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Preface

As a powerful tool, also a useful language, mathematics has become a scientific

foundation for realizing or finding new laws in the natural world. This characteristic

implies that a more important task for mathematics is to bring benefit to mankind

by applying mathematics to or establishing new mathematical systems for solving

various mathematical problems in sciences or the natural world.

Solving problems by applying the mathematical method is the center of math-

ematics. As we known, these 23 problems asked by Hilbert in the beginning of

the 20th century have produced more power for the development of mathematics

in last century, and the unified filed theory initiated by Einstein in his later years

advanced the theoretical physics and helped to bring about the string/M-theory in

80s of the 20th century, which increases the ability of human beings to comprehend

the universe.

Sciences are developing, also advancing. A true conclusion in one time maybe a

falsehood in another time. Whence, that thinking sciences is an absolutely truth is

not right, which includes the mathematics. Modern sciences are so advanced getting

into the 21st century that to find a universal genus in the society of sciences is nearly

impossible. Thereby a mathematician can only give his or her contribution in one

or several mathematical fields. The frequent crossing and combination of different

subjects of sciences have become a main trend in realizing our natural world because

our natural world itself is overlapping and combinatorial. In this situation, to make

the combination of different branches of the classical mathematics so that it can

bring benefit to mankind and scientific research is a burning issue of the moment.

What is the mathematics of the 21st century? The mathematics of the 21st

century is the combinatorization with its generalization for classical mathematics,
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also the result for mathematics consistency with the scientific research in the 21st

century. In the mathematics of 21st century, we can encounter some incorrect con-

clusions in classical mathematics maybe true in this time, and even a claim with its

non-claim are true simultaneously in a new mathematical system.

For introducing the combinatorization for classical mathematics, this collection

contains 10 papers finished by the author or the author with other mathematicians.

All these papers have been published in an e-print form on the internet unless two

papers, one reported at�The Symposia of 2004 Postdoctoral Forum on Frontal &

Interdisciplinary Sciences of Chinese Academy of Sciences, Dec. 2004, Beijing�,

another reported at �The 2005 International Conference on Graph Theory and

Combinatorics of China, June, 2005, Zejiang�.

Now we outline contents in each paper.

The �Combinatorial speculations and the combinatorial conjecture

for mathematics�is a survey paper submