑁 ]
−0, 1+[𝑀𝐵,     (4.102) 

where the index MB means: all monads and binads included in ]−0, 1+[, 

for example: 

 (–0.2), (-0.30), (0.5+), (–0.7+), (-0.80+) etc.    (4.103) 

{or, using the top diacritics notation,  respectively: 

0 0

0.2,0.3,0.5,0.7,0.8
− − + −+ − +

 etc.}.     (4.104) 

Theorem 7 

The Nonstandard Real MoBiNad Unit Interval ]−0, 1+[𝑀𝐵  is a 

partially ordered set (poset) with respect to ≤𝑁 , and any of its two 

elements have an infN  and supN  whence ]−0, 1+[𝑀𝐵  is a nonstandard 

neutrosophic lattice of first type (as poset). 

Proof:  

Straightforward. 
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Theorem 8 

The Nonstandard Real MoBiNad Unit Interval ]−0, 1+[𝑀𝐵, endowed 

with two binary operations inf𝑁  and sup𝑁 , is also a nonstandard 

neutrosophic lattice of second type (as an algebraic structure). 

Proofs 

Replace a = 0 and b = 1 into the general nonstandard real mobinad 

interval ]−𝑎, 𝑏+[. 

4.26. Definition of Extended General Neutrosophic Logic 

We extend and present in a clearer way our 1995 definition (published 

in 1998) of neutrosophic logic. 

Let 𝒰 be a universe of discourse of propositions, and 𝑃 ∈ 𝒰 a generic 

proposition.  

A General Neutrosophic Logic is a multivalued logic in which each 

proposition 𝑃 has a degree of truth (𝑇), a degree of indeterminacy (𝐼), and 

a degree of falsehood (𝐹), where 𝑇, 𝐼, 𝐹 are standard or nonstandard real 

mobinad subsets of the nonstandard real mobinat unit interval ]−0, 1+[𝑀𝐵, 

with 𝑇, 𝐼, 𝐹 ⊆𝑁]
−0, 1+[𝑀𝐵,      (4.105) 

where  

–0 ≤𝑁 inf𝑁𝑇 + inf𝑁𝐼 + inf𝑁𝐹 ≤𝑁 sup𝑁𝑇 + sup𝑁𝐼 + sup𝑁𝐹 ≤ 3
+.  

        (4.106) 

4.27. Definition of Standard Neutrosophic Logic 

If in the above definition of general neutrosophic logic all 

neutrosophic components, T, I, F, are standard real subsets, included in 

or equal to the standard real unit interval, 𝑇, 𝐼, 𝐹 ⊆ [0, 1],  

where 0 ≤ inf𝑇 + inf𝐼 + inf𝐹 ≤ sup𝑇 + sup𝐼 + sup𝐹 ≤ 3, (107) 

we have a standard neutrosophic logic. 
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4.28. Definition of Extended Nonstandard Neutrosophic Logic 

If in the above definition of general neutrosophic logic at least one of 

the neutrosophic components T, I, F is a nonstandard real mobinad subset, 

neutrosophically included in or equal to the nonstandard real mobinad 

unit interval ]−0, 1+[𝑀𝐵,  

where  

–0 ≤𝑁 inf𝑁𝑇 + inf𝑁𝐼 + inf𝑁𝐹 ≤𝑁 sup𝑁𝑇 + sup𝑁𝐼 + sup𝑁𝐹 ≤ 3
+, 

        (4.108) 

we have an extended nonstandard neutrosophic logic. 

Theorem 9 

If 𝑀 is a standard real set, 𝑀 ⊂ ℝ,  

then inf𝑁(𝑀) = inf (𝑀) and sup𝑁(𝑀) = sup (𝑀).          (4.109) 

Proof 

The neutrosophic infimum and supremum coincide with the classical 

infimum and supremum since there is no indeterminacy on the set M, 

meaning M contains no nonstandard numbers. 

4.29. Definition of Extended General Neutrosophic Set 

We extend and present in a clearer way our 1995 definition of 

neutrosophic set. 

Let 𝒰 be a universe of discourse of elements, and 𝑆 ∈ 𝒰 a subset.  

A Neutrosophic Set is a set such that each element 𝑥 from 𝑆 has a 

degree of membership (𝑇), a degree of indeterminacy (𝐼), and a degree of 

nonmembership (𝐹 ), where 𝑇 , 𝐼 , 𝐹  are standard or nonstandard real 

mobinad subsets, neutrosophically included in or equal to the nonstandard 

real mobinat unit interval ]−0, 1+[𝑀𝐵, 

with 𝑇, 𝐼, 𝐹 ⊆𝑁]
−0, 1+[𝑀𝐵,     (4.110) 

where  
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–0 ≤𝑁 inf𝑁𝑇 + inf𝑁𝐼 + inf𝑁𝐹 ≤𝑁 sup𝑁𝑇 + sup𝑁𝐼 + sup𝑁𝐹 ≤ 3
+. 

        (4.111) 

4.30. Definition of Standard Neutrosophic Set 

If in the above general definition of neutrosophic set all neutrosophic 

components, T, I, F, are standard real subsets included in or equal to the 

classical real unit interval, 

 𝑇, 𝐼, 𝐹 ⊆ [0, 1],  

where  

0 ≤ inf𝑇 + inf𝐼 + inf𝐹 ≤ sup𝑇 + sup𝐼 + sup𝐹 ≤ 3,  (4.112) 

we have a standard neutrosophic set. 

4.31. Definition of Extended Nonstandard Neutrosophic Set 

If in the above general definition of neutrosophic set at least one of the 

neutrosophic components T, I, F is a nonstandard real mobinad subsets, 

neutrosophically included in or equal to ]−0, 1+[𝑀𝐵, where  

–0 ≤𝑁 inf𝑁𝑇 + inf𝑁𝐼 + inf𝑁𝐹 ≤𝑁 sup𝑁𝑇 + sup𝑁𝐼 + sup𝑁𝐹 ≤ 3
+,

        (4.113) 

we have a nonstandard neutrosophic set. 

4.32. Definition of Extended General Neutrosophic Probability 

We extend and present in a clearer way our 1995 definition of 

neutrosophic probability. 

Let 𝒰 be a universe of discourse of events, and 𝐸 ∈ 𝒰 be an event.  

A Neutrosophic Probability is a multivalued probability such that 

each event 𝐸 has a chance of occuring (𝑇), an indeterminate (unclear) 

chance of occuring or not occuring (𝐼), and a chance of not occuring (𝐹), 

where 𝑇 , 𝐼 , 𝐹  are standard or nonstandard real mobinad subsets, 

neutrosophically included in or equal to the nonstandard real mobinat unit 

interval ]−0, 1+[𝑀𝐵, 𝑇, 𝐼, 𝐹 ⊆𝑁]
−0, 1+[𝑀𝐵,  

where  
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–0 ≤𝑁 inf𝑁𝑇 + inf𝑁𝐼 + inf𝑁𝐹 ≤𝑁 sup𝑁𝑇 + sup𝑁𝐼 + sup𝑁𝐹 ≤ 3
+. 

        (4.114) 

4.33. Definition of Standard Neutrosophic Probability 

If in the above general definition of neutrosophic probability all 

neutrosophic components, T, I, F, are standard real subsets, included in 

or equal to the standard unit interval,  

𝑇, 𝐼, 𝐹 ⊆ [0, 1],  

where  

0 ≤ inf𝑇 + inf𝐼 + inf𝐹 ≤ sup𝑇 + sup𝐼 + sup𝐹 ≤ 3,  (4.115) 

we have a standard neutrosophic probability. 

4.34. Definition of Extended Nonstandard Neutrosophic Probability 

If in the above general definition of neutrosophic probability at least 

one of the neutrosophic components T, I, F is a nonstandard real mobinad 

subsets, neutrosophically included in or equal to ]−0, 1+[𝑀𝐵,  

where  

–0 ≤𝑁 inf𝑁𝑇 + inf𝑁𝐼 + inf𝑁𝐹 ≤𝑁 sup𝑁𝑇 + sup𝑁𝐼 + sup𝑁𝐹 ≤ 3
+, 

        (4.116) 

we have a nonstandard neutrosophic probability. 

4.35. Classical Operations with Real Sets 

Let 𝐴, 𝐵 ⊆ ℝ be two real subsets. Let ⊛ and * denote any of the real 

subset classical operations and real number classical operations 

respectively: addition (+), subtraction (−), multiplication (×), division 

(÷), and power (⌃).  

Then, 𝐴⊛𝐵 = {𝑎 ∗ 𝑏,where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}. (4.117) 

Thus: 
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       (4.118-4.122) 

For the division (÷), of course, we consider 𝑏 ≠ 0. While for the 

power (⌃), we consider 𝑎 > 0. 

4.36. Operations on the Nonstandard Real MoBiNad Set (NRMB) 

For all nonstandard (addition, subtraction, multiplication, division, 

and power) operations, 

for α, β ∊N NRMB, α *N β =N μN(α) ⊛ μN(β)    (4.123) 

where *N is any neutrosophic arithmetic operations with neutrosophic 

numbers (+N, -N, ×𝑵,÷𝑵, ^N), while the corresponding ⊛ is an arithmetic 

operation with real subsets. 

So, we approximate the nonstandard operations by standard operations 

of real subsets. 

We sink the nonstandard neutrosophic real mobinad operations into 

the standard real subset operations, then we resurface the last ones back 

to the nonstandard neutrosophic real mobinad set. 

Let 𝜀1  and 𝜀2  be two non-null positive infinitesimals. We present 

below some particular cases, all others should be deduced analogously.  

Nonstandard Addition 

First Method 

(−𝑎) + (−𝑏) =𝑁 (𝑎 − 𝜀1, 𝑎) + (𝑏 − 𝜀2, 𝑏) =𝑁 (𝑎 + 𝑏 − 𝜀1 −

𝜀2, 𝑎 + 𝑏) =𝑁 (𝑎 + 𝑏 − 𝜀, 𝑎 + 𝑏) =𝑁
–(𝑎 + 𝑏),    (4.124) 

where we denoted 𝜀1 + 𝜀2 = 𝜀       

(the addition of two infinitesimals is also an infinitesimal)  

{ | , }

{ | , }

{ | , }

{ | , {0}}

{ ^ | , 0; }B

A B a b a A b B

A B a b a A b B

A B a b a A b B

A B a b a A b B

A a b a A a b B

 = +  

= −  

 =   

=    −

=   
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Second Method 

(−𝑎) + (−𝑏) =𝑁 (𝑎 − 𝜀1) + (𝑏 − 𝜀2) 

=𝑁 (𝑎 + 𝑏 − 𝜀1 − 𝜀2) =𝑁
–(𝑎 + 𝑏).    (4.125) 

Adding two left monads, one also gets a left monad. 

Nonstandard Subtraction 

First Method 

(−𝑎) − (−𝑏) =𝑁 (𝑎 − 𝜀1, 𝑎) − (𝑏 − 𝜀2, 𝑏) =𝑁 (𝑎 − 𝜀1 − 𝑏, 𝑎 −

𝑏 + 𝜀2) =𝑁 (𝑎 − 𝑏 − 𝜀1, 𝑎 − 𝑏 + 𝜀2) =𝑁 (
− 0 +
𝑎 − 𝑏

)  (4.126) 

 

Second Method 

(−𝑎) − (−𝑏) =𝑁 (𝑎 − 𝜀1) − (𝑏 − 𝜀2) =𝑁 𝑎 − 𝑏 − 𝜀1 + 𝜀2, 

        (4.127) 

since 𝜀1 and 𝜀2 may be any positive infinitesimals, 

=𝑁 {

ˉ(𝑎 − 𝑏),when 𝜀1 > 𝜀2;

(
0

𝑎 − 𝑏
) ,when 𝜀1 = 𝜀2

(𝑎 − 𝑏)+, when 𝜀1 < 𝜀2.

=𝑁 (
0

𝑎 − 𝑏
) =N  a – b;  

       (4.128-4.130) 

Subtracting two left monads, one obtains an unpierced binad (that’s 

why the unpierced binad had to be introduced). 

Nonstandard Division 

Let a, b > 0. 

(−𝑎) ÷ (−𝑏) =𝑁 (𝑎 − 𝜀1, 𝑎) ÷ (𝑏 − 𝜀2, 𝑏) =𝑁 (
𝑎−𝜀1

𝑏
,
𝑎

𝑏−𝜀2
).  

        (4.131) 

Since 𝜀1 > 0 and 𝜀2 > 0, 
𝑎−𝜀1

𝑏
<
𝑎

𝑏
 and 

𝑎

𝑏−𝜀2
>
𝑎

𝑏
,   (4.132) 
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while between 
𝑎−𝜀1

𝑏
 and 

𝑎

𝑏−𝜀2
 there is a continuum whence there are 

some infinitesimals 𝜀1
0  and 𝜀2

0  such that 
𝑎−𝜀1

0

𝑏−𝜀2
0 =

𝑎

𝑏
, or 𝑎𝑏 − 𝑏𝜀1

0 = 𝑎𝑏 −

𝑎𝜀2
0, and for a given 𝜀1

0. 

 there exist an 𝜀2
0 = 𝜀1

0 ∙
𝑏

𝑎
.        (4.133) 

Whence 
(−𝑎)

(−𝑏)
=𝑁 (

− 0 +
𝑎

𝑏

).     (4.134) 

For 𝑎  or/and 𝑏  negative numbers, it’s similar but it’s needed to 

compute the 𝑖𝑛𝑓𝑁 and 𝑠𝑢𝑝𝑁 of the products of intervals. 

Dividing two left monads, one obtains an unpierced binad. 

Nonstandard Multiplication 

Let 𝑎, 𝑏 ≥ 0. 

(−𝑎0) × (−𝑏0 +) =𝑁 (𝑎 − 𝜀1, 𝑎] × (𝑏 − 𝜀2, 𝑏 + 𝜀2) =𝑁 ((𝑎 − 𝜀1) ∙

(𝑏 − 𝜀2), 𝑎 ∙ (𝑏 + 𝜀2)) =𝑁 (
−𝑎𝑏0 +)    (4.135) 

since (𝑎 − 𝜀1) ∙ (𝑏 − 𝜀2) < 𝑎 ∙ 𝑏 and 𝑎 ∙ (𝑏 + 𝜀2) > 𝑎 ∙ 𝑏.  (4.136) 

For 𝑎  or/and 𝑏  negative numbers, it’s similar but it’s needed to 

compute the 𝑖𝑛𝑓𝑁 and 𝑠𝑢𝑝𝑁 of the products of intervals. 

Multiplying a positive left monad closed to the right, with a positive 

unpierced binad, one obtains an unpierced binad. 

Nonstandard Power 

Let 𝑎, 𝑏 > 1. 

(0𝑎+)(
−𝑏0) =𝑁 [𝑎,𝑎 + 𝜀1)

(𝑏−𝜀2,𝑏] =𝑁 (𝑎
𝑏−𝜀2 , (𝑎 +

𝜀1)
𝑏) =𝑁 (

− 0 +
𝑎𝑏

)          (4.137) 

since 𝑎𝑏−𝜀1 < 𝑎𝑏 and (𝑎 + 𝜀1)
𝑏 > 𝑎𝑏.    (4.138) 

Raising a right monad closed to the left to a power equal to a left 

monad closed to the right, for both monads above 1, the result is an 

unpierced binad. 
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Consequence 

In general, when doing arithmetic operations on nonstandard real 

monads and binads, the result may be a different type of monad or binad. 

That’s why is was imperious to extend the monads to closed monads, 

and the pierced binad to unpierced binad, in order to have the whole 

nonstandard neutrosophic real mobinad set closed under arithmetic 

operations. 

4.37. Conditions of Neutrosophic Nonstandard Inequalities 

Let NRMB be the Nonstandard Real MoBiNad. Let’s endow (NRMB, <N) 

with a neutrosophic inequality. 

Let , MBNR   , where ,   may be real numbers, monads, or 

binads. 

And let 

 

0 0 0

, , , , , MBNRa a a a a a
− − + + −+ − +           

           
            ,  

and 

0 0 0

, , , , , MBNRb b b b b b
− − + + −+ − +           

           
            ,   (4.139) 

be the left monads, left monads closed to the right, right monads, right 

monads closed to the left, and binads, and binads nor prierced of the 

elements (standard real numbers) a and b respectively. Since all monads 

and binads are real subsets, we may treat the single real numbers  

a = [a, a] and b = [b, b] as real subsets too.    (4.140) 

NRMB is a set of subsets, and thus we deal with neutrosophic 

inequalities between subsets. 

i) If the subset α has many of its elements above all elements of the 

subset β,  then α >N β (partially). 

ii) If the subset α has many of its elements below all elements of the 

subset β, then α <N β (partially). 
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iii) If the subset α has many of its elements equal with elements of the 

subset β, then α =N β (partially). 

If the subset α verifies i) and iii) with respect to subset β, then α ≥N β. 

If the subset α verifies ii) and iii) with respect to subset β, then α ≤N β. 

If the subset α verifies i) and ii) with respect to subset β, then there is 

no neutrosophic order (inequality) between α  and β. 

{ For example, between a and (-a+) there is no neutrosophic order, 

similarly between a and . } 

Similarly, if the subset α verifies i), ii) and iii) with respect to subset 

β, then there is no neutrosophic order (inequality) between α and β. 

4.38. Open Neutrosophic Research 

The quantity or measure of “many of its elements” of the above i), ii), 

or iii) conditions depends on each neutrosophic application and on its 

neutrosophic experts. 

An approach would be to employ the Neutrosophic Measure [21, 22], 

that handles indeterminacy, which may be adjusted and used in these 

cases.  

In general, we do not try in purpose to validate or invalidate an existing 

scientific result, but to investigate how an existing scientific result 

behaves in a new environment (that may contain indeterminacy), or in a 

new application, or in a new interpretation. 

4.39. Nonstandard Neutrosophic Inequalities 

For the neutrosophic nonstandard inequalities, we propose based on 

the previous six neutrosophic equalities, the following: 

 (-a)  <N  a  <N  (a+)       (4.141) 

since the standard real interval (a - ε, a) is below a, and a is below the 

standard real interval  

0

a
− +
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(a, a + ε) by using the approximation provided by the nonstandard 

neutrosophic function μ,  

or because 
* ,x R a x a a x+  −   + ,    (4.142) 

where x is of course a (nonzero) positive infinitesimal (the above double 

neutrosophic inequality actually becomes a double classical standard real 

inequality for each fixed positive infinitesimal).  

The converse double neutrosophic inequality is also neutrosophically 

true: 

(a+)  >N  a  >N   (-a)       (4.143) 

Another nonstandard neutrosophic double inequality: 

(-a)  ≤N  (-a+)  ≤N  (a+)      (4.144) 

This double neutrosophic inequality may be justified since (-a+)  = (-

a)  (a+) and, geometrically, on the Real Number Line, the number a is 

in between the subsets –a = (a-ɛ, a) and 

a+ = (a, a+ɛ), so: 

  (-a)  ≤N  (-a)  (a+) ≤N  (a+)       (4.145) 

whence the left side of the inequality’s middle term coincides with the 

inequality first term, while the right side of the inequality middle term 

coincides with the third inequality term. 

 Conversely, it is neutrosophically true as well: 

        (a+)  ≥N  (-a)  (a+)  ≥N  (-a)     (4.146) 

Also, 

0 0

N N N Naa a a a
− − + +

   
 and 

0

N N Na a a a
− −+ − + +

  
. (4.147) 

Conversely, they are also neutrosophically true: 

0 0

N N N Naa a a a
+ + − −

   
  

and 

0

N N Na a a a
+ − + −+ −

  
respectively.    (4.148) 
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If a > b, which is a (standard) classical real inequality, then we have 

the following neutrosophic nonstandard inequalities:  

 a >N (-b),   a >N (b+),   a >N (-b+), 
0 0 0

, , ;N N Na a ab b b
− + − +

    

        (4.149)                                                                        

(-a) >N b, (-a) >N (-b), (-a) >N (b+), (-a) >N (-b+), 

0 0 0

, , ;N N Na b a b a b
− − − + − − +

        (4.150)                                                      

(a+) >N b,  (a+) >N (-b),   (a+) >N (b+),   (a+) >N (-b+),     (4.151)                                                 

(-a+) >N b,  (-a+) >N (-b),   (-a+) >N (b+),   (-a+) >N (-b+), etc.  (4.152) 

No Ordering Relationships 

For any standard real number a, there is no relationship of order 

between the elements a and (–a+),  

nor between the elements a and 
0

a
− + 

 
 

.    (4.153) 

Therefore, NRMB is a neutrosophically partially order set. 

If one removes all binads from NRMB, then (NRMB, ≤N) is 

neutrosophically totally ordered.      (4.154) 

Theorem 10. 

Using the nonstandard general notation one has: 

     If a > b, which is a (standard) classical real inequality, then  

1 2m m

Na b for any m1, m2 ∊ { , -, -0, +, +0, -+, -0+}.   (4.155) 

And conversely,         

 If a < b, which is a (standard) classical real inequality, then  

1 2m m

Na b for any m1, m2 ∊ { , -, -0, +, +0, -+, -0+}.   (4.156) 
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4.40. Nonstandard Neutrosophic Equalities 

Let a, b be standard real numbers; if a = b that is a (classical) standard 

equality, then: 

(-a) =N (-b),  (a+) =N (b+),  (-a+) =N (-b+),    (4.157) 

0 0 0 0 0 0

, ,N N Na b a b a b
− − + + − + − +           

= = =           
           

.    (4.158) 

4.41. Nonstandard Neutrosophic Belongingness 

On the nonstandard real set NRMB, we say that  

1 2

] , [
m mm

Nc a b
  iff  

1 2m mm

N Na c b 
,     (4.159) 

where m1, m2, m ∊ { , -, -0, +, +0, -+, -0+}.    (4.160) 

{ We use the previous nonstandard neutrosophic inequalities. } 

4.42. Nonstandard Hesitant Sets 

Are sets of the form:   A = {a1, a2, …, an}, 2 n   , N MBA NR ,  

where at least one element
0 0,1 ,ia i n   is either an infinitesimal, or 

a monad or a binad (of any type); 

while other elements may be standard real numbers, infinitesimals, or 

also monads or binads (of any type).    (4.161) 

If the neutrosophic components T, I, F are nonstandard hesitant sets, 

then one has a  

Nonstandard Hesitant Neutrosophic Logic / Set / Probability. 

4.43. Nonstandard Neutrosophic Strict Interval Inclusion 

On the nonstandard real set NRMB, 

31 2 4

] , [ ] , [
mm m m

Na b c d  iff       (4.162) 
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3 1 2 4m m m m

N N Nc a b d  
   

or  

3 1 2 4m m m m

N N Nc a b d  
 or 

3 1 2 4m m m m

N N Nc a b d  
.   (4.163) 

4.44. Nonstandard Neutrosophic (Non-Strict) Interval Inclusion 

On the nonstandard real set NRMB, 

31 2 4

] , [ ] , [
mm m m

Na b c d  iff       (4.164) 

3 1 2 4m m m m

N N Nc a b d          (4.165) 

4.45. Nonstandard Neutrosophic Strict Set Inclusion 

The nonstandard set A is neutrosophically strictly included in the 

nonstandard set B, NA B , if: 

,N Nx A x B  
, and 

: .N Ny B y A  
    (4.166) 

4.46. Nonstandard Neutrosophic (Non-Strict) Set Inclusion 

The nonstandard set A is neutrosophically not-strictly included in the 

nonstandard set B,  

NA B , iff:       (4.167) 

,N Nx A x B   .        (4.168) 

4.47. Nonstandard Neutrosophic Set Equality 

The nonstandard sets A and B are neutrosophically equal, NA B= , iff:

        (4.169) 

NA B
and NB A

.      (4.170) 
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4.48. The Fuzzy, Neutrosophic, and Plithogenic Logical Connectives 

∧, ∨, → 

All fuzzy, intuitionistic fuzzy, and neutrosophic logic operators are 

inferential approximations, not written in stone. They are improved from 

application to application. 

Let’s denote:  

∧F, ∧N, ∧P  representing respectively the fuzzy conjunction, 

neutrosophic conjunction, and plithogenic conjunction;   (4.171) 

similarly  

∨F, ∨N, ∨P  representing respectively the fuzzy disjunction, 

neutrosophic disjunction, and plithogenic disjunction,   (4.172) 

and  

→F, →N, →P representing respectively the fuzzy implication, 

neutrosophic implication, and plithogenic implication.   (4.173) 

I agree that my beginning neutrosophic operators (when I applied the 

same fuzzy t-norm, or the same fuzzy t-conorm, to all neutrosophic 

components T, I, F) were less accurate than others developed later by the 

neutrosophic community researchers. This was pointed out since 2002 by 

Ashbacher [9] and confirmed in 2008 by Rivieccio [10]. They observed 

that if on T1 and T2 one applies a fuzzy t-norm, on their opposites F1 and 

F2 one needs to apply the fuzzy t-conorm (the opposite of fuzzy t-norm), 

and reciprocally. 

About inferring I1 and I2, some researchers combined them in the same 

directions as T1 and T2. 

Then:  

(T1, I1, F1) ∧N (T2, I2, F2)  

= (T1 ∧F T2, I1 ∧F I2, F1 ∨F F2),                                                 (4.174) 

 (T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∨F I2, F1 ∧F F2),  (4.175) 

 (T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = 
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 = (F1 ∨F T2, I1 ∨F I2, T1 ∧ F F2);        (4.176) 

others combined I1 and I2 in the same direction as F1 and F2 (since both 

I and F are negatively qualitative neutrosophic components, while F is 

qualitatively positive neutrosophic component), the most used one: 

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2),  (4.177) 

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2),  (4.178) 

 (T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = 

= (F1 ∨F T2, I1 ∧F I2, T1 ∧ F F2).            (4.179) 

Even more, recently, in an extension of neutrosophic set to plithogenic 

set [11] (which is a set whose each element is characterized by many 

attribute values), the degrees of contradiction c( , ) between the 

neutrosophic components T, I, F have been defined (in order to facilitate 

the design of the aggregation operators), as follows: 

c(T, F) = 1 (or 100%, because they are totally opposite),  

c(T, I) = c(F, I) = 0.5 (or 50%, because they are only half opposite), 

         (4.180) 

then: 

(T1, I1, F1) ∧P (T2, I2, F2) = 

= (T1 ∧F T2, 0.5(I1∧F I2) + 0.5(I1∨F I2), F1 ∨F F2),   (4.181)                          

 (T1, I1, F1) ∨P (T2, I2, F2) = 

= (T1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2), F1 ∧F F2).   (4.182)                            

 (T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2)                                          

 = (F1 ∨F T2, 0.5(I1∨F I2) + 

+ 0.5(I1∧F I2), T1 ∧ F F2).                               (4.183) 

4.49. Fuzzy t-norms and Fuzzy t-conorms 

The most used ∧F (Fuzzy t-norms), and ∨F (Fuzzy t-conorms) are: 

Let a, b ∊ [0, 1].       (4.184) 



Florentin Smarandache 

190 

Fuzzy t-norms (fuzzy conjunctions, or fuzzy intersections): 

a ∧F b = min{a, b};       (4.185) 

a ∧F b = ab;        (4.186) 

a ∧F b = max{a + b - 1, 0}.      (4.187) 

 Fuzzy t-conorms (fuzzy disjunctions, or fuzzy unions): 

a ∨F b = max{a, b};       (4.188) 

a ∨F b = a + b – ab;       (4.189) 

a ∨F b = min{a + b, 1}.      (4.190) 

4.50. Nonstandard Neutrosophic Operators 

Nonstandard Neutrosophic Conjunctions 

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2) =  

( infN(T1, T2), supN(I1, I2), supN(F1, F2) )    (4.191)                                            

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2) =  

( T1 ⨯N T2, I1 +N I2 –N I1 ⨯N I2, F1 +N F2 –N F1 ⨯N F2 )  (4.192) 

Nonstandard Neutrosophic Disjunctions 

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2) =  

( supN(T1, T2), infN(I1, I2), infN(F1, F2) )    (4.193)                                               

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2) =  

( T1 +N T2 –N T1 ⨯N T2, I1 ⨯N I2, F1 ⨯N F2 )    (4.194) 

Nonstandard Neutrosophic Negations 

¬(T1, I1, F1) = (F1, I1, T1)      (4.195) 

¬(T1, I1, F1) = ( F1, (1+) -N I1, T1 )     (4.196) 

Nonstandard Neutrosophic Implications 

 (T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = 

= (F1 ∨F T2, I1 ∧F I2, T1 ∧ F F2) 

= ( F1 +N T2 –N F1 ⨯N T2, I1 ⨯N I2, T1 ⨯N F2 )    (4.197)    
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(T1, I1, F1) →N (T2, I2, F2) = (F1, (1+) –N I1, T1) ∨N (T2, I2, F2)   

= (F1 ∨F T2, ((1+) –N I1) ∧F I2, T1 ∧ F F2) =  

= ( F1 +N T2 –N F1 ⨯N T2, ((1+) –N I1) ⨯N I2, T1 ⨯N F2 )   (4.198)        

Let P1(T1, I1, F1) and P2(T2, I2, F2) be two nonstandard neutrosophic 

logical propositions, whose nonstandard neutrosophic components are 

respectively:   

T1, I1, F1, T2, I2, F2 ∊N NRMB.               (4.199) 

4.51. Numerical Examples of Nonstandard Neutrosophic Operators 

Let’s take a particular numeric example, where: 

   (4.200) 
are two nonstandard neutrosophic logical propositions.  

We use the nonstandard arithmetic operations previously defined 

Numerical Example of Nonstandard Neutrosophic Conjunction 

        (4.201) 

 

        (4.202) 

0 0 0

1 2(0.3,0.2,0.4), (0.6,0.1,0.5)N NP P
+ −+ − − + +

= =

0 0 0

1 2 2 10.3 0.6 [0.3,0.3 ) (0.6 ,0.6] (0.18 0.3 ,0.18 0.6 ) 0.18N N N   
+ − − +

 = +  − = − + =

0 0

1 1 2 2

1 1 2 2

1 2 2 2 1 2

1 2 2

0.2 0.1 0.2 0.1 [(0.2 ,0.2) (0.2,0.2 )] (0.1 ,0.1 )

[(0.2 ,0.2) (0.2,0.2 )] (0.1 ,0.1 )

[(0.3 ,0.3 ) (0.3 ,0.3 )]

[(0.2 ) (0.1 ),(0.02 0.2 )] [(0.02 0.

N N N N    

   

     

  

−+ − + −+ − +

+ −  = −  + + − +

− −  +  − +

= − − +  − + +

− −  − +  − 2 1 2

0 0 0 0 0 0 0 0

2 ),(0.2 ) (0.1 )]

[0.3 0.3] [0.02 0.02] [0.3] [0.02] 0.3 0.02 0.28N

  
− + − + − + − + − + − + − + − +

+  +

=  −  = − = − =
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        (4.203) 

Whence  

                   (4.204) 

Numerical Example of Nonstandard Neutrosophic Disjunction 

 

(4.205) 

     (4.206) 

      (4.207) 

Whence  

                                                          (4.208) 

Numerical Example of Nonstandard Neutrosophic Negation 

   (4.209) 

Numerical Example of Nonstandard Neutrosophic Implication 

 

        (4.210) 

Afterwards, 

1 1

1 1

1 1

0

1 1 1 1

0.4 0.5 [0.4,0.4] (0.5,0.5 ) [0.4,0.4] (0.5,0.5 )

(0.4 0.5,0.4 0.5 ) (0.4 0.5,0.4 0.5 0.4 )

(0.9,0.9 ) (0.2,0.2 0.4 )

(0.9 0.2 0.4 ,0.9 0.2) (0.7 0.4 ,0.7 ) 0.70

N N

N

 

 

 

   

+

− +

+ = + + −  +

= + + + −   +

= + − +

= − − + − = − + =

0 0 0 0

1 1 1 1

0

1 1 1 1 1 1

0.3 0.6 0.3 0.6 {[0.3,0.3 ) (0.6 ,0.6]} {[0.3,0.3 ) (0.6 ,0.6]}

(0.9 ,0.9 ) (0.18 0.3 ,0.18 0.6 ) (0.72 1.6 ,0.72 1.3 ) 0.72

N N N

N

   

     

+ − + −

− +

+ −  = + + − − +  −

= − + − − + = − + =

0 0 0

0.2 0.1 0.2 0.1 0.02N N N

−+ − + − + − + 
 =  = 

 

0.4 0.5 0.4 0.5 0.20N N N

+ + + 
 =  = 

 

0 0

1 2 (0.72,0.28,0.20)N NP P
− + − + +

 =

0 0

1 (0.3,0.2,0.4) (0.4,0.2,0.3)N N N NP
+ −+ −+ +

 =  =

0 0 0

1 2 1 2( ) ( ) (0.4,0.2,0.3) (0.6,0.1,0.5)N N N N N NP P P P
−+ + − − + +

→    = 
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       (4.211-4.213) 

whence     (4.214) 

Therefore, we have showed above how to do nonstandard 

neutrosophic arithmetic operations on some concrete examples. 

4.52. Conclusion 

In the history of mathematics, critics on nonstandard analysis, in 

general, have been made by Paul Halmos, Errett Bishop, Alain Connes 

and others. That’s why we have extended in 1998 for the first time the 

monads to pierced binad, and then in 2019 for the second time we 

extended the left monad to left monad closed to the right, the right monad 

to right monad closed to the left, and the pierced binad to unpierced binad.  

These were necessary in order to construct a general nonstandard 

neutrosophic real mobinad space, which is closed under the nonstandard 

neutrosophic arithmetic operations (such as addition, subtraction, 

multiplication, division, and power) which are needed in order to be able 

to define the nonstandard neutrosophic operators (such as conjunction, 

disjunction, negation, implication, equivalence) on this space, andto 

transform the newly constructed nonstandard neutrosophic real mobinad 

space into a lattice of first order (as partially ordered nonstandard set, 

under the neutrosophic inequality  ) and a lattice of second type [as 

algebraic structure, endowed with two binary laws: neutrosophic infimum 

(infN) and neutrosophic supremum (supN)].  

As a consequence of extending the nonstandard analysis, we also 

extended the nonstandard neutrosophic logic, set, and probability.  

0 0 0 0 0 0 0

0 0

0

0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 1.0 0.24 0.76

0.2 0.1 0.02

0.3 0.5 0.15

N N N N N N N N

N N

N N

− − − − − − − +

−+ − + − +

+ + +

   
+ −  = + −  = − =   

   

 =

 =

0 0

1 (0.76,0.02,0.15)N NP
− + − + +

 =
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As future research it would be to find applications of extended 

nonstandard neutrosophic logic, set, and probability into calculus, since 

in calculus one deals with infinitesimals and their aggregation operators. 
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CHAPTER 5 

Plithogenic Set and Hypersoft Set 
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5.1 Plithogenic Set, an Extension of Crisp, Fuzzy, 

Intuitionistic Fuzzy, and Neutrosophic Sets 

(Revisited) 

Abstract 

In this paper, we introduce the plithogenic set (as generalization of 

crisp, fuzzy, intuitionistic fuzzy, and neutrosophic sets), which is a set 

whose elements are characterized by many attributes’ values. An attribute 

value v has a corresponding (fuzzy, intuitionistic fuzzy, neutrosophic, or 

other types of sets) degree of appurtenance d(x,v) of the element x, to the 

set P, with respect to some given criteria. In order to obtain a better 

accuracy for the plithogenic aggregation operators in the plithogenic set, 

and for a more exact inclusion (partial order), a (fuzzy, intuitionistic 

fuzzy, or neutrosophic) contradiction (dissimilarity) degree is defined 

between each attribute value and the dominant (most important) attribute 

value. The plithogenic intersection and union are linear combinations of 

the fuzzy operators tnorm and tconorm, while the plithogenic 

complement, inclusion (inequality), equality are influenced by the 

attribute values contradiction (dissimilarity) degrees. This article offers 

some examples and applications of these new concepts in our everyday 

life. 

Keywords 

Plithogeny; Plithogenic Set; Neutrosophic Set; Plithogenic 

Operators. 

5.1.1. Informal Definition of Plithogenic Set 

Plithogeny is the genesis or origination, creation, formation, 

development, and evolution of new entities from dynamics and organic 

fusions of contradictory and/or neutrals and/or non-contradictory 

multiple old entities. 

While plithogenic means what is pertaining to plithogeny. 

A plithogenic set P is a set whose elements are characterized by one 

or more attributes, and each attribute may have many values. Each 
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attribute’s value v has a corresponding degree of appurtenance d(x,v) of 

the element x, to the set P, with respect to some given criteria. 

In order to obtain a better accuracy for the plithogenic aggregation 

operators, a contradiction (dissimilarity) degree is defined between each 

attribute value and the dominant (most important) attribute value. 

{However, there are cases when such dominant attribute value may 

not be taking into consideration or may not exist [therefore it is 

considered zero by default], or there may be many dominant attribute 

values. In such cases, either the contradiction degree function is 

suppressed, or another relationship function between attribute values 

should be established.} 

The plithogenic aggregation operators (intersection, union, 

complement, inclusion, equality) are based on contradiction degrees 

between attributes’ values, and the first two are linear combinations of 

the fuzzy operators’ tnorm and tconorm. 

Plithogenic set is a generalization of the crisp set, fuzzy set, 

intuitionistic fuzzy set, and neutrosophic set, since these four types of sets 

are characterized by a single attribute value (appurtenance): which has 

one value (membership) – for the crisp set and fuzzy set, two values 

(membership, and nonmembership) – for intuitionistic fuzzy set, or three 

values (membership, nonmembership, and indeterminacy) – for 

neutrosophic set. 

5.1.2. Formal Definition of Single (Uni-Dimensional) Attribute 

Plithogenic Set 

Let U be a universe of discourse, and P a non-empty set of elements, 

P ⊆ U. 

5.1.2.1 Attribute Value Spectrum 

Let A be a non-empty set of uni-dimensional attributes 

A = {α1, α2, …, αm},  
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m ≥ 1; and α ∈ A be a given attribute whose spectrum of all possible 

values (or states) is the non-empty set S, where S can be a finite discrete 

set, S = {s1, s2, …, sl}, 1 ≤ l <∞, or infinitely countable set S = {s1, s2, …, 

s∞}, or infinitely uncountable (continuum) set S = ]𝑎, 𝑏[, a < b, where 

]… [  is any open, semi-open, or closed interval from the set of real 

numbers or from other general set. 

5.1.2.2 Attribute Value Range 

Let V be a non-empty subset of S, where V is the range of all 

attribute’s values needed by the experts for their application.  

Each element 𝑥 ∈ 𝑃 is characterized by all attribute’s values in V = 

{v1, v2, …, vn}, for n ≥ 1. 

5.1.2.3 Dominant Attribute Value 

Into the attribute’s value set V, in general, there is a dominant attribute 

value, which is determined by the experts upon their application.  

Dominant attribute value means the most important attribute value that  

the experts are interested in.  

{However, there are cases when such dominant attribute value may 

not be taking into consideration or not exist, or there may be many 

dominant (important) attribute values - when different approach should 

be employed.}.  

5.1.2.4 Attribute Value Appurtenance Degree Function 

Each attributes value v  ∈ V has a corresponding degree of 

appurtenance d(x, v) of the element x, to the set P, with respect to some 

given criteria. 

The degree of appurtenance may be: a fuzzy degree of appurtenance, 

or intuitionistic fuzzy degree of appurtenance, or neutrosophic degree of 

appurtenance to the plithogenic set. 

Therefore, the attribute value appurtenance degree function is: 

∀𝑥 ∈ P, d: P×V→ P ([0, 1]z),     (5.1.1) 
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so d(x, v) is a subset of [0, 1]z, where P([0, 1] z) is the power set of the 

[0, 1] z, where z = 1 (for fuzzy degree of appurtenance), z = 2 (for 

intuitionistic fuzzy degree of appurtenance), or z = 3 (for neutrosophic 

degree de appurtenance).  

5.1.2.5 Attribute Value Contradiction (Dissimilarity) Degree Function 

Let the cardinal |V| ≥ 1. Let c: V×V → [0, 1] be the attribute value 

contradiction degree function (that we introduce now for the first time) 

between any two attribute values v1 and v2, denoted by  

c(v1, v2), and satisfying the following axioms:  

c(v1, v1) = 0, the contradiction degree between the same attribute 

values is zero;  

c(v1, v2) = c(v2, v1), commutativity. 

For simplicity, we use a fuzzy attribute value contradiction degree 

function (c as above, that we may denote by cF in order to distinguish it 

from the next two), but an intuitionistic attribute value contradiction 

function (cIF : V×V → [0, 1]2), or more general a neutrosophic attribute 

value contradiction function (cN : V×V  → [0, 1]3) may be utilized 

increasing the complexity of calculation but the accuracy as well. 

We mostly compute the contradiction degree between uni-

dimensional attribute values. For multi-dimensional attribute values we 

split them into corresponding uni-dimensional attribute values. 

The attribute value contradiction degree function helps the plithogenic 

aggregation operators, and the plithogenic inclusion (partial order) 

relationship to obtain a more accurate result. 

The attribute value contradiction degree function is designed in each 

field where plithogenic set is used in accordance with the application to 

solve. If it is ignored, the aggregations still work, but the result may lose 

accuracy. 

Several examples will be provided into this paper. 

Then (𝑃, 𝑎, 𝑉, 𝑑, 𝑐) is called a plithogenic set: 
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● where “P” is a set, “a” is a (multi-dimensional in general) attribute, 

“V” is the range of the attribute’s values, “d” is the degree of appurtenance 

of each element x’s attribute value to the set P with respect to some given  

criteria (x ∊ P), and “d”  stands for “𝑑𝐹” or “𝑑𝐼𝐹” or “𝑑𝑁”, when dealing 

with fuzzy degree of appurtenance, intuitionistic fuzzy degree of 

appurtenance, or neutrosophic degree of appurtenance respectively of an 

element x to the plithogenic set P; 

● and “c” stands for “cF” or “cIF” or “cN”, when dealing with fuzzy 

degree of contradiction, intuitionistic fuzzy degree of contradiction, or 

neutrosophic degree of contradiction between attribute values 

respectively.  

The functions 𝑑(∙,∙)  and 𝑐(∙,∙)  are defined in accordance with the 

applications the experts need to solve. 

One uses the notation: 

𝑥(𝑑(𝑥, 𝑉)), 

where 𝑑(𝑥, 𝑉) = {𝑑(𝑥, 𝑣), for all 𝑣 ∈ 𝑉}, ∀𝑥 ∈ 𝑃.  

5.1.2.6 About the Plithogenic Aggregation Set Operators 

The attribute value contradiction degree is calculated between each 

attribute value with respect to the dominant attribute value (denoted vD) 

in special, and with respect to other attribute values as well. 

The attribute value contradiction degree function c between the 

attribute’s values is used into the definition of plithogenic aggregation 

operators {Intersection (AND), Union (OR), Implication (  ), 

Equivalence (  ), Inclusion Relationship (Partial Order), and other 

plithogenic aggregation operators that combine two or more attribute 

value degrees - that tnorm and tconorm act upon}.  

Most of the plithogenic aggregation operators are linear combinations 

of the fuzzy tnorm (denoted ∧F ), and fuzzy tconorm (denoted ∨F), but non-

linear combinations may as well be constructed. 
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If one applies the tnorm on dominant attribute value denoted by vD, and 

the contradiction between vD and v2 is c(vD, v2), then onto attribute value 

v2 one applies: 

[1 − c(vD, v2)]⋅tnorm(vD, v2)  

+ c(vD, v2)⋅tconorm(vD, v2),     (5.1.2) 

Or, by using symbols:  

[1 − c(vD, v2)]⋅(vD∧Fv2)  

+ c(vD, v2)⋅(vD∨Fv2).      (5.1.3) 

Similarly, if one applies the tconorm on dominant attribute value denoted 

by vD, and the contradiction between vD and v2 is c(vD, v2), then onto 

attribute value v2 one applies: 

[1 − c(vD, v2)]⋅tconorm(vD, v2)  

+ c(vD, v2)⋅tnorm(vD, v2),     (5.1.4) 

Or, by using symbols:  

[1 − c(vD, v2)]⋅(vD∨Fv2)  

+ c(vD, v2)⋅(vD∧Fv2).       (5.1.5) 

5.1.3 Plithogenic Set as Generalization of other Sets 

The plithogenic set is an extension of all: crisp set, fuzzy set, 

intuitionistic fuzzy set, and neutrosophic set. 

For examples:  

Let U be a universe of discourse, and a non-empty set P ⊆ U. Let x ∈

 P be a generic element. 

5.1.3.1 Crisp (Classical) Set (CCS) 

The attribute is α = “appurtenance”;  

the set of attribute values V = {membership, nonmembership}, with 

cardinal |V| = 2;  

the dominant attribute value = membership; 

the attribute value appurtenance degree function:  
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d: P×V→{0, 1},       (5.1.6) 

d(x, membership) = 1,  d(x, nonmembership) = 0,  

and the attribute value contradiction degree function: 

c: V×V→{0, 1},      (5.1.7) 

c(membership, membership) = c(nonmembership, nonmembership) 

= 0, 

c(membership, nonmembership) = 1. 

5.1.3.1.1. Crisp (Classical) Intersection 

a /\ b ∊ {0, 1}      (5.1.8) 

5.1.3.1.2. Crisp (Classical) Union 

a \/ b ∊ {0, 1}      (5.1.9) 

5.1.3.1.3. Crisp (Classical) Complement (Negation) 

a ∊ {0, 1}.      (5.1.10)  

5.1.3.2 Single-Valued Fuzzy Set (SVFS) 

The attribute is α = “appurtenance”;  

the set of attribute values V = {membership}, whose cardinal |V| = 1;  

the dominant attribute value = membership; 

the appurtenance attribute value degree function:  

d: P×V→[0, 1],       (5.1.11) 

with d(x, membership) ∈ [0, 1];  

and the attribute value contradiction degree function: 

c: V×V→[0, 1],      (5.1.12) 

c(membership, membership) = 0. 

5.1.3.2.1. Fuzzy Intersection 

a /\F b ∊ [0, 1]      (5.1.13) 

5.1.3.2.2. Fuzzy Union 

a \/F b ∊ [0, 1]      (5.1.14) 
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5.1.3.2.3. Fuzzy Complement (Negation) 

 F a = 1 – a ∊ [0, 1].     (5.1.15) 

5.1.3.3 Single-Valued Intuitionistic Fuzzy Set (SVIFS) 

The attribute is α = “appurtenance”;  

the set of attribute values V = {membership, nonmembership}, 

whose cardinal |V| = 2;  

the dominant attribute value = membership; 

the appurtenance attribute value degree function:  

d: P×V→[0, 1],      (5.1.16) 

d(x, membership) ∈ [0, 1],  

d(x, nonmembership) ∈ [0, 1],  

with d(x, membership) + d(x, nonmembership) ≤ 1,  

and the attribute value contradiction degree function: 

c: V×V→[0, 1],      (5.1.17) 

c(membership, membership) = c(nonmembership, nonmembership) 

= 0, 

c(membership, nonmembership) = 1, 

which means that for SVIFS aggregation operators’ intersection (AND) 

and union (OR), if one applies the tnorm on membership degree, then one 

has to apply the tconorm on nonmembership degree – and reciprocally. 

Therefore: 

5.1.3.3.1 Intuitionistic Fuzzy Intersection 

(a1, a2) /\IFS (𝑏1, 𝑏2) = 

= (𝑎1 ∧𝐹 𝑏1, 𝑎2 ∨𝐹 𝑏2)     (5.1.18) 

5.1.3.3.2 Intuitionistic Fuzzy Union 

(a1, a2) \/IFS (𝑏1, 𝑏2) = 

= (𝑎1 ∧𝐹 𝑏1, 𝑎2 ∨𝐹 𝑏2),      (5.1.19) 

and 
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5.1.3.3.3 Intuitionistic Fuzzy Complement (Negation) 

 IFS (a1, a2) = (a2, a1).     (5.1.20) 

where ∧F and ∨F are the fuzzy tnorm and fuzzy tconorm respectively. 

5.1.3.3.4 Intuitionistic Fuzzy Inclusions (Partial Orders) 

5.1.3.3.4.1. Simple Intuitionistic Fuzzy Inclusion (the most used by the 

intuitionistic fuzzy community): 

(a1, a2) ≤IFS (𝑏1, 𝑏2)       (5.1.21) 

iff a1 ≤ b1 and a2 ≥ b2. 

5.1.3.3.4.2. Plithogenic (Complete) Intuitionistic Fuzzy Inclusion (that we 

now introduce for the first time): 

(a1, a2) ≤P (𝑏1, 𝑏2)       (5.1.22) 

iff 
1 1 2 2,(1 ) (1 )v va c b a c b −   −  ,  

where cv ∊ [0, 0.5) is the contradiction degree between the attribute 

dominant value and the attribute value v { the last one whose degree of 

appurtenance with respect to Expert A is (a1, a2), while with respect to 

Expert B is (b1, b2) }. If cv does not exist, we take it by default as equal to 

zero.  

5.1.3.4 Single-Valued Neutrosophic Set (SVNS) 

The attribute is α = “appurtenance”;  

the set of attribute values V = {membership, indeterminacy, 

nonmembership}, whose cardinal |V| = 3;  

the dominant attribute value = membership; 

the attribute value appurtenance degree function:  

d: P×V→[0, 1],       (5.1.23) 

d(x, membership) ∈ [0, 1],  

d(x, indeterminacy) ∈ [0, 1], 

d(x, nonmembership) ∈ [0, 1],  
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with 0 ≤ d(x, membership) + d(x, indeterminacy) + d(x, 

nonmembership) ≤ 3;  

and the attribute value contradiction degree function: 

c: V×V→[0, 1],      (5.1.24) 

c(membership, membership) = c(indeterminacy, indeterminacy) = 

c(nonmembership, nonmembership) = 0, 

c(membership, nonmembership) = 1, 

c(membership, indeterminacy) =  

c(nonmembership, indeterminacy) = 0.5, 

which means that for the SVNS aggregation operators (Intersection, 

Union, Complement etc.), if one applies the tnorm on membership, then 

one has to apply the tconorm on nonmembership {and reciprocally), while 

on indeterminacy one applies the average of tnorm and tconorm, as follows: 

5.1.3.4.1. Neutrosophic Intersection 

5.1.3.4.1.1. Simple Neutrosophic Intersection (the most used by the 

neutrosophic community): 

(a1, a2, a3) ∧NS (𝑏1, 𝑏2, 𝑏3) = 

( )11 2 2 3 3, , F F Fa b a b a b  
     (5.1.25) 

5.1.3.4.1.2. Plithogenic Neutrosophic Intersection 

 (a1, a2, a3) ∧P (𝑏1, 𝑏2, 𝑏3) = 

( ) ( )1 1 2 2 2 2 3 3

1
, , 
2

F F F Fa b a b a b a b
 

  +     
      (5.1.26) 

5.1.3.4.2. Neutrosophic Union 

5.1.3.4.2.1. Simple Neutrosophic Union (the most used by the neutrosophic 

community) 

(a1, a2, a3) ∨NS (𝑏1, 𝑏2, 𝑏3) = 

( )11 2 2 3 3, , F F Fa b a b a b  
    (5.1.27) 
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5.1.3.4.2.2. Plithogenic Neutrosophic Union 

(a1, a2, a3) ∨P (𝑏1, 𝑏2, 𝑏3) = 

= (

𝑎1 ∨𝐹 𝑏1,
1

2
[(𝑎2 ∧𝐹 𝑏2) + (𝑎2 ∨𝐹 𝑏2)],

𝑎3 ∧𝐹 𝑏3

)    (5.1.28) 

In other way, with respect to what one applies on the membership, one 

applies the opposite on non-membership, while on indeterminacy one 

applies the average between them. 

5.1.3.4.3. Neutrosophic Complement (Negation): 

NS (𝑎1, 𝑎2, 𝑎3) = (𝑎3, 𝑎2, 𝑎1).    (5.1.29) 

5.1.3.4.4. Neutrosophic Inclusions (Partial-Orders) 

5.1.3.4.4.1. Simple Neutrosophic Inclusion (the most used by the 

neutrosophic community): 

(a1, a2, a3) ≤NS (𝑏1, 𝑏2, 𝑏3)      (5.1.30) 

iff a1 ≤ b1 and a2 ≥ b2, a3 ≥ b3. 

5.1.3.4.4.2. Plithogenic Neutrosophic Inclusion (defined now for the first 

time): 

Since the degrees of contradiction are 

c(a1, a2) = c(a2, a3) = c(b1, b2)= c(b2, b3) = 0.5,  (5.1.31) 

one applies:  

a2 ≥ [1- c(a1, a2)]b2  or  a2 ≥ (1-0.5)b2  or  a2 ≥ 0.5∙b2 

while  

c(a1, a3) = c(b1, b3) = 1      (5.1.32) 

{having a1 ≤ b1 one does the opposite for a3 ≥ b3}, 

whence 

(a1, a2, a3) ≤P (𝑏1, 𝑏2, 𝑏3)      (5.1.33) 
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iff a1 ≤ b1 and a2 ≥ 0.5∙b2, a3 ≥ b3. 

5.1.3.5 Single-Valued Refined Fuzzy Set (SVRFS) 

For the first time the fuzzy set was refined by Smarandache [2] in 2016 

as follows: 

A SVRFS number has the form: 

(T1, T2, …, Tp), 

where p ≥ 2 is an integer, and all Tj ∈ [0, 1], for j ∈ {1, 2, …, p}. 

The attribute α = “appurtenance”;  

the set of attribute values V = {m1, m2, …, mp}, where “m” means 

submembership; 

the dominant attribute values = m1, m2, …, mp; 

the attribute value appurtenance degree function:  

d: P×V→[0, 1],       (5.1.34) 

d(x, mj) ∈ [0, 1], for all j,  

and 

∑ 𝑑𝑥(𝑚𝑗) ≤ 1
𝑝
𝑗=1 ;      (5.1.35) 

and the attribute value contradiction degree function: 

𝑐(𝑚𝑗1 , 𝑚𝑗2) = 0,       (5.1.36) 

for all j1, j2 ∈ {1, 2, …, p}. 

Aggregation operators on SVRFS: 

Let (𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝), with all aj ∊ [0, 1], be a SVRFS number, which 

means that the sub-truths Tj = aj for all 1 ≤ 𝑗 ≤ 𝑝. 

5.1.3.5.1. Refined Fuzzy Intersection 

(𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝) ∧RFS (𝑏𝑗, 1 ≤ 𝑗 ≤ 𝑝) 

=
( ),1 j F ja b j p  

.     (5.1.37) 
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5.1.3.5.2. Refined Fuzzy Union 

(𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝) ∨RFS (𝑏𝑗, 1 ≤ 𝑗 ≤ 𝑝) 

=
( ),1 j F ja b j p  

.     (5.1.38) 

5.1.3.5.3. Refined Fuzzy Complement (Negation) 

RFS (𝑇𝑗 = 𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝) =  

= (𝐹𝑗 = 𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝),      (5.1.39) 

where Fj are the sub-falsehoods, for all 1 ≤ 𝑗 ≤ 𝑝. 

5.1.3.5.4. Refined Fuzzy Inclusion (Partial-Order) 

(𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝) ≤RFS (𝑏𝑗, 1 ≤ 𝑗 ≤ 𝑝)    (5.1.40) 

iff aj ≤ 𝑏𝑗 for all 1 ≤ 𝑗 ≤ 𝑝.  

5.1.3.6 Single-Valued Refined Intuitionistic Fuzzy Set (SVRIFS) 

For the first time, the intuitionistic fuzzy set was refined by 

Smarandache [2] in 2016, as follows: 

A SVRIFS number has the form: 

(T1, T2, …, Tp; F1, F2, …, Fs), 

where p, r ≥ 1 are integers, and p + r ≥ 3, and all Tj, Fl ∈[0, 1], for j 

∈{1, 2, …, p} and l ∈{1, 2, …, s}. 

The attribute α = “appurtenance”;  

the set of attribute values V = {m1, m2, …, mp; nm1, nm2, …, nmp}, 

where “m” means submembership, and “nm” subnonmembership; 

the dominant attribute values = m1, m2, …, mp; 

the attribute value appurtenance degree function: 

d: P×V→[0, 1],      (5.1.41) 

d(x, mj) ∈ [0, 1], for all j, and d(x, nml) ∈ [0, 1], for all l, where 

∑ 𝑑𝑥(𝑚𝑗)
𝑝
𝑗=1 + ∑ 𝑑𝑥(𝑛𝑚𝑙) ≤ 1

𝑠
𝑙=1 ;    (5.1.42) 

and the attribute value contradiction degree function: 
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𝑐(𝑚𝑗1 , 𝑚𝑗2) =  𝑐(𝑛𝑚𝑙1 , 𝑛𝑚𝑙2) = 0,     (5.1.43) 

for all 𝑗1 , 𝑗2 ∈  {1, 2, …, p}, and 𝑙1 , 𝑙2 ∈  {1, 2, …, s}, while 

𝑐(𝑚𝑗, 𝑛𝑚𝑙) = 1 for all j and l. 

Aggregation operators on SVRIFS: 

5.1.3.6.1. Refined Intuitionistic Set Intersection 

(𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝; 𝑏𝑙 , 1 ≤ 𝑙 ≤ 𝑠) RIFS     (5.1.44) 

(𝑐𝑗, 1 ≤ 𝑗 ≤ 𝑝; 𝑑𝑙 , 1 ≤ 𝑙 ≤ 𝑠) =

( ),1 ; ,1j F j l F la c j p b d l s      . 

5.1.3.6.2. Refined Intuitionistic Set Union 

(𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝; 𝑏𝑙 , 1 ≤ 𝑙 ≤ 𝑠) RIFS     (5.1.45) 

(𝑐𝑗, 1 ≤ 𝑗 ≤ 𝑝; 𝑑𝑙 , 1 ≤ 𝑙 ≤ 𝑠)

= ( ),1 ; ,1j F j l F la c j p b d l s      . 

5.1.3.6.3. Refined Intuitionistic Complement (Negation) 

RIFS (𝑇𝑗 = 𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝; 𝐹𝑗 = 𝑏𝑙 , 1 ≤ 𝑙 ≤ 𝑠) =  

(𝑇𝑗 = 𝑏𝑙 , 1 ≤ 𝑙 ≤ 𝑠; 𝐹𝑗 = 𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝).   (5.1.46) 

5.1.3.6.4. Refined Intuitionistic Inclusions (Partial Orders) 

5.1.3.6.4.1. Simple Refined Intuitionistic Inclusion 

(𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝; 𝑏𝑙 , 1 ≤ 𝑙 ≤ 𝑠) RIFS  

(𝑢𝑗, 1 ≤ 𝑗 ≤ 𝑝; 𝑤𝑙 , 1 ≤ 𝑙 ≤ 𝑠)     (5.1.47) 

iff  

aj ≤ uj for all 1 ≤ 𝑗 ≤ 𝑝 and wl ≥ dl for all 1 ≤ 𝑙 ≤ 𝑠. 
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5.1.3.6.4.2. Plithogenic Refined Intuitionistic Inclusion 

( )

( )

,1  ; ,1  

,1  ;  ,1 

j l P

j l

a j p b l s

u j p w l s

    

   
      (5.1.48) 

iff (1 )j v ja c u −   for all 1 ≤ 𝑗 ≤ 𝑝 and (1 )l v lb c w −   for all 1 ≤ 𝑙 ≤

𝑠, 

where similarly cv ∊ [0, 0.5) is the contradiction degree between the 

attribute dominant value and the attribute value v. If cv does not exist, we 

take it by default as equal to zero.  

5.1.3.7 Single-Valued Finitely Refined Neutrosophic Set (SVFRNS) 

The Single-Valued Refined Neutrosophic Set and Logic were first 

defined by Smarandache [3] in 2013.  

A SVFRNS number has the form: 

(T1, T2, …, Tp; I1, I2, …, Ir; F1, F2, …, Fs), 

where p, r, s ≥1 are integers, with p + r + s ≥ 4, 

and all Tj, Ik, Fl ∈[0, 1], for j ∈ {1, 2, …, p}, k ∈ {1, 2, …, r}, and l ∈ 

{1, 2, …, s}. 

The attribute α = “appurtenance”;  

the set of attribute values V = {m1, m2, …, mp; i1, i2, …, ir; f1, f2, …, 

fs}, where “m” means submembership, “i” subindeterminacy, and “f” 

sub-nonmembership; 

the dominant attribute values = m1, m2, …, mp; 

the attribute value appurtenance degree function: 

d: P×V→[0, 1],      (5.1.49) 

d(x, mj) ∈ [0, 1], d(x, ik) ∈ [0, 1], d(x, fl) ∈ [0, 1], for all j, k, l,  

with 

0 ≤ ∑ 𝑑𝑥(𝑚𝑗)
𝑝
𝑗=1 + ∑ 𝑑𝑥(𝑖𝑘)

𝑟
𝑘=1 + 

+∑ 𝑑𝑥(𝑓𝑙) ≤ 𝑝 + 𝑟 + 𝑠;
𝑠
𝑙=1       (5.1.50) 

and the attribute value contradiction degree function: 
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𝑐(𝑚𝑗1 , 𝑚𝑗2) =  𝑐(𝑖𝑘1 , 𝑖𝑘2) =  𝑐(𝑓𝑙1 , 𝑓𝑙2) = 0,   (5.1.51) 

for all j1, j2 ∈ {1, 2, …., p}, 𝑘1, 𝑘2 ∈ {1, 2, …., r}, and 𝑙1, 𝑙2 ∈ {1, 

2, …., s}; 

𝑐(𝑚𝑗, 𝑓𝑙) = 1,       (5.1.52) 

𝑐(𝑚𝑗, 𝑖𝑘) = 𝑐(𝑓𝑙, 𝑖𝑘) = 0.5,     (5.1.53) 

for all j, k, l. 

Aggregation operators on SVFRNS: 

5.1.3.7.1. Refined Neutrosophic Set Union 

(𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝; 𝑏𝑘, 1 ≤ 𝑘 ≤ 𝑟; 𝑔𝑙 , 1 ≤ 𝑙 ≤ 𝑠 ) RNS  

(𝑢𝑗, 1 ≤ 𝑗 ≤ 𝑝; 𝑜𝑘 , 1 ≤ 𝑘 ≤ 𝑟; 𝑤𝑙 , 1 ≤ 𝑙 ≤ 𝑠) =

( ) ( )
1

,1 ; ,
2

1 ;  ,1

j F j k F k k F k

l F l

a u j p b o b o

k r g w l s

 
    +    

 
     

.  (5.1.54) 

5.1.3.7.2. Refined Neutrosophic Complement (Negation) 

NS (
𝑇𝑗 = 𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝; 𝐼𝑘 = 𝑏𝑘 ,

1 ≤ 𝑘 ≤ 𝑟; 𝐹𝑙 = 𝑔𝑙 , 1 ≤ 𝑙 ≤ 𝑠 
)
 = 

= (
𝑇𝑗 = 𝑔𝑙 , 1 ≤ 𝑙 ≤ 𝑠 ; 𝐼𝑘 = 𝑏𝑘 , 1 ≤ 𝑘 ≤ 𝑟; 

𝑔𝑙 , 1 ≤ 𝑙 ≤ 𝑠; 𝐹𝑙 = 𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝 
),   (5.1.55) 

where all Tj = sub-truths, all Ik = sub-indeterminacies, and all Fl = sub-

falsehoods. 

5.1.3.7.3. Refined Neutrosophic Inclusions (Partial-Orders) 

5.1.3.7.3.1. Simple Refined Neutrosophic Inclusion 

(𝑎𝑗, 1 ≤ 𝑗 ≤ 𝑝; 𝑏𝑘, 1 ≤ 𝑘 ≤ 𝑟; 𝑔𝑙 , 1 ≤ 𝑙 ≤ 𝑠 ) RNS  

(𝑢𝑗, 1 ≤ 𝑗 ≤ 𝑝; 𝑜𝑘 , 1 ≤ 𝑘 ≤ 𝑟; 𝑤𝑙 , 1 ≤ 𝑙 ≤ 𝑠)    (5.1.56) 

iff all aj ≤ uj, all bk ≥ok and all gl ≥ wl. 
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5.1.3.7.3.2. Plithogenic Refined Neutrosophic Inclusion 

( )

( )

,1  ; ,1 ;  ,1  

,1  ;  ,1  ;  ,1

j k l

P j k l

a j p b k r g l s

u j p o k r w l s

     

      
     (5.1.57) 

iff all aj ≤ (1-cv)∙uj, all bk ≥ (1-cv)∙ok and all gl ≥ (1-cv)∙wl,  

where cv ∊ [0, 0.5) is the contradiction degree between the attribute 

dominant value and the attribute value v. If cv does not exist, we take it 

by default as equal to zero. 

5.1.4 One-Attribute-Value Plithogenic Single-Valued Set Operators 

If onto the dominant attribute value 𝑣𝐷  one applies the plithogenic 

tnorm, then on an attribute value 𝑣1  whose contradiction degree with 

respect to 𝑣𝐷 is 1, one applies the opposite, i.e. the plithogenic tconorm. 

While onto an attribute value 𝑣2  whose contradiction degree with 

respect to 𝑣𝐷 belongs to (0, 1), one applies a linear combination of the 

tnorm and tconorm: 

𝛼 ∙ tnorm[𝑑𝐴(𝑣2), 𝑑𝐵(𝑣2)] + 

𝛽 ∙ tconorm[𝑑𝐴(𝑣2), 𝑑𝐵(𝑣2)],     (5.1.58) 

with 𝛼, 𝛽 ∈ (0, 1), and 𝛼 + 𝛽 = 1. 

When doing a plithogenic intersection: the closer is 𝑐(𝑣𝐷 , 𝑣2) to 0, the 

larger is the percentage of tnorm added and the smaller is the percentage of 

tconorm added. 

And reciprocally, when doing a plithogenic union: the closer is 

𝑐(𝑣𝐷 , 𝑣2) to 0, the smaller is the percentage of tnorm added and the bigger 

is the percentage of tconorm added. 

If 𝑐(𝑣𝐷 , 𝑣2) =
1

2
, then the plithogenic intersection coincides with the 

plithogenic union: 

𝑑𝐴(𝑣2) ∧𝑝 𝑑𝐵(𝑣2) = 

1

2
⋅ [𝑑𝐴(𝑣2) ∧𝐹 𝑑𝐵(𝑣2)] +

1

2
⋅ [𝑑𝐴(𝑣2) ∨𝐹 𝑑𝐵(𝑣2)], (5.1.59) 
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while 

𝑑𝐴(𝑣2) ∨𝑝 𝑑𝐵(𝑣2) = 

1

2
⋅ [𝑑𝐴(𝑣2) ∨𝐹 𝑑𝐵(𝑣2)] + 

+
1

2
⋅ [𝑑𝐴(𝑣2) ∧𝐹 𝑑𝐵(𝑣2)].     (5.1.60) 

If onto 𝑣𝐷 one applies ∧𝑝, then on all v’s with 𝑐(𝑣𝐷 , 𝑣) < 0.5 one also 

applies ∧𝑝 , while on those v’s with 𝑐(𝑣𝐷 , 𝑣) ≥ 0.5  one applies the 

opposite (∨𝑝). 

And reciprocally: if on 𝑣𝐷  one applies ∨𝑝 , then on all v’s with 

𝑐(𝑣𝐷 , 𝑣) < 0.5 one also applies ∨𝑝, while on those v’s with 𝑐(𝑣𝐷 , 𝑣) ≥

0.5 one applies the opposite (∧𝑝). 

5.1.4.1 One-Attribute-Value Plithogenic Single-Valued Fuzzy Set 

Operators 

Let U be a universe of discourse, and a subset of it P be a plithogenic 

set, and 𝑥 ∈ 𝑃  an element. Let α be a uni-dimensional attribute that 

characterize x, and v an attribute value, 𝑣 ∈ 𝑉 , where V is set of all 

attribute’s α values used into solving an application. 

The degree of contradiction 𝑐(𝑣𝐷 , 𝑣) = 𝑐0 ∈ [0, 1]  between the 

dominant attribute value 𝑣𝐷 and the attribute value v. 

Let’s consider two experts, A and B, each evaluating the single-valued 

fuzzy degree of appurtenance of attribute value v of x to the set P with 

respect to some given criteria: 

𝑑𝐴
𝐹(𝑣) = 𝑎 ∈ [0, 1], and 

𝑑𝐵
𝐹(𝑣) = 𝑏 ∈ [0, 1]. 

Let ∧𝐹 and ∨𝐹 be a fuzzy tnorm and respectively fuzzy tconorm.  

5.1.4.2 One-Attribute-Value Plithogenic Single-Valued Fuzzy Set 

Intersection 

𝑎 ∧𝑝 𝑏 = (1 − 𝑐0) ∙ [𝑎 ∧𝐹 𝑏] + 𝑐0 ∙ [𝑎 ∨𝐹 𝑏].  (5.1.61) 
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If 𝑐(𝑣𝐷 , 𝑣) = 𝑐0  ∊ [0, 0.5) then more weight is assigned onto the 

tnorm(a, b)= 𝑎 ∧𝐹 𝑏  than onto tconorm(a,b) =  𝑎 ∨𝐹 𝑏 ; this is a proper 

plithogenic intersection. 

If 𝑐(𝑣𝐷 , 𝑣) = 𝑐0 ∊ (0.5, 1] then less weight is assigned onto the tnorm(a, 

b)= 𝑎 ∧𝐹 𝑏  than onto tconorm(a,b) =  𝑎 ∨𝐹 𝑏 ; this becomes (rather) an 

improper plithogenic union. 

If 𝑐(𝑣𝐷 , 𝑣) = 𝑐0 ∊ 0.5 then the same weight {0.5} is assigned onto the 

tnorm(a, b)= 𝑎 ∧𝐹 𝑏 and on tconorm(a,b) = 𝑎 ∨𝐹 𝑏.  

5.1.4.3 One-Attribute-Value Plithogenic Single-Valued Fuzzy Set Union 

𝑎 ∨𝑝 𝑏 = (1 − 𝑐0) ∙ [𝑎 ∨𝐹 𝑏] + 𝑐0 ∙ [𝑎 ∧𝐹 𝑏].  (5.1.62) 

If 𝑐(𝑣𝐷 , 𝑣) = 𝑐0  ∊ [0, 0.5) then more weight is assigned onto the 

tconorm(a, b)= 𝑎 ∨𝐹 𝑏  than onto tnorm(a,b) =  𝑎 ∧𝐹 𝑏 ; this is a proper 

plithogenic union. 

If 𝑐(𝑣𝐷 , 𝑣) = 𝑐0  ∊ (0.5, 1] then less weight is assigned onto the 

tconorm(a, b)= 𝑎 ∨𝐹 𝑏  than onto tnorm(a,b) =  𝑎 ∧𝐹 𝑏 ; this is (rather) an 

improper plithogenic intersection. 

If 𝑐(𝑣𝐷 , 𝑣) = 𝑐0 ∊ 0.5 then the same weight {0.5} is assigned onto the  

tconorm(a, b)= 𝑎 ∧𝐹 𝑏 and on tnorm(a,b) = 𝑎 ∨𝐹 𝑏. 

5.1.4.4 One-Attribute-Value Plithogenic Single-Valued Fuzzy Set 

Complements (Negations) 

5.1.4.4.1. Denying the Attribute Value 

¬𝑝(𝑣) = 𝑎𝑛𝑡𝑖(𝑣),      (5.1.63) 

i.e. the opposite of v, where 𝑎𝑛𝑡𝑖(𝑣) ∈ 𝑉  or 𝑎𝑛𝑡𝑖(𝑣) ∈ 𝑅𝑒𝑓𝑖𝑛𝑒𝑑𝑉 

(refined set of V). 

So, we get: 

𝑑𝐴
𝐹(𝑎𝑛𝑡𝑖(𝑣)) = 𝑎.     (5.1.64) 

5.1.4.4.2. Denying the Attribute Value Degree 

¬𝑝(𝑎) = 1 − 𝑎, or ¬𝑝𝑑𝐴
𝐹(𝑣) = 1 − 𝑎.   (5.1.65) 
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(
𝑣
𝑎
)
𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛
→      (

𝑎𝑛𝑡𝑖(𝑣)
𝑎

) or ( 
𝑣

1 − 𝑎
).   (5.1.66) 

5.1.5 Singe-Valued Fuzzy Set Degrees of Appurtenance 

According to Expert A: 

𝑑A: {𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑑; 𝑡𝑎𝑙𝑙,𝑚𝑒𝑑𝑖𝑢𝑚} → [0, 1] 

One has: 

𝑑A(𝑔𝑟𝑒𝑒𝑛) = 0.6, 

𝑑A(𝑦𝑒𝑙𝑙𝑜𝑤) = 0.2, 

𝑑A(𝑟𝑒𝑑) = 0.7; 

𝑑A(𝑡𝑎𝑙𝑙) = 0.8, 

𝑑A(𝑚𝑒𝑑𝑖𝑢𝑚) = 0.5. 

We summarize as follows: 

 

According to Expert A: 

Contradiction 

Degrees 

0 1

3
 

2

3
 

 0 1

2
 

Attributes’ Values green yellow red  tall medium 

Fuzzy Degrees 0.6 0.2 0.7  0.8 0.5 

Table 1. 

 

 

According to Expert B: 

Contradiction 

Degrees 

0 1

3
 

2

3
 

 0 1

2
 

Attributes’ Values green yellow red  tall medium 

Fuzzy Degrees 0.7 0.4 0.6  0.6 0.4 

Table 2. 
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The element  

x{ (green, tall), (green, medium), (yellow, tall), (yellow, 

medium), (red, tall), (red, medium) } ∈ 𝑃 

with respect to the two experts as above is represented as: 

𝑥𝐴{(0.6, 0.8), (0.6, 0.5), (0.2, 0.8), (0.2, 0.5), (0.7, 0.8), (0.7, 0.5)} 

and 

𝑥𝐵{(0.7, 0.6), (0.7, 0.4), (0.4, 0.6), (0.4, 0.4), (0.6, 0.6), (0.6, 0.4)}. 

In order to find the optimal representation of 𝑥, we need to intersect 

𝑥𝐴 and 𝑥𝐵, each having six duplets. Actually, we separately intersect the 

corresponding duplets.  

In this example, we take the fuzzy 𝑡𝑛𝑜𝑟𝑚: 𝑎 ∧𝐹 𝑏 = 𝑎𝑏 and the fuzzy 

𝑡𝑐𝑜𝑛𝑜𝑟𝑚: 𝑎 ∨𝐹 𝑏 = 𝑎 + 𝑏 − 𝑎𝑏.   

5.1.5.1 Application of Uni-Attribute Value Plitho-genic Single-Valued 

Fuzzy Set Intersection 

Let’s compute 𝑥𝐴 ∧𝑝 𝑥𝐵. 

    0      0           0      0   {degrees of contradictions}     

  (0.6, 0.8) ∧𝑝 (0.7, 0.6) = (0.6 ∧𝑝 0.7, 0.8 ∧𝑝 0.6) = (0.6 ∙ 0.7, 0.8 ∙

0.6) = (0.42, 0.48), 

where above each duplet we wrote the degrees of contradictions of 

each attribute value with respect to their correspondent dominant attribute 

value. Since they were zero, ∧𝑝 coincided with ∧𝐹. 

{the first raw below 0 ½ and again 0 ½ represents the contradiction 

degrees} 

(
0
0.6
,
1

2
0.5

) ∧𝑝 (
0
0.7
,
1

2
0.4

) = (0.6 ∧𝑝 0.7, 0.5 ∧𝑝 0.4)

= (0.6 ∙ 0.7, (1 − 0.5) ∙ [0.5 ∧𝐹 0.4] + 0.5
∙ [0.5 ∨𝐹 0.4])
= (0.42, 0.5[0.2] + 0.5[0.5 + 0.4 − 0.5 ∙ 0.4])
= (0.42, 0.45). 
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(
1

3
0.2

,
0
0.8
) ∧𝑝 (

1

3
0.4

,
0
0.6
) = (0.2 ∧𝑝 0.4, 0.8 ∧𝑝 0.6)

= ({ 1 −
1

3
} ∙ [0.2 ∧𝐹 0.4] + {

1

3
} ∙ [0.2 ∨𝐹 0.4], 0.8

∙ 0.6) ≈ (0.23, 0.48). 

(
1

3
0.2

,
1

2
0.5

) ∧𝑝 (
1

3
0.4

,
1

2
0.4

) = (0.2 ∧𝑝 0.4, 0.5 ∧𝑝 0.4) 

(they were computed above) 

≈ (0.23, 0.45). 

(
2

3
0.7

,
0
0.8
) ∧𝑝 (

2

3
0.6

,
0
0.6
) = (0.7 ∧𝑝 0.8, 0.8 ∧𝑝 0.6)

= ({1 −
2

3
} ∙ [0.7 ∧𝐹 0.6] + {

2

3
} ∙ [0.7 ∨𝐹 0.6], 0.48) 

(the second component was computed above) 

= (
1

3
[0.7 ∙ 0.6] +

2

3
[0.7 + 0.6 − 0.7 ∙ 0.6], 0.48) ≈ (0.73, 0.48). 

(
2

3

0.7
,
1

2

0.5
) ∧𝑝 (

2

3

0.6
,
1

2

0.4
) = (0.7 ∧𝑝 0.6, 0.5 ∧𝑝 0.4) ≈ (0.73, 0.45). 

Finally:  

𝑥𝐴 ∧𝑝 𝑥𝐵 ≈ {
(0.42, 0.48), (0.42, 0.45), (0.23, 0.48), (0.23, 0.45),

(0.73, 0.48), (0.73, 0.45)
}, 

or, after the intersection of the experts’ opinions A/\PB, we summarize 

the result as: 

 

Contradiction Degrees 0 1

3
 

2

3
 

 0 1

2
 

Attributes’ Values green yellow red  tall medium 
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Fuzzy Degrees of 

Expert A for x 

0.6 0.2 0.7  0.8 0.5 

Fuzzy Degrees of 

Expert B for x 

0.7 0.4 0.6  0.6 0.4 

Fuzzy Degrees of 

𝑥𝐴 ∧𝑝 𝑥𝐵 

0.42 0.23 0.73  0.48 0.45 

Fuzzy Degrees of 

𝑥𝐴 
𝑝
𝑥𝐵 

0.88 0.37 0.57  0.92 0.45 

Table 3. 

5.1.5.2 Application of Uni-Attribute Value Plithogenic Single-Valued 

Fuzzy Set Union 

We separately compute for each single attribute value: 

𝑑𝐴
𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) = 0.6 ∨𝑝 0.7

= (1 − 0) ∙ [0.6 ∨𝐹 0.7] + 0 ∙ [0.6 ∧𝐹 0.7]
= 1 ∙ [0.6 + 0.7 − 0.6 ∙ 0.7] + 0 = 0.88. 

𝑑𝐴
𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = 0.2 ∨𝑝 0.4

= (1 −
1

3
) ∙ [0.2 ∨𝐹 0.4] +

1

3
∙ [0.2 ∧𝐹 0.4]

=
2

3
∙ (0.2 + 0.4 −  0.2 ∙ 0.4) +

1

3
(0.2 ∙ 0.4) ≈ 0.37. 

𝑑𝐴
𝐹(𝑥, 𝑟𝑒𝑑) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑟𝑒𝑑) = 0.7 ∨𝑝 0.6

= {1 −
2

3
} ∙ [0.7 ∨𝐹 0.6] +

2

3
∙ [0.7 ∧𝐹 0.6]

=
1

3
∙ (0.7 + 0.6 − 0.7 ∙ 0.6) +

2

3
(0.7 ∙ 0.6) ≈ 0.57. 

𝑑𝐴
𝐹(𝑥, 𝑡𝑎𝑙𝑙) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑡𝑎𝑙𝑙) = 0.8 ∨𝑝 0.6

= (1 − 0) ∙ (0.8 + 0.6 − 0.8 ∙ 0.6) + 0 ∙ (0.8 ∙ 0.6)
= 0.92. 
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𝑑𝐴
𝐹(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∨𝑝 𝑑𝐵

𝐹(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = 0.5 ∨𝑝 0.4

=
1

2
(0.5 + 0.4 − 0.5 ∙ 0.4) +

1

2
∙ (0.5 ∙ 0.4)  = 0.45. 

5.1.5.3 Properties of Plithogenic Single-Valued Set Operators in 

Applications 

1) When the attribute value contradiction degree with respect to the 

corresponding dominant attribute value is 0 (zero), one simply use the 

fuzzy intersection: 

𝑑𝐴∧𝑝𝐵(𝑥, 𝑔𝑟𝑒𝑒𝑛) = 𝑑𝐴(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∧𝐹 𝑑𝐵(𝑥, 𝑔𝑟𝑒𝑒𝑛) = 

= 0.6 ∙ 0.7 = 0.42, 

𝑑𝐴∧𝑝𝐵(𝑥, 𝑡𝑎𝑙𝑙) = 𝑑𝐴(𝑥, 𝑡𝑎𝑙𝑙) ∧𝐹 𝑑𝐵(𝑥, 𝑡𝑎𝑙𝑙) = 0.8 ∙ 0.6 = 0.48. 

2) But, if the attribute value contradiction degree with respect to the 

corresponding dominant attribute value is different from 0 and from 1, 

the result of the plithogenic intersection is between the results of fuzzy 

𝑡𝑛𝑜𝑟𝑚 and fuzzy 𝑡𝑐𝑜𝑛𝑜𝑟𝑚. Examples: 

𝑑𝐴(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∧𝐹 𝑑𝐵(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = 0.2 ∧𝐹 0.4 = 0.2 ∙ 0.4
= 0.08 (𝑡𝑛𝑜𝑟𝑚), 

𝑑𝐴(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∨𝐹 𝑑𝐵(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = 0.2 ∨𝐹 0.4 = 0.2 + 0.4 − 0.2 ∙ 0.4
= 0.52 (𝑡𝑐𝑜𝑛𝑜𝑟𝑚); 

while  

𝑑𝐴(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∧𝑝 𝑑𝐵(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = 

= 0.23 ∈ [0.08, 0.52]  

{or 0.23 ≈ 0.2266… = (2/3)×0.08 + (1/3)×0.52, i.e.  

a linear combination of 𝑡𝑛𝑜𝑟𝑚 and 𝑡𝑐𝑜𝑛𝑜𝑟𝑚}. 

Similarly: 

𝑑𝐴(𝑥, 𝑟𝑒𝑑) ∧𝑝 𝑑𝐵(𝑥, 𝑟𝑒𝑑) = 0.7 ∧𝐹 0.6 = 0.7 ∙ 0.6 = 0.42 (𝑡𝑛𝑜𝑟𝑚), 

𝑑𝐴(𝑥, 𝑟𝑒𝑑) ∨𝑝 𝑑𝐵(𝑥, 𝑟𝑒𝑑) = 0.7 ∨𝐹 0.6 = 0.7 + 0.6 − 0.7 ∙ 0.6 =

0.88 (𝑡𝑐𝑜𝑛𝑜𝑟𝑚); 

while 

𝑑𝐴(𝑥, 𝑟𝑒𝑑) ∧𝑝 𝑑𝐵(𝑥, 𝑟𝑒𝑑) = 0.57 ∈ [0.42, 0.88]  
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{linear combination of 𝑡𝑛𝑜𝑟𝑚 and 𝑡𝑐𝑜𝑛𝑜𝑟𝑚}. 

And 

𝑑𝐴(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∧𝐹 𝑑𝐵(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = 0.5 ∧𝐹 0.4 = 0.5 ∙ 0.4 = 0.20, 

𝑑𝐴(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∨𝐹 𝑑𝐵(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = 0.5 ∨𝐹 0.4
= 0.5 + 0.4 − 0.5 ∙ 0.4 = 0.70, 

while 

𝑑𝐴(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∧𝑝 𝑑𝐵(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = 0.45 , which is just in the 

middle (because “medium” contradiction degree is  
1

2
) of the interval 

[0.20, 0.70]. 

5.1.6 Single-Valued Intuitionistic Fuzzy Set Degree of Appurtenance 

5.1.6.1 One-Attribute Value Plithogenic Single-Valued Intuitionistic Fuzzy 

Set Intersection 

{degrees of contradictions} 

                                              0                    0  

𝑑𝐴
𝐼𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∧𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) = (0.4, 0.5) ∧𝑝 (0.6, 0.3)

= (0.4 ∧𝑝 0.6, 0.5 ∨𝑝 0.3) =

= (1 ∙ [0.4 ∙ 0.6] + 0 ∙ [0.4 + 0.6 − 0.4 ∙ 0.6], 0
∙ [0.5 ∙ 0.3] + 1 ∙ [0.5 + 0.3 − 0.5 ∙ 0.3])
= (0.24, 0.65). 

 

                                              1/3                1/3 

𝑑𝐴
𝐼𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∧𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = (0.1, 0.2) ∧𝑝 (0.4, 0.3)

= (0.1 ∧𝑝 0.4, 0.2 ∨𝑝 0.3) 

= ({1 −
1

3
} ∙ [0.1 ∧𝐹 0.4] + {

1

3
 } ∙ [0.1 ∨𝐹 0.4], { 1 −

1

3
} ∙ [0.2 ∨𝐹 0.3])

+ {
1

3
} ∙ [0.2 ∧𝐹 0.3]

= (
2

3
∙ [0.1 ∙ 0.4] +

1

3
∙ [0.1 + 0.4 − 0.1 ∙ 0.4],

2

3
∙ [0.2 + 0.3 − 0.2 ∙ 0.3]) +

1

3
∙ [0.2 ∙ 0.3]

≈ (0.18, 0.31). 
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                                                       2/3                2/3 

𝑑𝐴
𝐼𝐹(𝑥, 𝑟𝑒𝑑) ∧𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑟𝑒𝑑) = (0, 0.3) ∧𝑝 (0.2, 0.5)

= (0 ∧𝑝 0.2, 0.3 ∨𝑝 0.5) 

= ({1 −
2

3
} ∙ [0 ∧𝐹 0.2] + {

2

3
} ∙ [0 ∨𝐹 0.2], {1 −

2

3
} ∙ [0.3 ∨𝐹 0.5] + {

2

3
}

∙ [0.3 ∧𝐹 0.5] +)

= (
1

3
∙ [0 ∙ 0.2] +

2

3
∙ [0 + 0.2 − 0 ∙ 0.2],

1

3

∙ [0.3 + 0.5 − 0.3 ∙ 0.5] +
2

3
∙ [0.3 ∙ 0.5])

≈ (0.13, 0.32). 

 

                                                         0                    0 

𝑑𝐴
𝐼𝐹(𝑥, 𝑡𝑎𝑙𝑙) ∧𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑡𝑎𝑙𝑙) = (0.8, 0.2) ∧𝑝 (0.6, 0.1)

= (0.8 ∧𝑝 0.6, 0.2 ∨𝑝 0.1)

= ({1 − 0} ∙ [0.8 ∧𝐹 0.6] + {0} ∙ [0.8 ∨𝐹 0.6], { 1 − 0}

∙ [0.2 ∨𝐹 0.1] + {0} ∙ [0.2 ∧𝐹 0.1])

= (1 ∙ [0.8 ∙ 0.6] + 0 ∙ [0.8 + 0.6 − 0.8 ∙ 0.6], 1

∙ [0.2 + 0.1 − 0.2 ∙ 0.1] + 0 ∙ [0.2 ∙ 0.1])

= (0.48, 0.28). 

 

       ½             ½  

𝑑𝐴
𝐼𝐹(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∧𝑝 𝑑𝐵

𝐼𝐹(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = (0.4, 0.5) ∧𝑝 (0.5, 0.3)

= (0.4 ∧𝑝 0.5, 0.5 ∨𝑝 0.3)

= ({1 −
1

2
} ∙ [0.4 ∧𝐹 0.5] + {

1

2
} ∙ [0.4 ∨𝐹 0.5], { 1 −

1

2
}

∙ [0.5 ∨𝐹 0.3] + {
1

2
} ∙ [0.5 ∧𝑝 0.3]) 
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= (
1

2
∙ [0.4 ∙ 0.5] +

1

2
∙ [0.4 + 0.5 − 0.4 ∙ 0.5],

1

2
∙ [0.5 + 0.3 − 0.5 ∙ 0.3]

+
1

2
∙ [0.5 ∙ 0.3]) = (0.45, 0.40). 

 

5.1.6.2 One-Attribute Value Plithogenic Single-Valued Intuitionistic Fuzzy 

Set Union 

𝑑𝐴
𝐼𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∨𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) = (0.4, 0.5) ∨𝑝 (0.6, 0.3)

= (0.4 ∨𝑝 0.6, 0.5 ∧𝑝 0.3)

= ({1 − 0} ∙ [0.4 ∨𝐹 0.6] + {0} ∙ [0.4 ∧𝐹 0.6], {1 − 0}
∙ [0.5 ∧𝐹 0.3] + {0} ∙ [0.5 ∨𝐹 0.3])
= (1 ∙ [0.4 + 0.6 − 0.4 ∙ 0.6] + 0 ∙ [0.4 ∙ 0.6], 0
∙ [0.5 ∙ 0.3] + 1 ∙ [0.5 + 0.3 − 0.5 ∙ 0.3])
= (0.76, 0.15). 

   1/3              1/3 

𝑑𝐴
𝐼𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∨𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = (0.1, 0.2) ∨𝑝 (0.4, 0.3)

= (0.1 ∨𝑝 0.4, 0.2 ∧𝑝 0.3)

= ({ 1 −
1

3
} ∙ [0.1 ∨𝐹 0.4] + {

1

3
} ∙ [0.1 ∧𝐹 0.4], { 1 −

1

3
}

∙ [0.2 ∧𝐹 0.3] + {
1

3
} ∙ [0.2 ∨𝐹 0.3])

= (
2

3
∙ [0.1 + 0.4 − 0.1 ∙ 0.4] +

1

3
∙ [0.1 ∙ 0.4],

2

3

∙ [0.2 ∙ 0.3] +
1

3
∙ [0.2 + 0.3 − 0.2 ∙ 0.3])

≈ (0.32, 0.19). 

 

                                                      2/3                2/3 

𝑑𝐴
𝐼𝐹(𝑥, 𝑟𝑒𝑑) ∨𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑟𝑒𝑑) = (0, 0.3) ∨𝑝 (0.2, 0.5) = 

= (0 ∨𝑝 0.2, 0.3 ∧𝑝 0.5) = ({1 −
2

3
} ∙ [0 ∨𝑝 0.2] + {

2

3
} ∙

[0 ∧𝑝 0.2], {1 −
2

3
} ∙ [0.3 ∧𝑝 0.5] + {

2

3
} ∙ [0.3 ∨𝑝 0.5]) = (

1

3
[0 + 0.2 −

0 ∙ 0.2] +
2

3
[0 ∙ 0.2],

1

3
[0.3 ∙ 0.5] +

2

3
∙ [0.3 + 0.5 − 0.3 ∙ 0.5]) ≈

(0.07, 0.48).    
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0                 0 

𝑑𝐴
𝐼𝐹(𝑥, 𝑡𝑎𝑙𝑙) ∨𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑡𝑎𝑙𝑙) = (0.8, 0.2) ∨𝑝 (0.6, 0.1)

= (0.8 ∨𝑝 0.6,0.2 ∧𝑝 0.1)

= ({1 − 0} ∙ [0.8 ∨𝐹 0.6] + {0} ∙ [0.8 ∧𝐹 0.6], {1 − 0}
∙ [0.2 ∧𝐹 0.1] + {0} ∙ [0.2 ∨𝐹 0.1])
= (1 ∙ [0.8 + 0.6 − 0.8 ∙ 0.6] + 0 ∙ [0.8 ∙ 0.6], 1
∙ [0.2 ∙ 0.1] + 0 ∙ [0.2 + 0.1 − 0.2 − 0.1])
= (0.92, 0.02). 

 

                                              1/2               1/2 

𝑑𝐴
𝐼𝐹(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∨𝑝 𝑑𝐵

𝐼𝐹(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = (0.4, 0.5) ∨𝑝 (0.5, 0.3)

= (0.4 ∨𝑝 0.5,0.5 ∧𝑝 0.3) = 

= ({1 −
1

2
} ∙ [0.4 ∨𝑝 0.5] + {

1

2
} ∙ [0.4 ∧𝐹 0.5], {1 −

1

2
} ∙ [0.5 ∧𝐹 0.3] + {

1

2
}

∙ [0.5 ∨𝐹 0.3])

= (
1

2
∙ [0.4 + 0.5 − 0.4 ∙ 0.5] +

1

2
∙ [0.4 ∙ 0.5],

1

2
∙ [0.5 ∙ 0.3]

+
1

2
∙ [0.5 + 0.3 − 0.5 − 0.3]) = (0.45, 0.40). 

5.1.7 Single Valued Neutrosophic Set Degree of Appurtenance 

5.1.7.1 One-Attribute Value Plithogenic Single-Valued Neutrosophic Set 

Intersection 

𝑑𝐴
𝑁(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∧𝑝 𝑑𝐵

𝑁(𝑥, 𝑔𝑟𝑒𝑒𝑛) = (0.4, 0.1, 0.5) ∧𝑝 (0.5, 0.2, 0.4)

= (0.4 ∧𝑝 0.5, {1 −
1

2
} ⋅ (0.1 ∧𝑝 0.2) + {

1

2
}

⋅ (0.1 ∨𝑝 0.2), 0.5 ∨𝑝 0.4)

= (0.4 ∧𝑝 0.5,
1

2
⋅ [0.1 ∧𝑝 0.2] +

1

2

⋅ [0.1 ∨𝑝 0.2], 0.4 ∨𝑝  0.5) 

{ Using first the interior neutrosophic contradiction degrees (between 

the neutrosophic components T, I, and F): 
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0
1

2
1  

𝑇, 𝐼, 𝐹
} 

= (

{1 − 0} ⋅ [0.4 ∧𝐹 0.5]  + {0} ⋅ [0.4 ∨𝐹 0.5],

 
1

2
⋅ [0.1 ∧𝑝 0.2] +

1

2
⋅ [0.1 ∨𝑝 0.2],

{1 − 0} ⋅ [0.5 ∨𝐹 0.4]  + {0} ⋅ [0.5 ∧𝐹 0.4]

) = 

= (

1 ⋅ [0.4 ⋅ 0.5] + 0 ⋅ [0.4 + 0.5 − 0.4 ⋅ 0.5],
1

2
⋅ [0.1 ∧𝑝 0.2] +

1

2
⋅ [0.1 ∨𝑝 0.2],

(1 − 0) ⋅ [0.5 + 0.4 − 0.5 ⋅ 0.4] + 0 ⋅ [0.5 ⋅ 0.4]

) = 

= (0.20,
1

2
⋅ [0.1 ∧𝐹 0.2]  +

1

2
⋅ [0.1 ∨𝐹 0.2], 0.70)

= (0.20,
1

2
(0.1 ⋅  0.2) +

1

2

⋅ [0.1 + 0.2 − 0.1 ⋅ 0.2], 0.70) = (0.20, 0.15, 0.70). 

 

𝑑𝐴
𝑁(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∧𝑝 𝑑𝐵

𝑁(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤)

= (
1

3
0.3, 0.6, 0.2

) ∧𝑝 (
1

3
0.4, 0.1, 0.3

)

= (0.3 ∧𝑝 0.4,
1

2
⋅ [0.6 ∧𝑝 0.1] +

1

2

⋅ [0.6 ∨𝑝 0.1], 0.2 ∨𝑝 0.3) 

{

𝑜ne firstly used the interior 
neutrosophic contradiction degrees: 

𝑐(𝑇, 𝐼) =
1

2
, 𝑐(𝑇, 𝐹) = 1.

} 
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= ({1 −
1

3
} ⋅ [0.3 ∧𝐹 0.4] + {

1

3
} ⋅ [0.3 ∨𝐹 0.4],

1

2
⋅ [0.6 ⋅ 0.1] +

1

2

⋅ [0.6 + 𝑜. 1 − 0.6 ⋅ 0.1], {1 −
1

3
} ⋅ [0.2 ∨𝐹 0.3] + {

1

3
}

⋅ [0.2 ∧𝐹 0.3])

= (
2

3
⋅ [0.3 ⋅ 0.4] +

1

3
⋅ [0.3 + 0.4 − 0.3 ⋅ 0.4], 0.35,

2

3

⋅ [0.2 + 0.3 − 0.2 ⋅ 0.3] +
1

3
⋅ [0.2 ⋅ 0.3])

≈ (0.27, 0.35, 0.31). 

 

                                        2/3                      2/3 

𝑑𝐴
𝑁(𝑥, 𝑟𝑒𝑑) ∧𝑝 𝑑𝐵

𝑁(𝑥, 𝑟𝑒𝑑) 

                           = (0.2, 0.1, 0.4) ∧𝑝 (0.3, 0.4, 0.2)   

= (0.2 ∧𝑝 0.3, 0.1 ∨𝑝 0.4, 0.4 ∨𝑝 0.2)

= ({1 −
2

3
} ⋅ [0.2 ∧𝐹 0.3] + {

2

3
} ⋅ [0.2 ∨𝑝 0.3]) ,

1

2
⋅ [𝐼1 ∧𝐹 𝐼2 + 𝐼1 ∨𝐹 𝐼2], {according to Theorem 5}   

{1 −
2

3
} ⋅ [0.4 ∨𝐹 0.2] + {

2

3
} ⋅ [0.4 ∧𝐹 0.2])

= (
1

3
⋅ [0.2 ⋅ 0.3] +

2

3
⋅ [0.2 + 0.3 − 0.2 ⋅ 0.3],

1

2

⋅ [0.1 ⋅ 0.4 + 0.1 + 0.4 − 0.1 ⋅ 0.4],
1

3

⋅ [0.4 + 0.2 − 0.4 ⋅ 0.2] +
2

3
⋅ [0.4 ⋅ 0.2])

≈ (0.31, 0.25, 0.23). 

{The degree of contradiction is 2/3 > 0.5.} 

 

𝑑𝐴
𝑁(𝑥, 𝑡𝑎𝑙𝑙) ∧𝑝 𝑑𝐵

𝑁(𝑥, 𝑡𝑎𝑙𝑙) = (0.8, 0.3, 0.1) ∧𝑝 (0.7, 0.1, 0.6)

= (0.8 ∧𝑝 0.7, 0.3 ∨𝑝 0.1, 0.1 ∨𝑝 0.6)

= (0.8 ∧𝐹 0.7,
1

2

⋅ (0.3 ∧𝐹 0.1 + 0.3 ∨𝐹 0.1), 0.1 ∨𝐹 0.6) 
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(since the exterior degree of contradiction is zero) 

= (0.8 ⋅ 0.7,
1

2
⋅ (0.3 ⋅ 0.1 + 0.3 + 0.1 − 0.3 ⋅ 0.1), 0.1 + 0.6 − 0.1

⋅ 0.6) = (0.56, 0.20, 0.64). 

 

𝑑𝐴
𝑁(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∧𝑝 𝑑𝐵

𝑁(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = (0.6, 0.2, 0.3) ∧𝑝 (0.5, 0.1, 0.3)

= (0.6 ∧𝑝 0.5, 0.2 ∨𝑝 0.1, 0.3 ∨𝑝 0.3)

=

(

 
 
 

1

2
⋅ [0.6 ⋅ 0.5] +

1

2
⋅ [0.6 + 0.5 − 0.6 ⋅ 0.5],

 
1

2
⋅ [0.2 ⋅ 0.1 + 0.2 + 0.1 − 0.2 ⋅ 0.1],

1

2
⋅ [0.3 ⋅ 0.3] +

1

2
⋅ [0.3 + 0.3 − 0.3 ⋅ 0.3])

 
 
 

= (0.55, 0.15, 0.30). 

{Since the degree of contradiction is 1/2. } 

5.1.7.2 One-Attribute Value Plithogenic Single-Valued Neutrosophic Set 

Union 

𝑑𝐴
𝑁(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∨𝑝 𝑑𝐵

𝑁(𝑥, 𝑔𝑟𝑒𝑒𝑛)

= (
0

0.4, 0.1, 0.5
) ∨𝑝 (

0
0.5, 0.2, 0.4

)

= (0.4 ∨𝑝 0.5, 0.1 ∧𝑝 0.2, 0.5 ∧𝑝 0.4)  

{since the degree of contradiction is zero}

= (0.4 + 0.5 − 0.4

⋅ 0.5,
1

2
(0.1 ⋅ 0.2 + 0.1 + 0.2 − 0.1 ⋅ 0.2), 0.5 ⋅ 0.4)

= (0.70, 0.15, 0.20). 
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𝑑𝐴
𝑁(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∨𝑝 𝑑𝐵

𝑁(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤)

= (
1

3
0.3, 0.6, 0.2

) ∨𝑝 (
1

3
0.4, 0.1, 0.3

)

= (0.3 ∨𝑝 0.4, 0.6 ∧𝑝 0.1, 0.2 ∧𝑝 0.3)

= ({1 −
1

3
} ⋅ [0.3 ∨𝐹 0.4] + {

1

3
} ⋅ [0.3 ∧𝐹 0.4],

1

2

⋅ [0.6 ∧𝐹 0.1 + 0.6 ∨𝐹 0.1], {1 −
1

3
} ⋅ [0.2 ∧𝐹 0.3] + {

1

3
}

⋅ [0.2 ∨𝐹 0.3])

= (
2

3
⋅ [0.3 + 0.4 − 0.3 ⋅ 0.4] +

1

3
⋅ [0.3 ⋅ 0.4],

1

2

⋅ [0.6 ⋅ 0.1 + 0.6 + 0.1 − 0.6 ⋅ 0.1],
2

3
⋅ [0.2 ⋅ 0.3] +

1

3

⋅ [0.2 + 0.3 − 0.2 ⋅ 0.3]) ≈ (0.43, 0.35, 0.19). 

𝑑𝐴
𝑁(𝑥, 𝑟𝑒𝑑) ∨𝑝 𝑑𝐵

𝑁(𝑥, 𝑟𝑒𝑑) = (
2

3
0.2, 0.1, 0.4

) ∨𝑝 (
2

3
0.3, 0.4, 0.2

)

= (0.2 ∨𝑝 0.3, 0.1 ∧𝑝 0.4, 0.4 ∧𝑝 0.2)

= ({1 −
2

3
} ⋅ [0.2 ∨𝑝 0.3] + {

2

3
} ⋅ [0.2 ∧𝑝 0.3]) ,

1

2

⋅ [0.1 ∧𝐹 0.4 + 0.1 ∨𝐹 0.4], {1 −
2

3
} ⋅ [0.4 ∧𝐹 0.2] + {

2

3
}

⋅ [0.4 ∨𝐹 0.2]

=

(

 
 
 

1

3
⋅ [0.2 + 0.3 − 0.2 ⋅ 0.3] +

2

3
⋅ [0.2 ⋅ 0.3],

1

2
⋅ [0.1 ⋅ 0.4 + 0.4 + 0.1 − 0.1 ⋅ 0.4],

 
1

3
⋅ [0.4 ⋅ 0.2] +

2

3
⋅ [0.4 + 0.2 − 0.4 ⋅ 0.2])

 
 
 

≈ (0.19, 0.25, 0.37). 

{The degree of contradiction is  
2

3
> 0.5.}. 
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𝑑𝐴
𝑁(𝑥, 𝑡𝑎𝑙𝑙) ∨𝑝 𝑑𝐵

𝑁(𝑥, 𝑡𝑎𝑙𝑙) = (
0

0.8, 0.3, 0.1
) ∨𝑝 (

0
0.7, 0.1, 0.6

)

= (0.8 ∨𝑝 0.7, 0.3 ∧𝑝 0.1, 0.1 ∧𝑝 0.6)

= (

0.8 ∨𝐹 0.7,

 
1

2
(0.3 ∧𝐹 0.1 + 0.3 ∨𝐹 0.1),

0.1 ∧𝐹 0.6

)

= (

0.8 + 0.7 − 0.8 ⋅ 0.7,

 
1

2
(0.3 ⋅ 0.1 + 0.3 + 0.1 − 0.3 ⋅ 0.1),

0.1 ⋅ 0.6

)

= (0.94, 0.20, 0.06). 

 

𝑑𝐴
𝑁(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∨𝑝 𝑑𝐵

𝑁(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚)

= (
1

2
0.6, 0.2, 0.3

) ∨𝑝 (
1

2
0.5, 0.1, 0.3

)

= (0.6 ∨𝑝 0.5, 0.2 ∨𝑝 0.1, 0.3 ∨𝑝 0.3)

= ({1 −
1

2
} ⋅ [0.6 ∨𝑝 0.5] + {

1

2
} ⋅ [0.6 ∧𝐹 0.5]), 

1

2
⋅ [0.2 ∧𝐹 0.1 + 0.2 ∨𝑝 0.1], 

  {1 −
1

2
} ⋅ [0.3 ∧𝐹 0.3] + {

1

2
} ⋅ [0.3 ∨𝑝 0.3]

= (
1

2
⋅ [0.6 + 0.5 − 0.6 ⋅ 0.5] +

1

2
⋅ [0.6 ⋅ 0.5],

1

2

⋅ [0.2 ⋅ 0.1 + 0.2 + 0.1 − 0.2 ⋅ 0.1],
1

2
⋅ [0.3 ⋅ 0.3] +

1

2

⋅ [0.3 + 0.3 − 0.3 ⋅ 0.3]) = (0.55, 0.15, 0.30). 

Conclusion & Future Research 

As generalization of dialectics and neutrosophy, plithogeny will find 

more use in blending diverse philosophical, ideological, religious, 

political and social ideas. 

After the extension of fuzzy set, intuitionistic fuzzy set, and 

neutrosophic set to the plithogenic set; the extension of classical logic, 
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fuzzy logic, intuitionistic fuzzy logic and neutrosophic logic to 

plithogenic logic; and the extension of classical probability, imprecise 

probability, and neutrosophic probability to plithogenic probability [12] 

– more applications of the plithogenic set/logic/probability/statistics in 

various fields should follow. 

The classes of plithogenic implication operators and their 

corresponding sets of plithogenic rules are to be constructed in this 

direction. 

Also, exploration of non-linear combinations of tnorm and tconorm, 

or of other norms and conorms, in constructing of more sophisticated 

plithogenic set, logic and probabilistic aggregation operators, for a better 

modeling of real life applications. 
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5.2 Extension of Soft Set to Hypersoft Set, 

and then to Plithogenic Hypersoft Set 

 

Abstract 

In this paper, we generalize the soft set to the hypersoft set by 

transforming the function F into a multi-attribute function. Then we 

introduce the hybrids of Crisp, Fuzzy, Intuitionistic Fuzzy, Neutrosophic, 

and Plithogenic Hypersoft Set. 

5.2.1 Introduction 

We generalize the soft set to the hypersoft set by transforming the 

function F into a multi-argument function. 

Then we make the distinction between the types of Universes of 

Discourse: crisp, fuzzy, intuitionistic fuzzy, neutrosophic, and 

respectively plithogenic. 

Similarly, we show that a hypersoft set can be crisp, fuzzy, 

intuitionistic fuzzy, neutrosophic, or plithogenic. 

A detailed numerical example is presented for all types. 

5.2.2 Definition of Soft Set [1] 

Let 𝒰 be a universe of discourse, 𝒫(𝒰) the power set of 𝒰, and A a set 

of attributes. Then, the pair (F, 𝒰), where  

𝐹:𝐴 ⟶ 𝒫(𝒰)       (5.2.1) 

is called a Soft Set over 𝒰. 

5.2.3 Definition of Hypersoft Set 

Let 𝒰 be a universe of discourse, 𝒫(𝒰) the power set of 𝒰. 
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Let 𝑎1, 𝑎2, … , 𝑎𝑛 , for 𝑛 ≥ 1 , be n distinct attributes, whose 

corresponding attribute values are respectively the sets 𝐴1, 𝐴2, … , 𝐴𝑛 , 

with 𝐴𝑖 ∩ 𝐴𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}. 

Then the pair (𝐹, 𝐴1 × 𝐴2 × …× 𝐴𝑛), where: 

𝐹:𝐴1 × 𝐴2 × …× 𝐴𝑛⟶𝒫(𝒰)    (5.2.2) 

is called a Hypersoft Set over 𝒰. 

5.2.4 Particular case 

For 𝑛 = 2, we obtain the Γ–Soft Set [2]. 

5.2.5 Types of Universes of Discourses 

5.2.5.1 A Universe of Discourse 𝒰𝐶  is called Crisp if ∀𝑥 ∈ 𝒰𝐶 , x 

belongs 100% to 𝒰𝐶 , or x’s membership (Tx) with respect to 𝒰𝐶  is 1. 

Let’s denote it x(1). 

5.2.5.2 A Universe of Discourse 𝒰𝐹 is called Fuzzy if ∀𝑥 ∈ 𝒰𝑐, x 

partially belongs to 𝒰𝐹 , or 𝑇𝑥 ⊆ [0, 1], where 𝑇𝑥  may be a subset, an 

interval, a hesitant set, a single-value, etc. Let’s denote it by 𝑥(𝑇𝑥). 

5.2.5.3 A Universe of Discourse 𝒰𝐼𝐹 is called Intuitionistic Fuzzy if 

∀𝑥 ∈ 𝒰𝐼𝐹, x partially belongs (𝑇𝑥) and partially doesn’t belong (𝐹𝑥) to 

𝒰𝐼𝐹 , or 𝑇𝑥 , 𝐹𝑥 ⊆ [0, 1] , where 𝑇𝑥  and 𝐹𝑥  may be subsets, intervals, 

hesitant sets, single-values, etc. Let’s denote it by 𝑥(𝑇𝑥 , 𝐹𝑥). 

5.2.5.4 A Universe of Discourse 𝒰𝑁 is called Neutrosophic if ∀𝑥 ∈

𝒰𝑁, x partially belongs (𝑇𝑥), partially its membership is indeterminate 

(𝐼𝑥), and partially it doesn’t belong (𝐹𝑥) to 𝒰𝑁, where 𝑇𝑥 , 𝐼𝑥, 𝐹𝑥 ⊆ [0, 1], 

may be subsets, intervals, hesitant sets, single-values, etc. Let’s denote it 

by 𝑥(𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥). 

5.2.5.5 A Universe of Discourse 𝒰𝑃  over a set V of attributes’ 

values, where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, 𝑛 ≥ 1, is called Plithogenic, if ∀𝑥 ∈

𝒰𝑃, x belongs to 𝒰𝑃 in the degree 𝑑𝑥
0(𝑣𝑖) with respect to the attribute 

value 𝑣𝑖, for all 𝑖 ∈ {1, 2, … , 𝑛}. Since the degree of membership 𝑑𝑥
0(𝑣𝑖) 
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may be crisp, fuzzy, intuitionistic fuzzy, or neutrosophic, the Plithogenic 

Universe of Discourse can be Crisp, Fuzzy, Intuitionistic Fuzzy, or 

respectively Neutrosophic. 

Consequently, a Hypersoft Set over a Crisp / Fuzzy / Intuitionistic 

Fuzzy / Neutrosophic / or Plithogenic Universe of Discourse is 

respectively called Crisp / Fuzzy / Intuitionistic Fuzzy / Neutrosophic 

/ or Plithogenic Hypersoft Set. 

5.2.6 Numerical Example 

Let 𝒰 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and a set ℳ = {𝑥1, 𝑥3} ⊂ 𝒰. 

Let the attributes be: 𝑎1 =  size, 𝑎1 =  color, 𝑎1 =  gender, 𝑎1 = 

nationality, and their attributes’ values respectively: 

Size = 𝐴1 ={small, medium, tall}, 

Color = 𝐴2 ={white, yellow, red, black}, 

Gender = 𝐴3 ={male, female}, 

Nationality = 𝐴4 ={American, French, Spanish, Italian, Chinese}. 

Let the function be:  

𝐹:𝐴1 × 𝐴2 × 𝐴3 × 𝐴4⟶𝒫(𝒰).     (5.2.3) 

Let’s assume: 

𝐹({tall,white, female, Italian}) = {𝑥1, 𝑥3}. 

With respect to the set ℳ, one has: 

5.2.6.1 Crisp Hypersoft Set 

𝐹({tall,white, female, Italian}) = {𝑥1(1), 𝑥3(1)},   (5.2.4) 

which means that, with respect to the attributes’ values 

{tall,white, female, Italian} all together, 𝑥1 belongs 100% to the set ℳ; 

similarly 𝑥3. 

5.2.6.2 Fuzzy Hypersoft Set 

𝐹({tall,white, female, Italian}) = {𝑥1(0.6), 𝑥3(0.7)},  (5.2.5) 
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which means that, with respect to the attributes’ values 

{tall,white, female, Italian} all together, 𝑥1 belongs 60% to the set ℳ; 

similarly, 𝑥3 belongs 70% to the set ℳ. 

5.2.6.3 Intuitionistic Fuzzy Hypersoft Set 

𝐹({tall,white, female, Italian}) = 

{𝑥1(0.6, 0.1), 𝑥3(0.7, 0.2)},      (5.2.6) 

which means that, with respect to the attributes’ values 

{tall,white, female, Italian}  all together, 𝑥1  belongs 60% and 10% it 

does not belong to the set ℳ; similarly, 𝑥3 belongs 70% and 20% it does 

not belong to the set ℳ. 

5.2.6.4 Neutrosophic Hypersoft Set 

𝐹({tall,white, female, Italian}) = 

= {𝑥1(0.6, 0.2, 0.1), 𝑥3(0.7, 0.3, 0.2)},    (5.2.7) 

which means that, with respect to the attributes’ values 

{tall,white, female, Italian}  all together, 𝑥1  belongs 60% and its 

indeterminate-belongness is 20% and it doesn’t belong 10% to the set ℳ; 

similarly, 𝑥3 belongs 70% and its indeterminate-belongness is 30% and it 

doesn’t belong 20%. 

5.2.6.5 Plithogenic Hypersoft Set 

𝐹({tall,white, female, Italian}) = 

= {
𝑥1 (𝑑𝑥1

0 (tall), 𝑑𝑥1
0 (white), 𝑑𝑥1

0 (female), 𝑑𝑥1
0 (Italian)) ,

 𝑥2 (𝑑𝑥2
0 (tall), 𝑑𝑥2

0 (white), 𝑑𝑥2
0 (female), 𝑑𝑥2

0 (Italian))
}, (5.2.8) 

where 𝑑𝑥1
0 (𝛼) means the degree of appurtenance of element 𝑥1 to the set 

ℳ with respect to the attribute value α; and similarly 𝑑𝑥2
0 (𝛼) means the 

degree of appurtenance of element 𝑥2 to the set ℳ with respect to the 

attribute value α; where 𝛼 ∈ {tall,white, female, Italian}. 
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Unlike the Crisp / Fuzzy / Intuitionistic Fuzzy / Neutrosophic 

Hypersoft Sets [where the degree of appurtenance of an element x to the 

set ℳ is with respect to all attribute values tall, white, female, Italian 

together (as a whole), therefore a degree of appurtenance with respect to 

a set of attribute values], the Plithogenic Hypersoft Set is a refinement 

of Crisp / Fuzzy / Intuitionistic Fuzzy / Neutrosophic Hypersoft Sets 

[since the degree of appurtenance of an element x to the set ℳ is with 

respect to each single attribute value]. 

But the Plithogenic Hypersoft Set is also combined with each of the 

above, since the degree of degree of appurtenance of an element x to the 

set ℳ with respect to each single attribute value may be: crisp, fuzzy, 

intuitionistic fuzzy, or neutrosophic. 

5.2.7 Classification of Plithogenic Hypersoft Sets 

5.2.7.1 Plithogenic Crisp Hypersoft Set 

It is a plithogenic hypersoft set, such that the degree of appurtenance 

of an element x to the set ℳ, with respect to each attribute value, is crisp: 

𝑑𝑥
0(𝛼) = 0 (nonappurtenance), or 1 (appurtenance). 

In our example: 

𝐹({tall,white, female, Italian}) = 

= {𝑥1(1, 1, 1, 1), 𝑥3(1, 1, 1, 1)}.     (5.2.9) 

5.2.7.2 Plithogenic Fuzzy Hypersoft Set 

It is a plithogenic hypersoft set, such that the degree of appurtenance 

of an element x to the set ℳ, with respect to each attribute value, is fuzzy: 

𝑑𝑥
0(𝛼) ∈ 𝒫([0, 1]), power set of [0, 1], where 𝑑𝑥

0(∙) may be a subset, 

an interval, a hesitant set, a single-valued number, etc. 

In our example, for a single-valued number: 

𝐹({tall,white, female, Italian}) = 

= {𝑥1(0.4, 0.7, 0.6, 0.5), 𝑥3(0.8, 0.2, 0.7, 0.7)}.   (5.2.10) 
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5.2.7.3 Plithogenic Intuitionistic Fuzzy Hypersoft Set 

It is a plithogenic hypersoft set, such that the degree of appurtenance 

of an element x to the set ℳ , with respect to each attribute value, is 

intuitionistic fuzzy: 

𝑑𝑥
0(𝛼) ∈ 𝒫([0, 1]2), power set of [0, 1]2, where similarly 𝑑𝑥

0(𝛼) may 

be: a Cartesian product of subsets, of intervals, of hesitant sets, of single-

valued numbers, etc. 

In our example, for single-valued numbers: 

𝐹({tall,white, female, Italian}) = 

= {
𝑥1(0.4,0.3)(0.7,0.2)(0.6, 0.0)(0.5, 0.1),

  𝑥3(0.8,0.1)(0.2,0.5)(0.7, 0.0)(0.7, 0.4)
}.   (5.2.11) 

5.2.7.4 Plithogenic Neutrosophic Hypersoft Set 

It is a plithogenic hypersoft set, such that the degree of appurtenance 

of an element x to the set ℳ , with respect to each attribute value, is 

neutrosophic: 

𝑑𝑥
0(𝛼) ∈ 𝒫([0, 1]3), power set of [0, 1]3 , where 𝑑𝑥

0(𝛼) may be: a 

triple Cartesian product of subsets, of intervals, of hesitant sets, of single-

valued numbers, etc. 

In our example, for single-valued numbers: 

𝐹({tall,white, female, Italian}) = 

{
𝑥1[(0.4,0.1, 0.3)(0.7, 0.0, 0.2)(0.6, 0.3, 0.0)(0.5, 0.2, 0.1)],

𝑥3[(0.8, 0.1, 0.1)(0.2, 0.4, 0.5)(0.7, 0.1, 0.0)(0.7, 0.5, 0.4)]
}  (5.2.12) 

5.2.8 Future Research 

For all types of plithogenic hypersoft sets, the aggregation operators 

(union, intersection, complement, inclusion, equality) have to be defined 

and their properties found. 

Applications in various engineering, technical, medical, social science, 

administrative, decision making and so on, fields of knowledge of these 

types of plithogenic hypersoft sets should be investigated. 
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CHAPTER 6 

Introduction to NeutroAlgebraic Structures 

and AntiAlgebraic Structures (revisited) 
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Abstract 

In all classical algebraic structures, the Laws of Compositions on a 

given set are well-defined. But this is a restrictive case, because there are 

many more situations in science and in any domain of knowledge when a 

law of composition defined on a set may be only partially-defined (or 

partially true) and partially-undefined (or partially false), that we call 

NeutroDefined, or totally undefined (totally false) that we call 

AntiDefined.  

Again, in all classical algebraic structures, the Axioms (Associativity, 

Commutativity, etc.) defined on a set are totally true, but it is again a 

restrictive case, because similarly there are numerous situations in science 

and in any domain of knowledge when an Axiom defined on a set may be 

only partially-true (and partially-false), that we call NeutroAxiom, or 

totally false that we call AntiAxiom.  

Therefore we open for the first time in 2019 new fields of research 

called NeutroStructures and AntiStructures respectively. 

 

Keywords 

Neutrosophic Triplets, (Axiom, NeutroAxiom, AntiAxiom), (Law, 

NeutroLaw, AntiLaw), (Associativity, NeutroAssociaticity, 

AntiAssociativity), (Commutativity, NeutroCommutativity, 

AntiCommutativity), (WellDefined, NeutroDefined, AntiDefined), 

(Semigroup, NeutroSemigroup, AntiSemigroup), (Group, NeutroGroup, 

AntiGroup), (Ring, NeutroRing, AntiRing), (Algebraic Structures, 

NeutroAlgebraic Structures, AntiAlgebraic Structures), (Structure, 

NeutroStructure, AntiStructure), (Theory, NeutroTheory, AntiTheory), S-

denying an Axiom, S-geometries, Multispace with Multistructure 
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6.1. Introduction 

For the necessity to more accurately reflect our reality, Smarandache 

[1] introduced for the first time in 2019 the NeutroDefined and 

AntiDefined Laws, as well as the NeutroAxiom and AntiAxiom, inspired 

from Neutrosophy ([2], 1995), giving birth to new fields of research 

called NeutroStructures and AntiStructures. 

Let’s consider a given classical algebraic Axiom. We define for the 

first time the neutrosophic triplet corresponding to this Axiom, which is 

the following: (Axiom, NeutroAxiom, AntiAxiom); while the classical 

Axiom is 100% or totally true, the NeutroAxiom is partially true and 

partially false (the degrees of truth and falsehood are both > 0), while the 

AntiAxiom is 100% or totally false. 

For the classical algebraic structures, on a non-empty set endowed 

with well-defined binary laws, we have properties (axioms) such as: 

associativity & non-associativity, commutativity & non-commutativity, 

distributivity & non-distributivity; the set may contain a neutral element 

with respect to a given law, or may not; and so on; each set element may 

have an inverse, or some set elements may not have an inverse; and so on. 

Consequently, we construct for the first time the neutrosophic triplet 

corresponding to the Algebraic Structures, which is this: (Algebraic 

Structure, NeutroAlgebraic Structure, AntiAlbegraic Structure). 

Therefore, we now introduce for the first time the NeutroAlgebraic 

Structures & the AntiAlgebraic Structures. 

A (classical) Algebraic Structure is an algebraic structure dealing only 

with (classical) Axioms (which are totally true). 

Then a NeutroAlgebraic Structure is an algebraic structure that has at 

least one NeutroAxiom, and no AntiAxioms. 

While an AntiAlgebraic Structure is an algebraic structure that has at 

least one AntiAxiom. 
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These definitions can straightforwardly be extended from 

Axiom/NeutroAxiom/AntiAxiom  

to any  

Property/NeutroProperty/AntiProperty, 

Proposition/NeutroProposition/AntiProposition, 

Theorem/NeutroTheorem/AntiTheorem, 

Theory/NeutroTheory/AntiTheory, etc. 

and from Algebraic Structures to other Structures in any field of 

knowledge. 

6.2. Neutrosophy 

We recall that in neutrosophy we have for an item <A>, its opposite 

<antiA>, and in between them their neutral <neutA>. 

We denoted by <nonA> = <neutA>  ∪ <antiA>, where ∪  means 

union, and <nonA> means what is not <A>. 

Or <nonA> is refined/split into two parts: <neutA> and <antiA>. 

The neutrosophic triplet of <A> is:  

(〈𝐴〉, 〈𝑛𝑒𝑢𝑡𝐴〉, 〈𝑎𝑛𝑡𝑖𝐴〉), with 〈𝑛𝑒𝑢𝑡𝐴〉 ∪ 〈𝑎𝑛𝑡𝑖𝐴〉 = 〈𝑛𝑜𝑛𝐴〉. 

6.3. Definition of Neutrosophic Triplet Axioms 

Let 𝒰 be a universe of discourse, endowed with some well-defined 

laws, a non-empty set 𝒮 ⊆ 𝒰, and an Axiom α, defined on S, using these 

laws. Then: 

1) If all elements of 𝒮 verify the axiom α, we have a Classical 

Axiom, or simply we say Axiom. 

2) If some elements of 𝒮 verify the axiom α and others do not, 

we have a NeutroAxiom (which is also called NeutAxiom). 

3) If no elements of 𝒮  verify the axiom α, then we have an 

AntiAxiom. 
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The Neutrosophic Triplet Axioms are: 

(Axiom, NeutroAxiom, AntiAxiom) 

with  

NeutroAxiom ⋃ AntiAxiom = NonAxiom,  

and NeutroAxiom ⋂ AntiAxiom = φ (empty set),  

where ⋂ means intersection. 

Theorem 1 

The Axiom is 100% true, the NeutroAxiom is partially true ( its truth 

degree > 0 ) and partially false ( its falsehood degree > 0 ), and the 

AntiAxiom is 100% false. 

Proof  is obvious. 

Theorem 2 

Let  

d : {Axiom, NeutroAxiom, AntiAxiom} → [0 , 1] 

represent the degree of negation function. 

The NeutroAxiom represents a degree of partial negation { d ∊ (0, 1) } 

of the Axiom, while the AntiAxiom represents a degree of total negation 

{ d = 1 } of the Axiom.  

Proof  is also evident. 

6.4. Neutrosophic Representation 

We have: 

〈𝐴〉 = Axiom; 

〈𝑛𝑒𝑢𝑡𝐴〉 = NeutroAxiom (or NeutAxiom); 

〈𝑎𝑛𝑡𝑖𝐴〉  = AntiAxiom; 

and   〈𝑛𝑜𝑛𝐴〉  = NonAxiom. 
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Similarly as in Neutrosophy, NonAxiom is refined/split into two parts: 

NeutroAxiom and AntiAxiom. 

6.5. Application of NeutroLaws in Soft Science 

In soft sciences the laws are interpreted and re-interpreted; in social 

and political legislation the laws are flexible; the same law may be true 

from a point of view, and false from another point of view. Thus the law 

is partially true and partially false (it is a neutrosophic law).   

For example, “gun control”. There are people supporting it 

because of too many crimes and violence (and they are right), and people 

that oppose it because they want to be able to defend themselves and their 

houses (and they are right too).  

We see two opposite propositions, both of them true, but from 

different points of view (from different criteria/parameters; plithogenic 

logic may better be used herein).  How to solve this?  Going to the middle, 

in between opposites (as in neutrosophy): allow military, police, security, 

registered hunters to bear arms; prohibit mentally ill, sociopaths, 

criminals, violent people from bearing arms; and background check on 

everybody that buys arms, etc. Definition of Classical Associativity 

Let 𝒰  be a universe of discourse, and a non-empty set 𝒮 ⊆ 𝒰 , 

endowed with a well-defined binary law ∗. The law ∗ is associative on the 

set 𝒮, iff ∀ 𝑎, 𝑏, 𝑐 ∈ 𝒮, 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐. 

6.6. Definition of Classical NonAssociativity 

Let 𝒰  be a universe of discourse, and a non-empty set 𝒮 ⊆ 𝒰 , 

endowed with a well-defined binary law ∗. The law ∗ is non-associative 

on the set 𝒮, iff ∃𝑎, 𝑏, 𝑐 ∈ 𝒮, such that 𝑎 ∗ (𝑏 ∗ 𝑐) ≠ (𝑎 ∗ 𝑏) ∗ 𝑐. 

So, it is sufficient to get a single triplet 𝑎, 𝑏, 𝑐 (where 𝑎, 𝑏, 𝑐 may even 

be all three equal, or only two of them equal) that doesn’t satisfy the 

associativity axiom. 
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Yet, there may also exist some triplet 𝑑, 𝑒, 𝑓 ∈ 𝒮  that satisfies the 

associativity axiom: 𝑑 ∗ (𝑒 ∗ 𝑓) = (𝑑 ∗ 𝑒) ∗ 𝑓. 

The classical definition of NonAssociativity does not make a 

distinction between a set (𝒮1,∗) whose all triplets 𝑎, 𝑏, 𝑐 ∈ 𝒮1 verify the 

non-associativity inequality, and a set (𝒮2,∗) whose some triplets verify 

the non-associativity inequality, while others don’t. 

6.7. NeutroAssociativity & AntiAssociativity 

If 〈A〉  = (classical) Associativity, then 〈nonA〉  = (classical) 

NonAssociativity. 

But we refine/split 〈nonA〉 into two parts, as above: 

〈𝑛𝑒𝑢𝑡𝐴〉 = NeutroAssociativity; 

〈𝑎𝑛𝑡𝑖𝐴〉  = AntiAssociativity. 

Therefore,  

NonAssociativity = NeutroAssociativity ∪ AntiAssociativity. 

The Associativity’s neutrosophic triplet is: 

<Associativity, NeutroAssociativity, AntiAssociativity>. 

6.8. Definition of NeutroAssociativity 

Let 𝒰 be a universe of discourse, endowed with a well-defined binary 

law ∗, and a non-empty set 𝒮 ⊆ 𝒰. 

The set (𝒮,∗) is NeutroAssociative if and only if: 

there exists at least one triplet 𝑎1, 𝑏1, 𝑐1 ∈ 𝒮 such that: 

𝑎1 ∗ (𝑏1 ∗ 𝑐1) = (𝑎1 ∗ 𝑏1) ∗ 𝑐1; 

and there exists at least one triplet 𝑎2, 𝑏2, 𝑐2 ∈ 𝒮 such that: 

𝑎2 ∗ (𝑏2 ∗ 𝑐2) ≠ (𝑎2 ∗ 𝑏2) ∗ 𝑐2. 

Therefore, some triplets verify the associativity axiom, and others do 

not. 
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6.9. Definition of AntiAssociativity 

Let 𝒰 be a universe of discourse, endowed with a well-defined binary 

law ∗, and a non-empty set 𝒮 ⊆ 𝒰. 

The set (𝒮,∗) is AntiAssociative if and only if: 

for any triplet 𝑎, 𝑏, 𝑐 ∈ 𝒮 one has 𝑎 ∗ (𝑏 ∗ 𝑐) ≠ (𝑎 ∗ 𝑏) ∗ 𝑐. 

Therefore, none of the triplets verify the associativity axiom. 

6.10. Example of Associativity 

Let N = {0, 1, 2, …, ∞}, the set of natural numbers, be the universe of 

discourse, and the set 𝒮 = {0, 1, 2, … , 9} ⊂ N, also the binary law ∗ be the 

classical addition modulo 10 defined on N. 

Clearly the law * is well-defined on S, and associative since:  

𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 (mod 10), for all 𝑎, 𝑏, 𝑐 ∈ 𝒮. 

The degree of negation is 0%. 

6.11. Example of NeutroAssociativity 

𝒮 = {0, 1, 2, … , 9}, and the well-defined binary law ∗ constructed as 

below:  

𝑎 ∗ 𝑏 = 2𝑎 + 𝑏 (mod 10). 

Let’s check the associativity: 

𝑎 ∗ (𝑏 ∗ 𝑐) = 2𝑎 + (𝑏 ∗ 𝑐) = 2𝑎 + 2𝑏 + 𝑐  

(𝑎 ∗ 𝑏) ∗ 𝑐 = 2(𝑎 ∗ 𝑏) + 𝑐 = 2(2𝑎 + 𝑏) + 𝑐 = 4𝑎 + 2𝑏 + 𝑐  

The triplets that verify the associativity result from the below equality: 

2𝑎 + 2𝑏 + 𝑐 = 4𝑎 + 2𝑏 + 𝑐  

or 2𝑎 = 4𝑎 (mod 10) 

or 0 = 2𝑎 (mod 10), whence 𝑎 ∈ {0, 5}. 

Hence, two general triplets of the form: 
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{(0, 𝑏, 𝑐), (5, 𝑏, 𝑐), where 𝑏, 𝑐 ∈ 𝒮}  

verify the associativity. 

The degree of associativity is 
2

10
= 20%, corresponding to the two 

numbers {0, 5} out of ten. 

While the other general triplet: 

{(𝑎, 𝑏, 𝑐), where 𝑎 ∈ 𝒮 ∖ {0, 5}, while 𝑏, 𝑐 ∈ 𝒮 }  

do not verify the associativity. 

The degree of negation of associativity is 
8

10
= 80%. 

6.12. Example of AntiAssociativity 

𝒮 = {𝑎, 𝑏}, and the binary law ∗ well-defined as in the below Cayley 

Table: 

∗ a b 

a b b 

b a a 

Theorem 1. 

For any 𝑥, 𝑦, 𝑧 ∈ 𝒮,  𝑥 ∗ (𝑦 ∗ 𝑧) ≠ (𝑥 ∗ 𝑦) ∗ 𝑧. 

Proof. 

We have 23 = 8 possible triplets on 𝒮: 

1)  (𝑎, 𝑎, 𝑎) 

𝑎 ∗ (𝑎 ∗ 𝑎) = 𝑎 ∗ 𝑏 = 𝑏  

while (𝑎 ∗ 𝑎) ∗ 𝑎 = 𝑏 ∗ 𝑎 = 𝑎 ≠ 𝑏. 

2)  (𝑎, 𝑎, 𝑏) 

𝑎 ∗ (𝑎 ∗ 𝑏) = 𝑎 ∗ 𝑏 = 𝑏  

(𝑎 ∗ 𝑎) ∗ 𝑏 = 𝑏 ∗ 𝑏 = 𝑎 ≠ 𝑏.   

3)  (𝑎, 𝑏, 𝑎) 

𝑎 ∗ (𝑏 ∗ 𝑎) = 𝑎 ∗ 𝑎 = 𝑏  
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(𝑎 ∗ 𝑏) ∗ 𝑎 = 𝑏 ∗ 𝑎 = 𝑎 ≠ 𝑏.   

4)  (𝑏, 𝑎, 𝑎) 

𝑏 ∗ (𝑎 ∗ 𝑎) = 𝑏 ∗ 𝑏 = 𝑎  

(𝑏 ∗ 𝑎) ∗ 𝑎 = 𝑎 ∗ 𝑎 = 𝑏 ≠ 𝑎.   

5)  (𝑎, 𝑏, 𝑏) 

𝑎 ∗ (𝑏 ∗ 𝑏) = 𝑎 ∗ 𝑎 = 𝑏  

(𝑎 ∗ 𝑏) ∗ 𝑏 = 𝑏 ∗ 𝑏 = 𝑎 ≠ 𝑏.   

6)  (𝑏, 𝑎, 𝑏) 

𝑏 ∗ (𝑎 ∗ 𝑏) = 𝑏 ∗ 𝑏 = 𝑎  

(𝑏 ∗ 𝑎) ∗ 𝑏 = 𝑎 ∗ 𝑏 = 𝑏 ≠ 𝑎.   

7)  (𝑏, 𝑏, 𝑎) 

𝑏 ∗ (𝑏 ∗ 𝑎) = 𝑏 ∗ 𝑎 = 𝑎  

(𝑏 ∗ 𝑏) ∗ 𝑎 = 𝑎 ∗ 𝑎 = 𝑏 ≠ 𝑎.   

8)  (𝑏, 𝑏, 𝑏) 

𝑏 ∗ (𝑏 ∗ 𝑏) = 𝑏 ∗ 𝑎 = 𝑎  

(𝑏 ∗ 𝑏) ∗ 𝑏 = 𝑎 ∗ 𝑏 = 𝑏 ≠ 𝑎.   

Therefore, there is no possible triplet on 𝒮 to satisfy the associativity. 

Whence the law is AntiAssociative. The degree of negation of 

associativity is  
8

8
= 100%. 

6.13. Definition of Classical Commutativity 

Let 𝒰 be a universe of discourse endowed with a well-defined binary 

law ∗, and a non-empty set 𝒮 ⊆ 𝒰. The law ∗ is Commutative on the set 

𝒮, iff ∀ 𝑎, 𝑏 ∈ 𝒮, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎. 
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6.14. Definition of Classical NonCommutativity 

Let 𝒰 be a universe of discourse, endowed with a well-defined binary 

law ∗, and a non-empty set 𝒮 ⊆ 𝒰. The law ∗ is NonCommutative on the 

set 𝒮, iff ∃𝑎, 𝑏 ∈ 𝒮, such that 𝑎 ∗ 𝑏 ≠ 𝑏 ∗ 𝑎. 

So, it is sufficient to get a single duplet 𝑎, 𝑏 ∈ 𝒮 that doesn’t satisfy 

the commutativity axiom. 

However, there may exist some duplet 𝑐, 𝑑 ∈ 𝒮  that satisfies the 

commutativity axiom: 𝑐 ∗ 𝑑 = 𝑑 ∗ 𝑐. 

The classical definition of NonCommutativity does not make a 

distinction between a set (𝒮1,∗) whose all duplets 𝑎, 𝑏 ∈ 𝒮1  verify the 

NonCommutativity inequality, and a set (𝒮2,∗)  whose some duplets 

verify the NonCommutativity inequality, while others don’t. 

That’s why we refine/split the NonCommutativity into 

NeutroCommutativity and AntiCommutativity. 

6.15. NeutroCommutativity & AntiCommutativity 

Similarly to Associativity we do for the Commutativity: 

If 〈A〉  = (classical) Commutativity, then 〈nonA〉  = (classical) 

NonCommutativity. 

But we refine/split 〈nonA〉 into two parts, as above: 

〈𝑛𝑒𝑢𝑡𝐴〉 = NeutroCommutativity; 

〈𝑎𝑛𝑡𝑖𝐴〉  = AntiCommutativity. 

Therefore,  

NonCommutativity =  

= NeutroCommutativity ∪ AntiCommutativity. 

The Commutativity’s neutrosophic triplet is: 

<Commutativity, NeutroCommutativity, AntiCommutativity>. 
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In the same way, Commutativity means all elements of the set 

commute with respect to a given binary law, NeutroCommutativity means 

that some elements commute while others do not, while 

AntiCommutativity means that no elements commute. 

6.16. Example of NeutroCommutativity 

𝒮 = {𝑎, 𝑏, 𝑐}, and the well-defined binary law ∗. 

∗ a b c 

a b c c 

b c b a 

c b b c 

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑐 (commutative); 

{
𝑎 ∗ 𝑐 = 𝑐

 𝑐 ∗ 𝑎 = 𝑏 ≠ 𝑐
 (not commutative); 

{ 
𝑏 ∗ 𝑐 = 𝑎

𝑐 ∗ 𝑏 = 𝑏 ≠ 𝑎
 (not commutative). 

We conclude that (𝒮,∗) is 
1 pair

3 pairs
≈ 33% commutative, and 

2 pair

3 pairs
≈

67% not commutative. 

Therefore, the degree of negation of the commutativity of (𝒮,∗) is 

67%. 

6.17. Example of AntiCommutativity 

𝒮 = {𝑎, 𝑏}, and the below binary well-defined law ∗. 

∗ a b 

a b b 

b a a 

where 𝑎 ∗ 𝑏 = 𝑏, 𝑏 ∗ 𝑎 = 𝑎 ≠ 𝑏 (not commutative) 

Other pair of different element does not exist, since we cannot take 

𝑎 ∗ 𝑎 nor 𝑏 ∗ 𝑏. The degree of negation of commutativity of this (𝒮,∗) is 

100%. 
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6.18. Definition of Classical Unit Element 

Let 𝒰 be a universe of discourse endowed with a well-defined binary 

law ∗ and a non-empty set 𝒮 ⊆ 𝒰.  

The set 𝒮 has a classical unit element 𝑒 ∈ 𝒮, iff 𝑒 is unique, and for 

any 𝑥 ∈ 𝒮 one has 𝑥 ∗ 𝑒 = 𝑒 ∗ 𝑥 = 𝑥. 

6.19. Partially Negating the Definition of Classical Unit Element 

It occurs when at least one of the below statements occurs: 

1) There exists at least one element 𝑎 ∈ 𝒮 that has no unit element. 

2) There exists at least one element 𝑏 ∈ 𝒮 that has at least two distinct 

unit elements 𝑒1, 𝑒2 ∈ 𝒮, 𝑒1 ≠ 𝑒2, such that: 

𝑏 ∗ 𝑒1 = 𝑒1 ∗ 𝑏 = 𝑏, 

𝑏 ∗ 𝑒2 = 𝑒2 ∗ 𝑏 = 𝑏. 

3) There exists at least two different elements 𝑐, 𝑑 ∈ 𝒮, 𝑐 ≠ 𝑑, such 

that they have different unit elements 𝑒𝑐 , 𝑒𝑑 ∈ 𝒮, 𝑒𝑐 ≠ 𝑒𝑑, with 𝑐 ∗ 𝑒𝑐 =

𝑒𝑐 ∗ 𝑐 = 𝑐, and 𝑑 ∗ 𝑒𝑑 = 𝑒𝑑 ∗ 𝑑 = 𝑑. 

6.20. Totally Negating the Definition of Classical Unit Element 

The set (𝒮,∗) has AntiUnitElements, if: 

1) Each element 𝑥 ∈ 𝒮 has either no unit element, or two or more unit 

elements (unicity of unit element is negated); 

2) If some elements 𝑥 ∈ 𝒮 have only one unit element each, then these 

unit elements are different two by two. 

6.21. Definition of NeutroUnitElements 

The set (𝒮,∗) has NeutroUnit Elements, if: 

1) [Degree of Truth] There exist at least an element that has a single 

unit-element. 
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2) [Degree of Falsehood] There exist at least one element that either 

has no unit-element, or has two or more unit-elements. 

6.22. Definition of AntiUnit Elements 

The set (𝒮,∗) has AntiUnit Elements, if: 

Each element 𝑥 ∈ 𝒮 has either no unit-element, or two or more distinct 

unit-elements. 

6.23. Example of NeutroUnit Elements 

𝒮 = {𝑎, 𝑏, 𝑐}, and the well-defined binary law ∗: 

∗ a b c 

a b b a 

b b b a 

c a b c 

Since, 

𝑎 ∗ 𝑐 = 𝑐 ∗ 𝑎 = 𝑎  

𝑐 ∗ 𝑐 = 𝑐  

the common unit-element of a and c is c (two distinct elements a ≠ 𝑐 

have the same unit element c). 

From 

𝑏 ∗ 𝑎 = 𝑎 ∗ 𝑏 = 𝑏  

𝑏 ∗ 𝑏 = 𝑏  

we see that the element 𝑏 has two distinct unit-elements 𝑎 and 𝑏. 

Since only one element b does not verify the classical unit axiom (i.e. 

to have a unique unit), out of 3 elements, the degree of negation of unit 

element axiom is 
1

3
≈ 33% , while 

2

3
≈ 67%  is the degree of truth 

(validation) of the unit element axiom. 

6.24. Example of AntiUnit Elements 

𝒮 = {𝑎, 𝑏, 𝑐}, endowed with the well-defined binary law ∗ as follows: 
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∗ a b c 

a a a a 

b a c b 

c a c b 

Element 𝑎 has 3 unit elements: 𝑎, 𝑏, 𝑐, because: 

𝑎 ∗ 𝑎 = 𝑎  

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑎  

and    𝑎 ∗ 𝑐 = 𝑐 ∗ 𝑎 = 𝑎.   

Element 𝑏 has no unit element, since: 

𝑏 ∗ 𝑎 = 𝑎 ≠ 𝑏  

𝑏 ∗ 𝑏 = 𝑐 ≠ 𝑏  

and     𝑏 ∗ 𝑐 = 𝑏, but 𝑐 ∗ 𝑏 ≠ 𝑏. 

Element 𝑐 has no unit element, since: 

𝑐 ∗ 𝑎 = 𝑎 ≠ 𝑐  

𝑐 ∗ 𝑏 = 𝑐, but 𝑏 ∗ 𝑐 = 𝑏 ≠ 𝑐, 

and     𝑐 ∗ 𝑐 = 𝑏 ≠ 𝑐. 

The degree of negation of the unit element axiom is 
3

3
= 100%. 

6.25. Definition of Classical Inverse Element 

Let 𝒰 be a universe of discourse endowed with a well-defined binary 

law ∗ and a non − empty set  𝒮 ⊆ 𝒰.  

Let 𝑒 ∈ 𝒮 be the classical unit element, which is unique. 

For any element 𝑥 ∈ 𝒮 , there exists a unique element, named the 

inverse of 𝑥, denoted by 𝑥−1, such that: 

𝑥 ∗ 𝑥−1 = 𝑥−1 ∗ 𝑥 = 𝑒. 

6.26. Partially Negating the Definition of Classical Inverse Element 

It occurs when at least one statement from below occurs: 
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1) There exist at least one element 𝑎 ∈ 𝒮  that has no inverse with 

respect to no ad-hoc unit-elements; 

or  

2) There exist at least one element 𝑏 ∈ 𝒮 that has two or more distinct 

inverses with respect to some ad-hoc unit-elements. 

6.27. Totally Negating the Definition of Classical Inverse Element 

Each element has either no inverse, or two or more distinct inverses 

with respect to some ad-hoc unit-elements respectively. 

6.28. Definition of NeutroInverse Elements 

The set (𝒮,∗) has NeutroInverse Elements if: 

1) [Degree of Truth] There exist at least an element that has an inverse 

with respect to some ad-hoc unit-element. 

2) [Degree of Falsehood] There exists at least one element that does 

not have any inverse with respect to no ad-hoc unit-element, or has at 

least two or more distinct inverses with respect to some ad-hoc unit-

elements. 

6.29. Definition of AntiInverse Elements 

The set (𝒮,∗) has AntiInverse Elements, if: each element has either no 

inverse with respect to no ad-hoc unit-element, or two or more distinct 

inverses with respect to some ad-hoc unit-elements. 

6.30. Example of NeutroInverse Elements 

𝑆 = {𝑎, 𝑏, 𝑐}, endowed with the binary well-defined law * as below: 

∗ a b c 

a a b c 

b b a a 

c b b b 



Florentin Smarandache 

256 

Because 𝑎 ∗ 𝑎 = 𝑎, hence its ad-hoc unit/neutral element 𝑛𝑒𝑢𝑡(𝑎) =

𝑎 and correspondingly its inverse element is 𝑖𝑛𝑣(𝑎) = 𝑎. 

Because 𝑏 ∗ 𝑎 = 𝑎 ∗ 𝑏 = 𝑏, hence its ad-hoc inverse/neutral element 

𝑛𝑒𝑢𝑡(𝑏) = 𝑎; 

from 𝑏 ∗ 𝑏 = 𝑎, we get 𝑖𝑛𝑣(𝑏) = 𝑏.  

No 𝑛𝑒𝑢𝑡(𝑐), hence no 𝑖𝑛𝑣(𝑐). 

Hence a and b have ad-hoc inverses, but c doesn’t. 

6.31. Example of AntiInverse Elements 

Similarly, 𝑆 = {𝑎, 𝑏, 𝑐}, endowed with the binary well-defined law * 

as below: 

∗ a b c 

a b b c 

b a a a 

c c a a 

There is no neut(a) and no neut(b), hence: no inv(a) and no inv(b). 

𝑐 ∗ 𝑎 = 𝑎 ∗ 𝑐 = 𝑐 , hence: 𝑛𝑒𝑢𝑡(𝑐) = 𝑎. 

𝑐 ∗ 𝑏 = 𝑏 ∗ 𝑐 = 𝑎 , hence: 𝑖𝑛𝑣(𝑐) = 𝑏;  

𝑐 ∗ 𝑐 = 𝑐 ∗ 𝑐 = 𝑎,  hence: 𝑖𝑛𝑣(𝑐) = 𝑐; whence we get two inverses of 

c.  

6.32. Cases When Partial Negation (NeutroAxiom) Does Not Exist 

Let’s consider the classical geometric Axiom: 

On a plane, through a point exterior to a given line it’s possible to draw 

a single parallel to that line. 

The total negation is the following AntiAxiom: 

On a plane, through a point exterior to a given line it’s possible to draw 

either no parallel, or two or more parallels to that line. 
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The NeutroAxiom does not exist since it is not possible to partially 

deny this classical axiom. 

6.33. Connections between the neutrosophic triplet (Axiom, 

NeutroAxiom, AntiAxiom) and the S-denying an Axiom 

The S-denying of an Axiom was first defined by Smarandache [3, 4] in 

1969 when he constructed hybrid geometries (or S-geometries) [5 – 18]. 

6.34. Definition of S-denying an Axiom 

An Axiom is said S-denied [3, 4] if in the same space the axiom 

behaves differently (i.e., validated and invalided; or only invalidated but 

in at least two distinct ways).  

Therefore, we say that an axiom is partially negated (or there is a 

degree of negation of an axiom): http://fs.unm.edu/Geometries.htm.  

6.35. Definition of S-geometries 

A geometry is called S-geometry [5] if it has at least one S-denied 

axiom.  

Therefore, the Euclidean, Lobachevsky-Bolyai-Gauss, and 

Riemannian geometries were united altogether for the first time, into the 

same space, by some S-geometries. These S-geometries could be partially 

Euclidean and partially Non-Euclidean, or only Non-Euclidean but in 

multiple ways.  

  The most important contribution of the S-geometries was the 

introduction of the degree of negation of an axiom (and more general the 

degree of negation of any theorem, lemma, scientific or humanistic 

proposition, theory, etc.). 

Many geometries, such as pseudo-manifold geometries, Finsler 

geometry, combinatorial Finsler geometries, Riemann geometry, 

combinatorial Riemannian geometries, Weyl geometry, Kahler geometry 

are particular cases of S-geometries. (Linfan Mao) 

http://fs.unm.edu/Geometries.htm
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6.36. Connection between S-denying an Axiom and NeutroAxiom / 

AntiAxiom 

“Validated and invalidated” Axiom is equivalent to NeutroAxiom. 

While “only invalidated but in at least two distinct ways” Axiom is part 

of the AntiAxiom (depending on the application). 

 “Partially negated” ( or 0 < d < 1, where d is the degree of negation ) 

is referred to NeutroAxiom.  While “there is a degree of negation of an 

axiom” is referred to both NeutroAxiom ( when 0 < d < 1 ) and 

AntiAxiom ( when d = 1 ). 

6.37. Connection between NeutroAxiom and MultiSpace 

In any domain of knowledge, a S-multispace with its multistructure 

is a finite or infinite (countable or uncountable) union of many spaces that 

have various structures (Smarandache, 1969, [19]). The multi-spaces with 

their multi-structures [20, 21] may be non-disjoint. The multispace with 

multistructure form together a Theory of Everything. It can be used, for 

example, in the Unified Field Theory that tries to unite the gravitational, 

electromagnetic, weak, and strong interactions in physics. 

Therefore, a NeutroAxiom splits the set S, which it is defined upon, 

into two subspaces: one where the Axiom is true and another where the 

Axiom is false. Whence S becomes a BiSpace with BiStructure (which is 

a particular case of MultiSpace with MultiStructure). 

6.38. (Classical) WellDefined Binary Law 

Let 𝒰 be a universe of discourse, a non-empty set 𝒮 ⊆ 𝒰, and a binary 

law ∗ defined on 𝑈. For any 𝑥, 𝑦 ∈ 𝒮, one has 𝑥 ∗ 𝑦 ∈ 𝒮. 

6.39. NeutroDefined Binary Law 

There exist at least two elements (that could be equal) 𝑎, 𝑏 ∈ 𝒮 such 

that 𝑎 ∗ 𝑏 ∈ 𝒮. And there exist at least other two elements (that could be 

equal too) 𝑐, 𝑑 ∈ 𝒮 such that 𝑐, 𝑑 ∉ 𝒮. 
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6.40. Example of NeutroDefined Binary Law 

Let U = {a, b, c} be a universe of discourse, and a subset 𝒮 = {𝑎, 𝑏}, 

endowed with the below NeutroDefined Binary Law ∗ : 

 

∗ a b 

a b b 

b a c 

We see that: 𝑎 ∗ 𝑏 = 𝑏 ∊ 𝑆, 𝑏 ∗ 𝑎 = 𝑎  ∊ 𝑆,  but 𝑏 ∗ 𝑏 = c ∉ 𝑆.  

6.41. AntiDefined Binary Law 

For any 𝑥, 𝑦 ∈ 𝒮 one has 𝑥 ∗ 𝑦 ∉ 𝒮. 

6.42. Example of AntiDefined Binary Law 

Let U = {a, b, c, d} a universe of discourse, and a subset 𝒮 = {𝑎, 𝑏}, 

and the below binary well-defined law ∗. 

∗ a b 

a c d 

b d c 

where all combinations between a and b using the law * give as output c 

or d who do not belong to S. 

6.43. Theorem of the Degenerate Case 

If a set is endowed with AntiDefined Laws, all its algebraic structures 

based on them will be AntiStructures. 

6.44. WellDefined n-ary Law 

Let 𝒰 be a universe of discourse, a non-empty set 𝒮 ⊆ 𝒰, and a n-ary 

law, for n integer, 𝑛 ≥ 1, defined on 𝒰. 

𝐿:𝒰𝑛 → 𝒰. 

For any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝒮, one has 𝐿(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝒮. 
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6.45. NeutroDefined n-ary Law 

There exists at least a n-plet 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝒮  such that 

𝐿(𝑎1, 𝑎2, … , 𝑎𝑛) ∈ 𝒮 . The elements 𝑎1, 𝑎2, … , 𝑎𝑛  may be equal or not 

among themselves. 

And there exists at least a n-plet 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ 𝒮  such that 

𝐿(𝑏1, 𝑏2, … , 𝑏𝑛) ∉ 𝒮 . The elements 𝑏1, 𝑏2, … , 𝑏𝑛 may be equal or not 

among themselves. 

6.46. AntiDefined n-ary Law 

For any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝒮, one has 𝐿(𝑥1, 𝑥2, … , 𝑥𝑛) ∉ 𝒮. 

6.47. WellDefined n-ary HyperLaw 

Let 𝒰 be a universe of discourse, a non-empty set 𝒮 ⊂≠ 𝒰, and a n-

ary hyperlaw, for n integer, 𝑛 ≥ 1: 

𝐻:𝒰𝑛 → 𝒫(𝒰), where 𝒫(𝒰) is the power set of 𝒰. 

For any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝒮, one has 𝐻(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝒫(𝒮). 

6.48. NeutroDefined n-ary HyperLaw 

There exists at least a n-plet 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝒮  such that 

𝐻(𝑎1, 𝑎2, … , 𝑎𝑛) ∈ 𝒫(𝒮). The elements 𝑎1, 𝑎2, … , 𝑎𝑛  may be equal or 

not among themselves. 

And there exists at least a n-plet 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ 𝒮  such that 

𝐻(𝑏1, 𝑏2, … , 𝑏𝑛) ∉ 𝒫(𝒮). The elements 𝑏1, 𝑏2, … , 𝑏𝑛 may be equal or not 

among themselves. 

6.49. AntiDefined n-ary HyperLaw 

For any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝒮, one has 𝐻(𝑥1, 𝑥2, … , 𝑥𝑛) ∉ 𝒫(𝒮). 

* 
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The most interesting are the cases when the composition law(s) are 

well-defined (classical way) and neutro-defined (neutrosophic way). 

6.50. WellDefined NeutroStructures 

Are structures whose laws of compositions are well-defined, and at 

least one axiom is NeutroAxiom, and one has no AntiAxiom. 

6.51. NeutroDefined NeutroStructures 

Are structures whose at least one law of composition is NeutroDefined, 

and all other axioms are NeutroAxioms or Axioms. 

6.52. Example of NeutroDefined NeutroGroup 

Let U = {a, b, c, d} be a universe of discourse, and the subset  

𝒮 = {𝑎, 𝑏, 𝑐}, endowed with the binary law ∗: 

 

∗ a b c 

a a c b 

b c a c 

c a c d 

 

NeutroDefined Law of Composition: 

Because, for example: a*b = c ∊ S, but c*c = d ∉ S. 

NeutroAssociativity: 

Because, for example:  

b*(c*b) = b*c = c and (b*c)*b = c*b = c; 

while, for example:  

a*(a*b) = a*c = b and (a*a)*b = a*b = c ≠ b. 

NeutroCommutativity: 

Because, for example:  

a*b = b*a = c, but a*c = b while c*a = a ≠ c. 
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NeutroUnit Element: 

There exists a unit element b for c, since c*b = b*c = c; and there is a 

unit element a for a, since a*a = a. 

But there is no unit element for b, because b*x = a or c, not b, for any 

x ∊ S (according to the above Cayley Table) 

NeutroInverse Element: 

There exists an inverse element for a, which is a, because a*a = a. 

But there is no inverse element for b, since b has no unit element. 

Therefore (S, *) is a NeutroDefined NeutroCommutative 

NeutroGroup. 

6.53. WellDefined AntiStructures 

Are structures whose laws of compositions are well-defined, and have 

at least one AntiAxiom. 

6.54. NeutroDefined AntiStructures 

Are structures whose at least one law of composition is NeutroDefined 

and no law of composition is AntiDefined, and has at least one 

AntiAxiom. 

6.55. AntiDefined AntiStructures 

Are structures whose at least one law of composition is AntiDefined, 

and has at least one AntiAxiom. 

6.56. Conclusion 

The neutrosophic triplet (<A>, <neutA>, <antiA>), where <A> may 

be an “Axiom”, a “Structure”, a “Theory” and so on, <antiA> the opposite 

of <A>, while <neutA> (or <neutroA>) their neutral in between, are 

studied in this paper.  

The NeutroAlgebraic Structures and AntiAlgebraic Structures are 

introduced now for the first time, because they have been ignored by the 

classical algebraic structures. Since, in science and technology and 
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mostly in applications of our everyday life, the laws that characterize 

them are not necessarily well-defined or well-known, and the axioms / 

properties / theories etc. that govern their spaces may be only partially 

true and partially false ( as <neutA> in neutrosophy, which may be a 

blending of truth and falsehood ). 

Mostly in idealistic or imaginary or abstract or perfect spaces we have 

rigid laws and rigid axioms that totally apply (that are 100% true). But 

the laws and the axioms should be more flexible in order to comply with 

our imperfect world. 
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New Developments in Neutrosophic Theories 

and Applications 

 

 

 

 

 

 



Advances of Standard and Nonstandard Neutrosophic Theories 

267 

7.1 Definition of <neutA> 

<neutA> is everything which is in between the opposites <A> and 

<antiA>. 

It was called Neutrality, because it was neither <A> nor <antiA>, but 

the neutral in between them. 

And it was also called Indeterminacy, because it was an indeterminate 

part from <A> and <antiA>. 

Since there are many types of opposite pairs (<A>, <antiA>), one has 

many types of intermediaries (denoted by <neutA>) in between them. 

“<neutA>” is just a generic denomination (general term) used for 

everything which is in between two opposites. Not to be taken ad litteram 

(literally).  

<neutA> is a class of concepts, not  a single one, and depends on the 

pair of opposites that <neutA> is in between. 

Depending on each (<A>, <antiA>) particular opposite pair, <neutA> 

may be:  

neutrality, indeterminacy, tie result, unknown, 

contradiction, uncertainty, vagueness, unclear, mixtures 

of <A> and <antiA>, etc. 

7.2 Neutrality and Indeterminacy 

In Neutrosophic Logic/Set/Probability, between opposites <A> and 

<antiA>, i.e. between T = Truth / Membership / Chance of An Event to 

Occur, and F = Falsehood / Nonmembership / Chance of the Event Not 

to Occur, it is used the concept I = Indeterminacy (also called Neutrality). 

Indeterminacy (or Neutrality) is all between Truth and Falsehood (in 

Neutrosophic Logic); 

or all in between Membership and Nonmembership (in 

Neutrosophic Set); 
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or all in between Chance of An Event to Occur, and Chance of 

the Event Not to Occur (in Neutrosophic Probability). 

In Neutrosophic Statistics, Indeterminacy is referred to the statistical 

data, that may be:  

incomplete, partially known/unknown data, unknown 

exact sample or population side, probability distribution 

functions with indetermination (unclear, vague, 

contradictory data). 

It does not mean that Neutrality is the same as Indeterminacy, but 

some people call them those ways. 

One should not take linguistic dictionaries to extract the definitions of 

Indeterminacy and of Neutrality. Indeterminacy (and rarely used 

Neutrality) is a generic terminology, meaning it has a large meaning, not 

a narrow one. Indeterminacy (Neutrality) = <neutA>. 

An example: 

In mathematical topology we have "open set". But this does not mean 

that it has something to do with, for example: "open door", "open 

account", "open person", etc. "Open set" is just a set that satisfies some 

mathematical axioms. 

Similarly, "Indeterminacy" was defined in approximation theories 

(fuzzy, neutrosophy etc.) as everything which is in between Truth and 

Falsehood.  Period. 

According to Merriam-Webster Dictionary:  

indeterminacy = the quality or state of being indeterminate. 

Synonyms and Near Synonyms for indeterminate:  

general, indefinable, indefinite, indistinct, mushy, 

undefined, undetermined, unsettled, vague, approximate, 

approximative, ballpark, imprecise, inaccurate, inexact, 

loose, squishy, erroneous, false, incorrect, off, wrong, 

faulty, flawed, mistaken, specious, distorted, fallacious, 
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misleading, doubtful, dubious, questionable, uncertain, 

inconclusive, indecisive, debatable, disputable, 

invalidated, unconfirmed, unsubstantiated, unsupported. 

https://www.merriam-webster.com/dictionary/indeterminacy  

According to Cambridge Dictionary:  

indeterminacy = the state of not being measured, counted, or clearly 

known. 

Synonyms and Near Synonyms for indeterminate: 

arguable, be neither fish nor fowl (idiom), blurred, 

circumstantial, conflicted, debatable, definite maybe, 

disputable, dodgy, don't bet on it (idiom), doubt, doubtful, 

dubious, dubiously, elusively, fuzzily, fuzzy, gray area, 

iffy, inchoate, inconclusive, inconclusively, indecisive, 

indecisively, indefinite, indefinitely, insecurely, 

insecurity, it remains to be seen (idiom), kinda, knife 

edge, lack direction (idiom), limbo, maybe, mistily, 

mistiness, haziness, murky, nebulous, nebulousness, no-

man's-land, not be set/carved in stone (idiom), on a razor 

edge (idiom), open-ended, parlous, possibly, 

provisionally, questionable, quite, shade, shades of grey 

(idiom), shakily, shakiness, shallow, shallowly, spec, 

sputter, squishy, stutter, swither, tell, tentative, 

tentatively, tentativeness, tenuous, tenuously, there's no 

knowing (idiom), touch-and-go, uncertain, uncertainly, 

uncertainty, unclear, unclearly, unconfirmed, undecided, 

unlikely, unofficial, unofficially, unsafe, unspecified, 

unsupported, unwritten, up in the air (idiom), vagaries, 

vague, vaguely, vagueness, wild card, wishy-washy, 

indescribable, indescribably, indestructibility, 

indestructible, indeterminate, indeterminism, index, 

index card. 

https://www.merriam-webster.com/dictionary/indeterminacy
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https://dictionary.cambridge.org/fr/dictionnaire/anglais/indeterminacy   

https://dictionary.cambridge.org/fr/dictionnaire/anglais/indeterminate  

We have listed all definitions of “indeterminacy” and “indeterminate, 

together with their synonyms and near-synonyms, provided by Merriam-

Webster and Cambridge Dictionaries, in order to show that the concept 

Indeterminacy is capable of comprising all possible <neutA> versions 

between the opposites <A> and <antiA>. 

7.3 Many Types of Indeterminacies 

Since there are many types of indeterminacies in our world, we can 

construct different approaches to various neutrosophic concepts. 

Indeed, the neutrosophic dynamic system was approached from a 

classical perspective but taking into account the indeterminacies. 

Having many types of indeterminacies, what neutrosophic science are 

studying on, there are many approaches for the same topic that deals with 

different indeterminacies. 

7.4 Completeness or Incompleteness in Neutrosophy 

I have defined from the beginning that t + i + f = 3 if the information 

is complete, but t + i + f < 3 if the information is incomplete. 

In general, I wrote t + i + f ≤3 (depending on the completeness or 

incompleteness of the information provided by sources) 

7.5 A concept <A> has many opposites and many neutralities 

For a concept <A>, with respect to an attribute α1 that characterizes it, 

there is an opposite <antiA1>, and a neutral <neutA1> among the 

opponents. 

But, for <A>, with respect to another attribute α2 that characterizes it, 

there is another opposite <antiA2>, and another neutral <neutA2> among 

the opponents. 

Etc. 

https://dictionary.cambridge.org/fr/dictionnaire/anglais/indeterminacy
https://dictionary.cambridge.org/fr/dictionnaire/anglais/indeterminate
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In conclusion, for a concept <A>, there are many opposites {<antiA1>, 

<antiA2>, ...} and many neutrals {<neutA1>, <neutA2>, ...}. 

This is the reality. 

7.6 Dependence and Independence of Sources providing 

Information 

— We have independence when we judge a Proposition / Event with 

respect to a parameter, then we respect to another parameter completely 

independent of the previous parameter. 

For example: let's say there will be a soccer game between India and 

China. 

First parameter P1: History of India-China games.  

Suppose according to the statistics of the games between India and 

China, India won most of the time. Therefore, we may approximate/guess 

that T = 0.7 (70% that India will win). 

Second parameter P2: Playing home or not.   

The game will be played in China, where China has a bigger chance 

to win. Hence, we may say F = 0.6 (60% that China will win). 

— We may have independence when there are multiple independent 

sources (that do not communicate with each other), that may be subjective 

and give information on T, I, F neutrosophic components separately. 

The same game: India - China. 

Somebody, Raj from India, being patriot, will say that India will win. 

Someone from China, Young, being patriot for his country, may say that 

China will win. A third neutral person may say that it is a big chance that 

the game will be tied. 

For more on dependence and independence of neutrosophic 

components: 

http://fs.unm.edu/NSS/DegreeOfDependenceAndIndependence.pdf  

http://fs.unm.edu/NSS/DegreeOfDependenceAndIndependence.pdf


Florentin Smarandache 

272 

7.7 Geometric Representation of Neutrosophic Cubic Set 

Internal Neutrosophic Cubic Set { [a1, a2]   [b1, b2]   [c1, c2], ( λ1 

  λ2   λ3) }, 

where [a1, a2]   [b1, b2]   [c1, c2] is included or equal to [0, 1]3, 

λ1 belongs to [a1, a2] 

λ2 belongs to [b1, b2] 

and λ3 belongs to [c1, c2], 

is represented into the Standard Neutrosophic Cube ( [0, 1]   [0, 1]   

[0, 1] ) by small prisms included into the Standard Neutrosophic Cube, 

where each small prism P has the sides:  

lying between a1 and a2 on x-axis,  

between b1 and b2 on the y-axis, 

and between c1 and c2 on the z-axis, 

and a point M of coordinates (λ1, λ2, λ3) included into the small prism P. 

Also, for Single-Valued Neutrosophic Set, each element x of 

neutrosophic components (Tx, Ix, Fx) is represented by a point of 

coordinates Tx on the T-axis, Ix on the I-axis, Fx on the F-axis into the 

Neutrosophic Cube. 

Now, for Interval-Valued Neutrosophic Set, each element x of 

coordinates ([Tx
-, Tx

+], [Ix
-, Ix

+],[Fx
-, Fx

+]) is represented by a small prism 

determined by the intervals  

[Tx
-, Tx

+] on the T-axis,  

[Ix
-, Ix

+] on the I-axis,  

[Fx
-, Fx

+] on the F-axis,  

of inside the Neutrosophic Cube. 

Then, an Internal Cubic Neutrosophic Set is represented by a small 

prism (as the Interval-Valued Neutrosophic Set)  included into the 
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Neutrosophic Cube, and each small prism contains a point (as the  

Single-Valued Neutrosophic Set). 

7.8 Uncertainty, Contradiction 

In neutrosophic logic we have:  

T = Truth, I = Indeterminacy, F = Falsehood. 

Indeterminacy does not have the definition from the Larrouse or 

Webster dictionaries etc. 

Indeterminacy means everything that is different from T and F. 

Indeterminacy might be: 

T ⋁ F = Uncertainty, T ∧ F = Contradiction (what Belnap said). 

Both are part of the Indeterminacy. In this case the Indeterminacy has 

been refined in Uncertainty and Contradiction. 

What Indeterminacy means is different from one application to 

another. 

In a soccer game, we have I = Equality. 

In a relationship (friend, neutral, enemy) we have I = neutral. 

In another relation we can have I = unknown (if we have no 

information). 

In the logic where we do not know if a proposition is true or false, we 

can have I = 40% true and 60% false (for example). 

Indeterminacy is different from one application to another.   

Indeterminacy can be Neutrality in an application (for example a 

country that does not mix in war), or Indeterminacy can be Uncertainty 

(but it depends on the application too), or Contradiction, or Unknown, or 

partially true and partially false, etc. 
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7.9 Nonstandard Neutrosophic Algebraic Structures 

A Japanese has criticized me for the nonstandard form of neutrosophic 

set/logic, i.e. about the nonstandard interval ]-0, 1+[. His name is Dr. 

Imamura T. [1]. I answered to him [1, 2] and he agreed. 

When I answered back, I extended the Nonstandard Analysis by 

introducing monads closed to one side, and bimonds.  

Dr. Vasantha & I did work on neutrosophic algebraic structures, based 

on sets of the form a+bI, where a, b are real or complex numbers, and I2 

= I is indeterminacy. 

But we can extend these to Nonstandard Neutrosophic Algebraic 

Structures (never done before), a+bI, where a, b are monads or bimonas. 

I defined the operations (not all) of them into the above paper, but 

algebraic structures were not developed.  
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7.10 Three-ways model  
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is just a process of neutrosophication of the universe of discourse, because 

in neutrosophy we deal with the triplet of the form <A>, <antiA>, 

<neutA>. 

7.11 Three-Ways Decision is a particular case of 

Neutrosophication 

7.11.1 Neutrosophication 

Let <A> be an attribute value, <antiA> the opposite of this attribute 

value, and <neutA> the neutral (or indeterminate) attribute value between 

the opposites <A> and <antiA>. 

For examples: <A> = big, then <antiA> = small, and <neutA> = 

medium; we may rewrite: 

(<A>, <neutA>, <antiA>) = (big, medium, small); 

or (<A>, <neutA>, <antiA>) = (truth - denoted as T, 

indeterminacy - denoted as I, falsehood - denoted as F) as in Neutrosophic 

Logic, 

or (<A>, <neutA>, <antiA>) = (membership, indeterminate-

membership, monmembership) as in Neutrosophic Set, 

or (<A>, <neutA>, <antiA>) = (chance that an event occurs,  

indeterminate-chance that the event occurs or not,  chance that the event 

does not occur) as in Neutrosophic Probability, 

and so on. 

And let by “concept” mean: an item, object, idea, theory, region, 

universe, set, notion etc. that is characterized by this attribute. 

The process of neutrosophication means: 

- converting a Classical Concept { denoted as (1<A>, 0<neutA>, 0<antiA>)-

ClassicalConcept,  

or ClassicalConcept(1<A>, 0<neutA>, 0<antiA>) }, which means that the 

concept is, with respect to the above attribute,  

100% <A>, 0% <neutA>, and 0% <antiA>, 



Florentin Smarandache 

276 

into a Neutrosophic Concept { denoted as (T<A>, I<neutA>, F<antiA>)-

NeutrosophicConcept,  

or NeutrosophicConcept(T<A>, I<neutA>, F<antiA>) }, which means that 

the concept is, with respect to the above attribute, 

T% <A>, I% <neutA>, and F% <antiA>, 

which more accurately reflects our imperfect, non-idealistic reality,  

where T, I, F are subsets of [0, 1] with no other restriction. 

7.11.1.1 Example 1 

Let the attribute <A> = cold temperature, then <antiA> = hot 

temperature, and <neutA> = medium temperature. 

Let the concept be a country M, such that its northern part (30% of 

country’s territory) is cold, its southern part is hot (50%), and in the 

middle there is a buffer zone with medium temperature (20%). We write: 

M( 0.3cold temperature, 0.2medium temperature, 0.5hot temperature ) 

where we took single-valued numbers for the neutrosophic 

components TM = 0.3, IM = 0.2, FM = 0.5, and the neutrosophic 

components are considered dependent so their sum is equal to 1. 

7.11.1.2 Example 2 (Three-Ways Decision is a particular case of 

Neutrosophication) 

Neutrosophy (based on <A>, <neutA>, <antiA>) was proposed by 

Smarandache [1] in 1998, and Three-Ways Decision by Yao [2] in 2009. 

In Three-Ways Decision, the universe set is split into three different 

distinct areas, in regard to the decision process, representing: 

Acceptance, Noncommitment, and Rejection respectively. 

In this case, the decision attribute value <A> = Acceptance, whence 

<neutA> = Noncommitment, and <antiA> = Rejection. 

The classical concept = UniverseSet. 
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Therefore, we got the NeutrosophicConcept( T<A>, I<neutA>, F<antiA> ), 

denoted as:  

UniverseSet( TAcceptance, INoncommitment, FRejection ), 

where TAcceptance = universe set’s zone of acceptance, INoncommitment = 

universe set’s zone of noncomitment (indeterminacy),  FRejection= = 

universe set’s zone of rejection. 

7.11.2 Three-Ways Decision as a particular case of Neutrosophic 

Probability 

Let’s consider the event, taking a decision on a universe set.  

According to Neutrosophic Probability (NP) [3] one has: 

NP(decision) = ( the universe set’s elements for which the chance of 

the decision may be accept;   the universe set’s elements for which there 

may be an indeterminate-chance of the decision;  the universe set’s 

elements for which the chance of the decision may be reject ). 

7.11.3 Refined Neutrosophy 

Refined Neutrosophy was introduced by Smarandache [4] in 2013 and 

it is described as follows:  

<A> is refined (split) into subcomponents <A1>, <A2>, …, <Ap>; 

<neutA> is refined (split) into subcomponents <neutA1>, 

<neutA2>, …, <neutAr>;  

and <antiA> is refined (split) into subcomponents <antiA1>, 

<antiA2>, …, <antiAs>; 

where p, r, s ≥ 1 are integers, and p + r + s ≥ 4. 

7.11.3.1 Example 3 

If <A> = voting in country M, them <A1> = voting in Region 1 of 

country M for a given candidate, <A2> = voting in Region 2 of country 

M for a given candidate, and so on. 
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Similarly, <neutA1> = not voting (or casting a white or a black vote) 

in Region 1 of country M, <A2> = not voting in Region 2 of country M, 

and so on. 

And <antiA1> = voting in Region 1 of country M against the given 

candidate, <A2> = voting in Region 2 of country M against the given 

candidate, and so on. 

7.11.4 Extension of Three-Ways Decision to n-Ways Decision 

 n-Way Decision was introduced by Smarandache in 2019. 

In n-Ways Decision, the universe set is split into n ≥ 4 different distinct 

areas, in regard to the decision process, representing: 

Levels of Acceptance, Levels of Noncommitment, and Levels of 

Rejection respectively. 

Levels of Acceptance may be: Very High Level of Acceptance (<A1>), 

High Level of Acceptance (<A2>), Medium Level of Acceptance (<A3>), 

etc. 

Similarly, Levels of Noncommitment may be: Very High Level of 

Noncommitment (<neutA1>), High Level of Noncommitment 

(<neutA2>), Medium Level of Noncommitment (<neutA3>), etc. 

And Levels of Rejection may be: Very High Level of Rejection 

(<antiA1>), High Level of Rejection (<antiA2>), Medium Level of 

Rejection (<antiA3>), etc. 

Then the Refined Neutrosophic Concept  

{ denoted as (T1<A1>, T2<A2>, …, Tp<Ap>;  I1<neutA1>, I2<neutA2>, …, 

Ir<neutAr>;   

F1<antiA1>, F2<antiA2>, Fs<antiAs>)-RefinedNeutrosophicConcept,  

or RefinedNeutrosophicConcept(T1<A1>, T2<A2>, …, Tp<Ap>;  I1<neutA1>, 

I2<neutA2>, …, Ir<neutAr>;  F1<antiA1>, F2<antiA2>, Fs<antiAs>)},  

which means that the concept is, with respect to the above attribute 

value levels, 
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T1% <A1>, T2% <A2>, …, Tp% <Ap>;  

I1% <neutA1>, I2% <neutA2>, …, Ir% <neutAr>;   

F1% <antiA1>, F2% <antiA2>, Fs% <antiAs>; 

which more accurately reflects our imperfect, non-idealistic reality,  

with where p, r, s ≥ 1 are integers, and p + r + s ≥ 4, 

where all T1, T2, …, Tp, I1, I2, …, Ir, F1, F2, …, Fs are subsets of [0, 1] 

with no other restriction. 
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7.11 Division of Quadruple Neutrosophic Numbers 

We can define the division of Quadruple Neutrosophic Numbers, but 

it does not work all the time. 

I though that we might extend to quadruple neutrosophic field: 

(a1+b1T+c1I+d1F)/(a2+b2T+c2I+d2F) ≡ x+yT+zI+wF, 

whence: 

http://fs.unm.edu/eBook-Neutrosophics6.pdf
https://arxiv.org/ftp/arxiv/papers/1311/1311.7139.pdf
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  a1+b1T+c1I+d1F ≡ (identical with) 

(a2+b2T+c2I+d2F)( x+yT+zI+wF)  

We normally multiply, and then we solve for x, y, z, w and we get an 

algebraic nonlinear system of four equations with four unknowns x, y, x, 

w. Surely, there are some exceptions when the division does not work, i.e. 

a2 = 0, etc. 

7.12 Neutrosophic Quaternions 

I have extended the Classical Quaternions to Neutrosophic 

Quaternions, that have the form: 

(a1+a2I) + (b1 + b2I)i + (c1 + c2I)j + (d1 + d2I)k, with a1, a2, b1, b2, c1, c2, 

d1, d2 real numbers, 

and I = indeterminacy (which can be any real subset), 

where i, j, k have the same properties as in classical quaternions, 

but A = a1 + a2I is a neutrosophic number, where a1 is the determinate 

part of A, while a2I is the indeterminate part of A; 

for example: A = 3 + 2I, where I = [0.1, 0.2], so we get [3.2, 3.4]. 

Similarly for B = b1 + b2I,  C = c1 + c2I, and D = d1 + d2I.   

The Classical Quaternions have the following properties: 

i2 = j2 = k2 = ijk = −1 

ij = -ji, ij = k 

 

 

 

 

 

 

 

Quaternion multiplication 

× 1 i j k 

1 1 i j k 

i i −1 k −j 

j j −k −1 i 

k k j −i −1 
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And I want to see how to use them in physical law and equations. 

Instead of extending to quaternions, let's extend to neutrosophic 

quaternion some physical laws and equations. 

Many physical constants and even physical laws are not accurate, but 

varying/approximations, so we can called the neutrososphic physical 

constants and respectively neutrosophic physical laws. 

I think we can develop algebraic structures on them as well. 

7.13 Neutrosophic Physics Laws 

There are real applications of neutrosophic statistics, probability, logic 

in classical physics. 

Not only Hubble's Law is not linear, but many classical Physics Laws 

may be represented by Neutrosophic Physics Laws, i.e. their equations 

have neutrosophic constants, neutrosophic coefficients, neutrosophic 

derivatives, neutrosophic integrals... 

Instead of crisp number we have neutrosophic numbers, and instead 

of simple curves we have thick curves... 

Many classical physical laws and equations should be interpreted from 

a neutrosophic point of view, i.e. including indeterminacy and 

approximations into the variables and coefficients involved into classical 

physical laws and equations, since our world is imperfect, not idealistic 

as modelled by the modern physics. [Robert Neil Boyd, Victor 

Christianto, Florentin Smarandache] 

7.14 Not-Exact Physical Laws 

In my book 

http://fs.unm.edu/NewRelativisticParadoxes.pdf, 

I stated that: 

not all physical laws are the same in all inertial reference 

frames. 

http://fs.unm.edu/NewRelativisticParadoxes.pdf
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We can get the same physical law that behaves differently in one place 

than in another, 

or in some conditions than in others... 

We can do something on not-exact physical laws… 

7.15 Neutrosophic Physical Constants 

Neutrosophic Constant in physics means a value that is not exact, but 

varies upon different parameters, such us: physical law, space, conditions 

etc. 

Any classical physical constant c is actually a neutrosophic constant, 

i.e.  

c  , where α is a positive real number 

or a classical physical constant c actually is not a constant, but a 

variable c in a given set:  

c S  

7.16 Neutrosophic Sorites Paradox 

Let (<A>, <antiA>) be a duplet, where <A> is an item (concept, 

object, idea, etc.) and <antiA> is the opposite of <A>, and there is no 

neutral <neutA> between them. Therefore the duplet (<A>, <antiA>) is 

not part of a neutrosophic triplet of the form (<A>, <neutA>, <antiA>). 

Then: 

A Neutrosophic Sorites Paradox is referring to the fact there exist 

specific items <A> such that: between <A> and its opposite <antiA> 

there is no clear frontier. 

7.17 Determinate and Indeterminate parts of a Sky Cloud 

A cloud on the sky is formed by a determinate part and an 

indeterminate part. 
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It is like the neutrosophic number N = a + bI, where "a" is the 

determinate part of the number N, while "bI" is the indeterminate part of 

N. 

We transform a real number "r" into a neutrosophic number  

N = a + bI, 

where a, b are real numbers and I = indeterminacy, "I" is a subset, 

whence N becomes a subset itself that captures "r" inside. 

A simple example: 

Real number r = 5, that we are not very sure about, may be a 

neutrosophic number of the form  

N1 = 4.8 + 2I, with I = [0.05, 0.15], 

whence N1 = [4.9, 5.1] that captures/includes 5. 

There are many ways to capture a real number, let's say: 

N2 = 5.2 + 3I, where I  = [-0.2, 0.2], 

whence N2 = [4.6, 5.8]. Or 

N3 = 5.2 + 3I, where I = {-0.1, -0.2/3, 0, 1/3}, 

whence N3 = {4.9, 5.0, 5.2, 6.2}. 

The corresponding neutrosophic numbers depend on the applications 

and experts. 

One can then also go further and consider REFINED neutrosophic 

numbers, if needed for applications: 

In a general Refined Neutrosophic Set/Logic/Probability, 

T can be split into subcomponents T1, T2, ..., Tp, 

and I into I1, I2, ..., Ir, 

and F into F1, F2, ...,Fs, where p+r+s = n ≥ 1.  

Even more: T, I, and/or F (or any of their subcomponents Tj, Ik, and/or 

Fl) can be countable or uncountable infinite sets: 

http://fs.unm.edu/n-ValuedNeutrosophicLogic-PiP.pdf.  

http://fs.unm.edu/n-ValuedNeutrosophicLogic-PiP.pdf
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7.18 n-ary Neutrosophic Triplet of Weaker Type 

An n-ary Neutrosophic Triplet of Weaker Type on M is defined in the 

following way. 

Let an element x ∊ M. If there exist some element e ∊ M such that  

1 1

( , ,..., ) ( ,..., , )n n

n n

x e e e e x x
− −

= = . 

Then it is considered the neutral element of x and it is denoted as e ≡ 

neutn(x). 

Further, if there exist some element x-1 ∊ M, such that  

 

Then it is considered the inverse element of x and it is denoted as x-1 

≡ antin(x). 

Therefore, (x, neutn(x), antin(x)) is called an n-ary neutrosophic triplet. 

7.18.1 Remark 

For an element x, there may exist more n-ary neutrals neutn(x)’s and 

more n-ary inverses antin(x). 

7.18.2 Definition of n-ary (strong) Neutrosophic Triplet Set 

An n-ary (strong) Neutrosophic Triplet Set, is a set M such that for 

any x ∊ M there exist at least one neutn(x) ∊ M and one antin(x) ∊ M. 

7.18.3 Definition of n-ary (weak) Neutrosophic Triplet Set 

An n-ary (weak) Neutrosophic Triplet Set, is a set M such that for any 

x ∊ M there exist at least one n-ary neutrosophic triplet (y, neutn(y), 

antin(y)) in M, such that x = y, or x = neutn(y), or x = antin(y). 

7.18.4 Definition of n-ary (strong) Neutrosophic Triplet Group 

An n-ary (strong) Neutrosophic Triplet Group is an n-ary (strong) 

Neutrosophic Triplet Set whose n-ary law n is associative. 
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7.18.5 Definition of n-ary (weak) Neutrosophic Triplet Group 

An n-ary (weak) Neutrosophic Triplet Group is an n-ary (weak) 

Neutrosophic Triplet Set whose n-ary law n is associative. 

7.19 Example of Bipolar Neutrosophic Set 

Let us see an example for single-valued Bipolar Neutrosophic Set, 

whose neutrosophic components have the form  (T+, T-; I+, I-, F+, F-), 

which T+, I+, F+ ∊ [0, 1], and T-, I-, F- ∊ [-1, 0], 

where 0 ≤  (T+) + (I+) + ( F+) ≤ 3, and  -3 ≤ (T-) + (I-) + ( F-) ≤ 0. 

At a company each employee has to work 40 hours a week and 

produce pieces of good quality. 

John works only 35 hours this week (so his positive membership T+ 

= 36/40 = +0.90), but unfortunately his work is of low quality and below 

the required standard (so his negative membership T- is estimated by his 

supervisor to be T- = -0.30). 

John does not work 4 hours this week, therefore his positive 

nonmembership (what's left from the positive membership) F+ = 4/40 = 

+0.10; 

and in addition for not working unfortunately he comes to the 

company and accidentally destroys some machinery, that his supervisor 

estimate as negative nonmembership F- = -0.20. 

The supervisor is not sure, but he believes that John may have worked 

2 hours extra-time in the weekend, therefore John's positive 

indeterminacy is I+ = 2/40 = +0.05 but again of the same low quality work, 

that is estimated as negative indeterminacy: I- = -0.01. 

Whence, John's single-valued bipolar neutrosophic membership to his 

company is:  

John(+0.90, -0.30;  +0.05, -0.01;  +0.10, -0.20). 
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7.20 Neutrosophic Triplet Hypertopology  

A new evolution from Neutrosophic Triplet Structures to  

Neutrosophic Triplet HyperStructures has been created. Therefore, a 

Neutrosophic Triplet Hypertopology may be defined.  

Reference 

Xiaohong Zhang, Florentin Smarandache, and Yingcang Ma: Symmetry in 

Hyperstructure: Neutrosophic Extended Triplet Semihypergroups and Regular 

Hypergroups, Symmetry 2019, 11, 1217; doi:10.3390/sym11101217  

7.21 Plithogenic Set in Combination with all Previous Set-Types 

7.21.1 Definition of Plithogenic Set 

A plithogenic set P is a set such that each of its elements is 

characterized by many attribute-values. Almost all sets in our everyday 

life are plithogenic sets, because each element into a set is characterized 

by some attribute-values. 

The (𝑃, 𝑎, 𝑉, 𝑑, 𝑐) is called a plithogenic set, where: 

 “P” is a non-empty set included into a given universe of discourse U; 

 “a” is a (multi-dimensional in general) attribute; 

 “V” is the range of the attribute’s values; 

 “d(x, v)”, where x ∊ U and v ∊ V, is the function that represents the 

degree of appurtenance of the element x, with respect to its attribute-value 

v, to the set P; and d(x, v) may be of any type (see below); 

“c(vk, vD)”, where vk is an attribute-value and vD is the dominant (most 

important) attribute-value, is the function that represents the degree of 

contradiction (or dissimilarity) between an attribute-value and the 

dominant attribute-value. 

The functions (∙,∙) and 𝑐(∙,∙) are defined by experts in accordance with 

the applications they need to solve. One uses the notation: (𝑑(𝑥, 𝑉)), 

where  

(𝑥, 𝑉) = {𝑑(𝑥, 𝑣), for all 𝑣 ∈ 𝑉}, ∀𝑥 ∈ 𝑃}. 
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The contradiction (dissimilarity) degree was defined in order to obtain 

a better accuracy for the plithogenic aggregation operators.  

The plithogenic aggregation operators (intersection, union, 

complement, inclusion, equality) are based on contradiction degrees 

between attribute-values, and the first two are linear combinations of the 

fuzzy t-norm and fuzzy t-conorm operators.  

The degree of appurtenance d(x, v), of the element x, with respect to 

its attribute-value v, to the plithogenic set P, may be of any type:  

Crisp {0 or 1}, Fuzzy, Intuitionistic Fuzzy, Inconsistent Intuitionistic 

Fuzzy (Picture Fuzzy, Ternary Fuzzy), Pythagorean Fuzzy (Atanassov’s 

Intuitionistic Fuzzy Set of second type), Spherical Fuzzy, n-

HyperSpherical Fuzzy, n-HyperSpherical Neutrosophic, q-Rung 

Orthopair Fuzzy, Neutrosophic, Refined Fuzzy, Refined Intuitionistic 

Fuzzy Set, Refined Inconsistent Intuitionistic Fuzzy, {Refined Picture 

Fuzzy), Refined Ternary Fuzzy}, Refined Pythagorean Fuzzy {Refined 

Atanassov’s Intuitionistic Fuzzy of type 2}, Refined Spherical Fuzzy, 

Refined n-HyperSpherical Fuzzy, Refined q-Rung Orthopair Fuzzy, 

Refined Neutrosophic, etc. 

Similarly, the degree of contradiction (or dissimilarity) c(vk, vD) 

between an attribute-value and the dominant attribute-value can be of any 

type: crisp, fuzzy, etc. as above. 

7.21.2 Remark 

In my previous publications [1 – 8], I have considered as degree of 

appurtenance  

d(x, y) and degree of contradiction (dissimilarity) c(vk, vD) only the 

degrees of the types: crisp, fuzzy, intuitionoistic fuzzy, and neutrosophic.  

But now, I extend them to more types of degrees of appurtenance and 

degrees of contradiction (dissimilarity) as above. 
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7.21.3 Open Research 

In the previous plithogenic publications { [1-8], from years 2017-

2019 }, only the fuzzy contradiction (dissimilarity) degree function 

between an attribute-value and its dominant attribute-value has been 

considered, or 1D (one dimensional) function: 

: [0,1]c V V → , 

whence the plithogenic operators were linear combinations of fuzzy t-

norm and fuzzy t-conorm. 

But for other types of contradiction (dissimilarity) degree functions, 

such as intuitionistic fuzzy, neutrosophic, refined fuzzy and refined 

neutrosophic types, etc. one has: 

: [0,1]k

kc V V →
, 

where k = 2 (for intuitionistic fuzzy), 3 (for neutrosophic), and in 

general 2n   (for n-valued refined fuzzy and refined neutrosophic),  

building the k-D (k-dimensional) plithogenic operators has not yet 

been studied and applied. One hint may be to construct bi-linear, tri-

linear, …, or n-linear respectively plithogenic operators. 

The readers are welcome to try building such n-ary plithogenic 

operators. 
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or “membership” and “nonmembership” (for intuitionistic fuzzy set),  

or “membership” and “nonmembership” and “indeterminacy” (for 

neutrosophic set), 

a plithogemic set is a set whose elements x are characterized by many 

attributes, and each attribute may have many attribute values. 

Neutrosophic set was extended to plithogenic set by Smarandache in 

2017. 

A simple example: 

Let’s consider a set M = {x1, x2, x3}, such that each element is 

characterized by two attributes:  

C = color, and S = size. Suppose the attribute values of C = {white (w), 

blue (b), green (g)} and of size are S = {small (s), medium (m)}. 

Thus, each x element of M is characterized by the all five attribute 

values: white, blue, green, small, tall, i.e.  

M = {x1(w, b, g; s, m), x2(w, b, g; s, m), x3(w, b, g; s, m)}. 

Therefore, each element x belongs to the set M with a degree of white 

d(w), a degree of blue d(b), a degree of green d(g), a degree of small d(s), 

and a degree of medium d(m). 

Thus, M = { x1(d1(w), d1(b), d1(g); d1(s), d1(m)),  x2(d2(w), d2(b), 

d2(g); d2(s), d2(m)),  x3(d3(w), d3(b), d3(g); d3(s), d3(m)) } 

where d1(.), d2(.), and d3(.) are the degrees of appurtenance of x1, x2, 

and x3 respectively to the set M with respect to each of the five attribute 

values. 

But the degree of appurtenance may be: classical degree { whose 

values are 0 or 1 }, fuzzy degree { whose values are in [0, 1] }, 

intuitionistic fuzzy degree { whose values are in [0, 1]^2 }, or 

neutrosophic degree { whose values are in [0, 1]^3 }. 

Therefore, we may get: 
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- A Plithogenic Classical Set:  

M = { x1(0, 1, 0; 0, 1), x2(1, 0, 0; 0, 0), x3(1, 0, 0; 1, 0) }, 

which means that: 

x1 is not white, x1 is blue, x1 is not green, x1 is not small, x1 is 

medium; similarly for x2 and x3. 

- A Plithogenic Fuzzy Set: 

M = { x1(0.2, 0.7, 0.5; 0.8, 0.3), x2(0.5, 0.1, 0.0; 0.9, 0.2), x3(0.5, 1, 

0.6; 0.4, 0.3) }, 

which means that: 

x1 has the fuzzy degree of white equals to 0.2, x1 has the fuzzy degree 

of blue equals to 0.7,  

x1 has the fuzzy degree of green equals to 0.1, x1 has the fuzzy degree 

of small size equals to 0.8,  

and x1 has the fuzzy degree of medium size equals to 0.3; 

similarly for x2 and x3. 

- A Plithogenic Intuitionistic Fuzzy Set: 

M = { x1( (0.4,0.1), (0.2,0.7), (0.0,0.3); (0.8,0.5), (0.2,0.3) ),   

x2( (0.7,0.2), (0.2,0.6), (1.0,0.0); (0.6,0.4), (0.1,0.5) ),  x3( (0.4,0.4), 

(0.5,0.6, (0.5,0.1); (0.5,0.6), (0.3,0.3) ); 

which means that: 

x1 has the truth-degree of white equals to 0.4 and the false-degree of 

white equals to 0.1; 

x1 has the truth-degree of blue equals to 0.2 and the false-degree of 

blue equals to 0.7; 

x1 has the truth-degree of green equals to 0.0 and the false-degree of 

green equals to 0.3; 

x1 has the truth-degree of small size equals to 0.8 and the false-degree 

of small size equals to 0.5; 
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x1 has the truth-degree of medium size equals to 0.2 and the false-

degree of white equals to 0.3; 

similarly for x2 and x3. 

- A Plithogenic Neutrosophic Set: 

M = { x1( (0.2,0.4,0.3), (0.5,0.2,0.7), (0.6,0.4,0.3); (0.9,0.6,0.5), 

(0.1,0.2,0.3) ),   x2( (0.1,0.7,0.2), (0.3,0.2,0.7), (0.0,0.2,1.0); (0.6,0.6,0.1), 

(0.0,0.1,0.6) ),  x3( (0.7,0.4,0.4), (0.5,0.6, (0.3,0.5,0.1); (0.0,0.5,0.6), 

(0.8,0.3,0.2) ); 

which means that: 

x1 has the truth-degree of white equals to 0.2, the indeterminacy-

degree of white equals to 0.4, and the false-degree of white equals to 0.3; 

x1 has the truth-degree of blue equals to 0.5, the indeterminacy-degree 

of blue equals to 0.2, and the false-degree of blue equals to 0.7; 

x1 has the truth-degree of green equals to 0.6, the indeterminacy-

degree of green equals to 0.4, and the false-degree of green equals to 0.3; 

x1 has the truth-degree of small size equals to 0.9, the indeterminacy-

degree of small size equals to 0.6, and the false-degree of small size 

equals to 0.5; 

x1 has the truth-degree of medium size equals to 0.1, the 

indeterminacy-degree of minimum size equals to 0.2, and the false-degree 

of minimum size equals to 0.3; 

similarly for x2 and x3. 

Of course, we have considered the Single-Valued Plithogenic Set, i.e. 

when all degrees are single-valued (crip) numbers from [0, 1]. 

But similarly we may define: 

 Interval-Valued Plithogenic Set (when the degrees are intervals 

included into [0, 1]),  

or Hesitant Plithogenic Set (when the degrees are discrete finite 

subsets included into [0, 1]),  
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or in the most general case Subset Plithogenic Set (when the degrees 

are any  subsets included into [0, 1]). 

Plithogenic References  

1. F. Smarandache, Plithogenic Set, an Extension of Crisp, Fuzzy, 

Intuitionistic Fuzzy, and Neutrosophic Sets – Revisited, 

Neutrosophic Sets and Systems, vol. 21, 2018, pp. 153-166;  

http://fs.unm.edu/NSS/PlithogenicSetAnExtensionOfCrisp.p

df  

https://doi.org/10.5281/zenodo.1408740  

2. Florentin Smarandache, Plithogeny, Plithogenic Set, Logic, 

Probability, and Statistics, Pons Publishing House, Brussels, 

Belgium, 141 p., 2017;  

arXiv.org (Cornell University), Computer Science - Artificial 

Intelligence, 03Bxx: 

book: https://arxiv.org/ftp/arxiv/papers/1808/1808.03948.pdf  

abstract: https://arxiv.org/abs/1808.03948         

Harvard SAO/NASA ADS: http://adsabs.harvard.edu/cgi-

bin/bib_query?arXiv:1808.03948  

3. Florentin Smarandache, Plithogeny, Plithogenic Set, Logic, 

Probability, and Statistics, Infinite Study Publ. Hse., 

GoogleLLC, Mountain View, California, USA, 2017. 

4. Florentin Smarandache, Physical Plithogenic Set, 71st Annual 

Gaseous Electronics Conference, Session LW1, Oregon 

Convention Center Room, Portland, Oregon, USA, November 

5–9, 2018; 

http://meetings.aps.org/Meeting/GEC18/Session/LW1.110   

5. Florentin Smarandache, Extension of Soft Set to Hypersoft Set, 

and then to Plithogenic Hypersoft Set. Neutrosophic Sets and 

Systems, Vol. 22, 2018, pp. 168-170;  

http://fs.unm.edu/NSS/ExtensionOfSoftSetToHypersoftSet.p

df  

http://doi.org/10.5281/zenodo.2838716 

6. Mohamed Abdel-Basset, Rehab Mohamed, Abd El-Nasser H. 

Zaied, and Florentin Smarandache, A Hybrid Plithogenic 

Decision-Making Approach with Quality Function Deployment 

for Selecting Supply Chain Sustainability Metrics, Symmetry 

2019, 11, 903, pp. 1-21; doi:10.3390/sym11070903; 

https://www.mdpi.com/2073-8994/11/7/903 

http://fs.unm.edu/__________________wetransfer-658f20/html/html/PlithogenicSetAnExtensionOfCrisp.pdf
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https://arxiv.org/abs/1808.03948
http://adsabs.harvard.edu/
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1808.03948
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1808.03948
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7.23 Plithogenic Set 

Plithogenic set is a set P whose elements x are characterized by many 

attribute values v1, v2, ..., vn, and the generic element x belongs to the set 

P with respect to each attribute value with a fuzzy / intuitionistic fuzzy / 

or neutrosophic degree: 

7.23.1 Plithogenic Fuzzy Set 

x( v1(t1), v2(t2), ..., vn(tn) ) 

7.23.2 Plithogenic Intuitionistic Fuzzy Set 

x( v1(t1, f1), v2(t2, f2), ..., vn(tn, fn) ),  

with 0 ≤  tj + fj ≤ 1, for all j ∊ {1, 2, …, n}. 

 

7.23.3 Plithogenic Picture Fuzzy Set 

x( v1(t1, e1, f1), v2(t2, e2,  f2), ..., vn(tn,en, fn) ),  

with 0 ≤  tj +ej + fj ≤ 1, for all j ∊ {1, 2, …, n}. 

7.23.4 Plithogenic Neutrosophic Set 

x( v1(t1, i1, f1), v2(t2, i2, f2), ..., vn(tn, in, fn) ),  

with 0 ≤  tj + ij + fj ≤ 3, for all j ∊ {1, 2, …, n}. 

where tj, ij, fj ∊ [0, 1] are degrees of membership, indeterminacy, and 

nonmembership respectively. 

Plithogenic Set is much used in Multi-Criteria Decision Making. 

Plithogenic References  

7. F. Smarandache, Plithogenic Set, an Extension of Crisp, Fuzzy, 

Intuitionistic Fuzzy, and Neutrosophic Sets – Revisited, 
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http://fs.unm.edu/NSS/PlithogenicSetAnExtensionOfCrisp.p

df  

https://doi.org/10.5281/zenodo.1408740  

http://fs.unm.edu/__________________wetransfer-658f20/html/html/PlithogenicSetAnExtensionOfCrisp.pdf
http://fs.unm.edu/__________________wetransfer-658f20/html/html/PlithogenicSetAnExtensionOfCrisp.pdf
http://fs.unm.edu/NSS/PlithogenicSetAnExtensionOfCrisp.pdf
http://fs.unm.edu/NSS/PlithogenicSetAnExtensionOfCrisp.pdf
https://doi.org/10.5281/zenodo.1408740
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Belgium, 141 p., 2017;  
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Intelligence, 03Bxx: 

book: https://arxiv.org/ftp/arxiv/papers/1808/1808.03948.pdf  

abstract: https://arxiv.org/abs/1808.03948         

Harvard SAO/NASA ADS: http://adsabs.harvard.edu/cgi-

bin/bib_query?arXiv:1808.03948  

9. Florentin Smarandache, Plithogeny, Plithogenic Set, Logic, 

Probability, and Statistics, Infinite Study Publ. Hse., 

GoogleLLC, Mountain View, California, USA, 2017. 

10. Florentin Smarandache, Physical Plithogenic Set, 71st Annual 

Gaseous Electronics Conference, Session LW1, Oregon 

Convention Center Room, Portland, Oregon, USA, November 

5–9, 2018; 

http://meetings.aps.org/Meeting/GEC18/Session/LW1.110   

11. Florentin Smarandache, Extension of Soft Set to Hypersoft Set, 

and then to Plithogenic Hypersoft Set. Neutrosophic Sets and 

Systems, Vol. 22, 2018, pp. 168-170;  

http://fs.unm.edu/NSS/ExtensionOfSoftSetToHypersoftSet.p

df  

http://doi.org/10.5281/zenodo.2838716 

12. Mohamed Abdel-Basset, Rehab Mohamed, Abd El-Nasser H. 

Zaied, and Florentin Smarandache, A Hybrid Plithogenic 

Decision-Making Approach with Quality Function Deployment 
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2019, 11, 903, pp. 1-21; doi:10.3390/sym11070903; 

https://www.mdpi.com/2073-8994/11/7/903 

 

7.24 Neutrosophic / Plithogenic Entropies 

I think in a similar way to Neutrosophic Entropies it is possible to 

define Plithogenic Entropies, making the distance between a plithogenic 

set P and its plithogenic complement PC. 

My question for the many definitions of neutrosophic / plithogenic 

entropies: which one is the best? 

https://arxiv.org/ftp/arxiv/papers/1808/1808.03948.pdf
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http://fs.unm.edu/NSS/ExtensionOfSoftSetToHypersoftSet.pdf
http://doi.org/10.5281/zenodo.2838716
https://www.mdpi.com/2073-8994/11/7/903
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How to identify the most accurate neutrosophic / plithogenic entropy 

formula? 

Does it depend on the application, on expert, or on other parameters?   

7.25 Plithogenic Graph 

We can define and study the plithogenic graph, never studied before, 

as a graph whose vertices are elements of a plithogenic set, while the 

graph’s edges may be: crisp, fuzzy, intuitionistic fuzzy, neutrosophic, or 

plithogenic relationships between vertices. 

For example, a vertex A of the plithogenic graph may be characterized 

by many attribute values; for example, the attribute "color" and its 

attribute values:  white,  blue, violet, green, black; 

we write A(d(white), d(blue), d(violet), d(green), d(black)), 

where d(white) means degree of white, etc. 

Reference 

F. Smarandache: Plithogenic Set, an Extension of Crisp, Fuzzy, Intuitionistic Fuzzy, 

and Neutrosophic Sets – Revisited, in Neutrosophic Sets and Systems, vol. 21, 2018, pp. 

153-166; 

http://fs.unm.edu/NSS/PlithogenicSetAnExtensionOfCrisp.pdf  

    

7.26 Dialectics is Incomplete 

We talk about Hegel's dialectics, but actually it is Chinese Yin-Yang 

philosophy (dynamic of the opposites) that appeared more than 2,500 

years ahead of Hegel and Marx! 

And, by the way, dialectics is incomplete, because in our world there 

is not only the dynamic of opposites, but also the dynamic of opposites 

and the neutrality between them [called neutrosophy]. 

When two countries go to war, other neutral countries help in one side 

or the other. 

http://fs.unm.edu/NSS/PlithogenicSetAnExtensionOfCrisp.pdf
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In the world of ideas, sometimes contradictory ideas are resolved 

(reconciled) by the middle (neutral) between them, which may be a 

mixture of opposites (a degree of an opposite, plus a degree of the other 

opposite). 

So, the world is more complicated than black and white [opposites], 

but comprising also a grey area [neutrality or mixture of opposites] in 

between. 

http://fs.unm.edu/Neutrosophy-A-New-Branch-of-Philosophy.pdf  

 

7.27 A Neutrosophic Dynamic System: Easier to break from inside, 

than from outside 

Smarandache and Vatuiu enounced the law that: 

"It is easier to break from inside, than from outside." This is a 

neutrosophic dynamic system. 

A neutrosophic dynamic system is a dynamic system that has some 

indeterminacy, but all real dynamic systems have some indeterminacy. 

Only the idealistic and pure-science dynamic systems may be 

indeterminacy-free - in theory. 

Now, countries are easily destroyed from inside (by spies, saboteurs 

etc.) than from outside - militarily.   

7.28 Capitalism and Communism blended  

Each society has a degree of communism and a degree of capitalism 

(as in neutrosophy, and as in life in general). 

And the degrees fluctuate between extremes in each society, going 

either closer to capitalism, then moving back towards the communism, 

and so on. 

A capitalist country has a higher degree of capitalism than the 

communism, and therefore  inversely a communist country; 

http://fs.unm.edu/Neutrosophy-A-New-Branch-of-Philosophy.pdf
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while a socialist country is somewhere near the middle in 

between communism and capitalism. 

7.29 Degree of Democracy, Degree of Indeterminate-Democracy, 

and Degree of Antidemocracy 

In all countries (61) that I visited I observed good, bad, and 

neutral/indeterminate things, each of them in some degree different from 

a country to another. 

I observed some degree of democracy, another degree of 

antidemocracy, and a third degree of indeterminate-democracy 

(contradictory ideas/lays/behaviors etc.) present in each society. 

Example of Indeterminate-Democracy degree: "abortion"; the 

religious people say it kills a life (which is true); the women say that they 

are masters of their bodies (which is true also, so they may have the right 

to abortion). 

How one measures the democracy? I mean, why today is a better 

democracy than yesterday? What new democratic elements have been 

added in the meantime? 

7.30 Neutrosophic Example in Military 

A simple neutrosophic example in military is in Target Identification: 

a plane is detected on the sky, this may be: friendly, neutral, enemy. Then 

we have several sources that give information (t, i, f) about the nature of 

this plane. Then we use the neutrosophic conjunction to find an optimal 

estimation about the plane. 

7.31 Neutrosophic Random Variable 

In general, a neutrosophic random variable is a random variable that 

has some indeterminacy (with respect to its argument or/and with respect 

to its values):  http://fs.unm.edu/NeutrosophicMeasureIntegralProbability.pdf     

http://fs.unm.edu/NeutrosophicStatistics.pdf. 

http://fs.unm.edu/NeutrosophicMeasureIntegralProbability.pdf
http://fs.unm.edu/NeutrosophicStatistics.pdf
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7.32 Neutrosophic Risk 

There is an optimist risk and there is a pessimist risk. 

I think one can extend it to  

Neutrosophic Risk = (Optimistic Risk, Pessimistic Risk, Neutral (or 

Indeterminate) Risk). 

Let us give an example to prove the existence of neutral risk. 

Playing the lottery. Suppose the ticket is $10.00. 

The Optimistic Risk (Ro) is to gain > $10, therefore you gain money. 

The Pessimistic Risk (Rp) is to gain between [0, 10), therefore you lose 

money. 

The Neutral Risk (Rn) is to gain just $10 (therefore you neither gain, 

nor loose).  

In a neutrosophic set, a generic element x has the neutrosophic 

coordinates  ( t, i, f ), whence one endows each of the components with 

the risk possibilities: 

(t(Ro, Rn, Rp), i(Ro, Rn, Rp), f(Ro, Rn, Rp)). 

Something similar may be done for the plithogenic set. 

In a plithogenic set A, a generic element x is characterized by many 

attribute values v1, v2, ..., vn, n ≥ 1.  

The element x has, with respect to each attribute value v, a degree of 

appurtenance t with respect to the set A. We write:  

x(v1(t1), v2(t2), ..., vn(tn)). 

We considered the easiest type of degree, the fuzzy degree (t), but we 

can also consider intuitionistic fuzzy degrees (t, f), neutrosophic degrees 

(t, i, f) etc. 

Then each (fuzzy, intuitionistic fuzzy, neutrosophic, or other types of 

sets) degree has some degree of risk. 



Florentin Smarandache 

300 

A plithogenic set, with fuzzy attribute value degree, and neutrosophic 

risk degree: 

x(v1( t1(Ro1, Rn1, Rp1)),  v2(t2(Ro2, Rn2, Rp2) ),  ...,  

 vn(tn(Ron, Rnn, Rpn))). 

One can use Neutrosophic Probability, see: 

http://fs.unm.edu/NeutrosophicMeasureIntegralProbability.pdf  

i.e. 

chance of a risk factor to occur (event E),  

chance that the risk factor will not occur (event antiE),  

indeterminate chance - not sure if it will occur or not 

(neutE). 

7.33 Neutrosophic Satisfiability & Neutrosophic Randomness  

1) A Boolean Formula (or Expression) FB is constructed from Boolean 

variables (x1, x2, ..., xn),  

with n ≥ 1, parentheses, and Boolean operators {AND (conjunction) ∧ , 

OR (disjunction) ∨, NOT (negation) ¬}. The Boolean formula is well-

defined, i.e. it makes sense in the Boolean algebra. 

We denote it by FB(x1, x2, ..., xn). 

Each variable may take the Boolean values: 0 (False), or 1 (True). 

The Boolean Formula FB is said to be satisfiable, if FB(x1, x2, ..., xn) = 

1 for some values 0 or 1 assigned to each of its n variables. 

Otherwise it is called unsatisfiable, i.e. when FB(x1, x2, ..., xn) = 0 for 

all 2n possible assignments of values 0 or 1 to its variables. 

The Boolean satisfiability problem (SAT) is used in artificial 

intelligence. 

2) The Degree of Boolean Randomness, considered as the 

degree/measure of uncertainty in a random process (where the order of 

events is unpredictable), is: 

http://fs.unm.edu/NeutrosophicMeasureIntegralProbability.pdf
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2𝑛 −𝑚

2𝑛
 

where 2n represents all possible values of the n-tuple (x1, x2, ..., xn), 

when each variable xj may take the value 0 or 1, and m is the number of 

solutions (of n-tuples) of the equation FB(x1, x2, ..., xn) = 1. 

3) A Single-Valued Neutrosophic Formula (or Expression) FN is 

constructed from Neutrosophic Variables (x1(t1, i1, f1), x2(t2, i2, f2), ..., xn(tn, 

in, fn)), with n ≥ 1, parentheses, and Neutrosophic Operators {ANDN 

(neutrosophic conjunction) ∧N , ORN (neutrosophic disjunction) ∨N, NOTN 

(neutrosophic negation) ¬N}.  

The neutrosophic formula is considered well-defined, i.e. it makes 

sense in the neutrosophic environment. 

We denote it by FN(x1(t1, i1, f1), x2(t2, i2, f2), ..., xn(tn, in, fn)). 

Each variable xk, 1≤ k ≤ n, may take the neutrosophic values: tk, ik, fk ∊ 

[0, 1]. 

Let’s consider a neutrosophic tautological threshold 𝜏(𝑡𝜏 , 𝑖𝜏 , 𝑓𝜏 ); then 

each neutrosophic proposition P whose neutrosophic truth value is equal 

to or above/greater than the neutrosophic truth value of this neutrosophic 

tautological threshold should be considered a neutrosophic tautology; 

while if it is below it should be a neutrosophic non-tautology; in addition 

there are neutrosophic propositions whose neutrosophic truth value is 

neither above nor below the neutrosophic tautological threshold; they are 

called neutrosophically undecided propositions [1]. How to establish 

such threshold? Of course, this should be handled by experts upon the 

application or problem they need to solve. 

The neutrosophic inequality ≤N is defined as: 

(t1, i1, f1) ≤N (t2, i2, f2) iff t1 ≤ t2, i1 ≥ i2, f1 ≥ f2,  

where t1, i1, f1, t2, i2, f2 ∊ [0, 1], and >, ≥ , <, ≤ are classical inequalities.  
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Then, a Neutrosophic Formula FN is said to be satisfiable, if FB(x1, 

x2, ..., xn) ≥N 𝜏(𝑡𝜏 , 𝑖𝜏 , 𝑓𝜏 ),  for some values between [0, 1] assigned to all  

tk, ik, fk neutrosophic components of its n variables. 

It is called unsatisfiable, i.e. when FB(x1, x2, ..., xn) ≤N 𝜏(𝑡𝜏 , 𝑖𝜏 , 𝑓𝜏 ),  

for all possible assignments of values between [0, 1] to its variables’ 

neutrosophic components. 

Or it is called undecidable [neither satisfiable nor unsatisfiable], if 

FB(x1, x2, ..., xn) is neither ≤N 𝜏(𝑡𝜏 , 𝑖𝜏 , 𝑓𝜏 ) nor >N 𝜏(𝑡𝜏 , 𝑖𝜏 , 𝑓𝜏 ). 

7.33.1 Open Question.  

How the calculate the Degree of Neutrosophic Randomness, 

considered as the neutrosophic degree/measure of uncertainty in a 

neutrosophic random process (where the order of events is unpredictable)? 

A neutrosophic random process is based on the process of many 

neutrosophic random variables, which are variables whose outputs 

contain indeterminacy. 

Reference: 

[1] Florentin Smarandache, Neutrosophic Perspectives: 

Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, 

Hedge Algebras. And Applications. Pons Editions, Bruxelles, 

second edition 346 p., September 2017; pages 176-179; 

http://fs.unm.edu/NeutrosophicPerspectives-ed2.pdf 

 

7.34 Neutrosophic Statistics vs. Interval Statistics 

‒ Interval Statistics uses Interval Analysis, i.e. intervals instead of 

crisp numbers in order to approximate/capture the data inside the interval. 

Neutrosophic Statistics uses Set Analysis, i.e. any type of sets, non 

only intervals [either intervals as before, either hesitant sets (discrete 

finite sets) such as for example {0.2, 0.3, 1.2}, or any kind of sets such as 

for example [1, 3] ∨ {3.1, 3.2}, or (1, 2) ∨ {3, 4, 5} ∨ [6, 7), etc.] to 

approximate/capture the data inside. 

http://fs.unm.edu/NeutrosophicPerspectives-ed2.pdf
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Set Analysis is a generalization of Interval Analysis {see my book 

"Neutrosophic Precalculus and Neutrosophic Calculus" (pages 11-16)}: 

http://fs.unm.edu/NeutrosophicPrecalculusCalculus.pdf. 

  ‒ Neutrosophic Statistics takes also into consideration the degrees of 

appurtenance of the individuals to a sample or to a population (for 

example, some individuals only partially belong and partially do not 

belong to a sample or to a population), while Classical Statistics and 

Interval Statistics do not. 

In Classical Statistics and Interval Statistics all individuals are 

mutually supposed belonging 100% to the sample and to the population.  

‒ In Neutrosophic Statistics, it is allowed to the sample size or 

population size to not be well known [as it happens in our everyday life], 

while in Classical Statistics and Interval Statistics they have to be well 

known. 

‒ Neutrosophic Statistics takes into consideration the 

Indeterminacy, but Indeterminacy may be of many different types, 

whence different types of Neutrosophic Statistics. 

We may have, for example, various indeterminate functions that may 

be neutrosophic distributions. 

For example: 

The function: f(2) = 5 or 6, which means that we do not know if f(2) = 

5 or f(2) = 6. 

Or the function: g(3 or 5) = 7, which means that we do not know if 

g(3) = 7 or g(5) = 7. 

‒ The N = a + bI neutrosophic number, where a, b are real or complex 

numbers and I = indeterminacy, is in general different from an interval, 

because I can be any subset of R (set of all real numbers) or of C (set of 

complex numbers). 

For example, if a = 3, b = 2 and I = {0.1, 4.0, 9.6}, then 

N = a+bI = 3 + 2I = 3 + 2∙{0.1, 4.0, 9.6} =  

http://fs.unm.edu/NeutrosophicPrecalculusCalculus.pdf


Florentin Smarandache 

304 

= 3 + {0.2, 8.0, 19.2} = {3.2, 11, 22.2}, 

which is a more accurate approach than taking I = [0.1, 9.6] as an interval, 

and then obtaining [3.2, 22.2] that is an interval containing infinitely 

many numbers that we need to choose from in Interval Analysis, instead 

of only three numbers that we need to choose from as in Set Analysis {3.2, 

11, 22.2}. 

‒ Based on Neutrosophic Probability, a Neutrosophic Probability 

Distribution may be constituted from three curves [not a single one as in 

Classical Statistics and Interval Statistics]: one curve that represents the 

degree or occurring, second curve representing the degree of 

indeterminate occurrence, and third which represent the degree of non-

occurrence. 

See my book “Introduction to Neutrosophic Measure, Neutrosophic 

Integral, and Neutrosophic Probability”, 140 p., 2013, 

http://fs.unm.edu/NeutrosophicMeasureIntegralProbability.pdf. 

So,  Neutrosophic Probability Distribution is more detailed, gives 

more information on the distribution function. 

Let us come up with an example. 

Suppose a candidate C runs for the presidency of Pakistan. 

Curve 1: those who might vote for him. 

Curve 2: those who might not vote, or cast a blank or a 

black vote. 

Curve 3: those who might vote against him. 

Make a graph with these three curves. 

Take any distribution, let's say normal distribution with respect to an 

attribute value <A>. 

Then the normal distribution with respect to the opposite of this 

attribute value (let's call it <antiA>), and afterwards the normal 

distribution with respect to their neutral attribute value (<neutA>). 

And make a curve for each of them, all curves on the same graph. 

http://fs.unm.edu/NeutrosophicMeasureIntegralProbability.pdf
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7.35 Grey System Theory as a Neutrosophication 

A Grey System is referring to a grey area (as <neutA> in neutrosophy), 

between extremes (as <A> and <antiA> in neutrosophy). 

According to the Grey System Theory, a system with perfect 

information (<A>) may have a unique solution, while a system with no 

information (<antiA>) has no solution. In the middle (<neutA>), or grey 

area, of these opposite systems, there may be many available solutions 

(with partial information known and partial information unknown) from 

which an approximate solution can be extracted. 

Reference 

J. L. Deng: Introduction to Grey System Theory, in The Journal of Grey System, 1(1): 1-

24, 1989. 

7.36 Neutrosophication vs. Regret Theory 

Regret Theory (2010) is actually a Neutrosophication (1998) model, 

when the decision making area is split into three parts, the opposite ones 

(upper approximation area, and lower approximation area) and the neutral 

one (border area, in between the upper and lower area). 

References 

H. Bleichrodt, A. Cillo, E. Diecidue: A quantitative measurement of regret theory, 

Manage. Sci. 56(1) (2010) 161-175. 

F. Smarandache: Neutrosophy. / Neutrosophic Probability, Set, and Logic, ProQuest 

Information & Learning, Ann Arbor, Michigan, USA, 105 p., 1998. 

7.37 Modern vs. Classic 

I do not think that neutrosophic statistics, from which has been 

extracted the indeterminacy, should be exactly reduced to classical 

statistics. This is not strident to be true. 

Many laws are altered when passing from classical field to modern 

field: for example the Law of Excluded Middle in classical logic was 

replaced by the Law of Included Middle in intuitionistic fuzzy logic and 
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in neutrosophic logic, while in refined neutrosophic logic it became Law 

of Included Multiple-Middle... 

7.38 Refinement means Detailed Information 

Refinement is needed when detailed information is needed. 

For example in voting process in a given country: 

T = percentage of people voting for the candidate; 

I = percentage of people not voting or casting a black or 

a white vote; 

F = percentage people voting against the candidate. 

But the political analysts want to know in detail what happened in each 

region of the country in order to take care for future elections. This is 

refinement. 

So: 

T1 = percentage of people from Region 1 voting for the 

candidate; 

I1 = percentage of people from Region 1 not voting or 

casting a black or a white vote; 

F1 = percentage of people from Region 1 voting against 

the candidate. 

T2 = percentage of people from Region 2 voting for the 

candidate; 

I2 = percentage of people from Region 2 not voting or 

casting a black or a white vote; 

F2 = percentage of people from Region 2 voting against 

the candidate. 

Etc. 

7.39 Expert Systems vs. Neutrosophic Implications 

"Expert Systems (ES) are not necessarily based on exact rules but are 

often based on non-evaluated assumptions, and hence answers are 

produced as statistically fuzzy conclusions." [from ResearchGate.net] 
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Expert Systems are similar to fuzzy / intuitionistic fuzzy / and 

neutrosophic If-THEN rules, i.e.: "If A then B" or "A --> B", where A 

and B are fuzzy / intuitionistic fuzzy / neutrosophic propositions, but 

using the fuzzy / intuitionistic fuzzy / or neutrosophic implications. 

These rules/implications are approximations, of course, since their 

premises are approximations too (i.e. not 100% true as in classical logic). 

I extended  Luckasiewicz' four-valued logic named VL4  to n-valued 

refined neutrosophic logic, symbolically and numerically; see this article: 

http://fs.unm.edu/n-ValuedNeutrosophicLogic-PiP.pdf .  

7.40 Neutrosophic Applications in Literature, Arts, Criminal 

Justice, Philosophy, and History 

New applications: neutrosophic analysis of literature creature, 

neutrosophic analysis of the arts, neutrosophical criminal justice (i.e. laws 

that are contradictory, for example marijuana is prohibited for ordinary 

citizen, yet marijuana is allowed in medical treatment; etc.), in history 

(opposite historical events, etc.). 

Mustapha Kachchouh had a good idea to consider three categories of 

people, as in neutrosophy (<A>, <neutA>, <antiA>): 

people who believe in God,  

people who partially believe and partially do not believe, 

and people who do not believe in God.  

7.41 Neutrosophy in Arts and Letters 

It is possible to use the neutrosophy (based on opposites and neutrals, 

<A>, <antiA>, and <neutA>) in art critics and literature essays, for 

example in Comparative Literature, or Comparative Art, i.e. making 

comparisons between the study work with respect to opposite and neutral 

works. 

Similarly as we did with Maikel Leyva Vazquez with neutrosophy 

used in study of Marti's poetics. 

http://fs.unm.edu/n-ValuedNeutrosophicLogic-PiP.pdf
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In the first chapter (Neutrosophic Set is a Generalization of Intuitionistic Fuzzy Set, Inconsistent 

Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set 

(Atanassov’s Intuitionistic Fuzzy Set of second type), q-Rung Orthopair Fuzzy Set, Spherical Fuzzy 

Set, and n-HyperSpherical Fuzzy Set, while Neutrosophication is a Generalization of  Regret 

Theory, Grey System Theory, and Three-Ways Decision - revisited), we prove that Neutrosophic Set 

(NS) is an extension of Intuitionistic Fuzzy Set (IFS) no matter if the sum of single-valued neutrosophic 

components is < 1, or > 1, or = 1. For the case when the sum of components is 1 (as in IFS), after applying 

the neutrosophic aggregation operators one gets a different result from that of applying the intuitionistic 

fuzzy operators, since the intuitionistic fuzzy operators ignore the indeterminacy, while the neutrosophic 

aggregation operators take into consideration the indeterminacy at the same level as truth-membership 

and falsehood-nonmembership are taken. NS is also more flexible and effective because it handles, 

besides independent components, also partially independent and partially dependent components, while 

IFS cannot deal with these.  

In the second chapter (Refined Neutrosophy & Lattices vs. Pair Structures & YinYang Bipolar Fuzzy 

Set), we present the lattice structures of neutrosophic theories, we prove that Zhang-Zhang’s YinYang 

Bipolar Fuzzy Set is a subclass of Single-Valued Bipolar Neutrosophic Set. Then we show that the Pair 

Structure is a particular case of Refined Neutrosophy, and the number of types of neutralities (sub-

indeterminacies) may be any finite or infinite number. 

The third chapter (About Nonstandard Neutrosophic Logic - Answers to Imamura’s “Note on the 

Definition of Neutrosophic Logic”) intends to answer Imamura’s criticism that we found benefic in 

better understanding the nonstandard neutrosophic logic – although the nonstandard neutrosophic logic 

was never used in practical applications. 

In the fourth chapter (Extended Nonstandard Neutrosophic Logic, Set, and Probability based on 

Extended Nonstandard Analysis), we extend for the second time the Nonstandard Analysis by adding 

the left monad closed to the right, and right monad closed to the left, while besides the pierced binad (we 

introduced in 1998) we add now the unpierced binad - all these in order to close the newly extended 

nonstandard space under nonstandard addition, nonstandard subtraction, nonstandard multiplication, 

nonstandard division, and nonstandard power operations.  

The fifth chapter (Plithogenic Set and Hypersoft Set) has two parts. The first part (Plithogenic Set, an 

Extension of Crisp, Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Sets - revisited) introduces the 

plithogenic set (as generalization of crisp, fuzzy, intuitionistic fuzzy, and neutrosophic sets), which is a 

set whose elements are characterized by many attributes’ values. An attribute value v has a corresponding 

(fuzzy, intuitionistic fuzzy, neutrosophic or other types of sets) degree of appurtenance d(x,v) of the 

element x, to the set P, with respect to some given criteria. This article offers some examples and 

applications of these new concepts in our everyday life. The second part (Extension of Soft Set to 

Hypersoft Set, and then to Plithogenic Hypersoft Set) generalizes the soft set to the hypersoft set by 

transforming the function F into a multi-attribute function. Then we introduce the hybrids of Crisp, Fuzzy, 

Intuitionistic Fuzzy, Neutrosophic, and Plithogenic Hypersoft Set. 

In the sixth chapter (Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures - 

revisited), we open for the first time new fields of research called NeutroStructures and AntiStructures 

respectively. In all classical algebraic structures, the Laws of Compositions on a given set are well-

defined. But this is a restrictive case, because there are many more situations in science and in any domain 

of knowledge when a law of composition defined on a set may be only partially-defined (or partially true) 

and partially-undefined (or partially false), that we call NeutroDefined, or totally undefined (totally false) 

that we call AntiDefined.  

Finally, the seventh chapter (New Developments in Neutrosophic Theories and Applications) presents 

suggestions for future research in the area of neutrosophics. 

 

 

 


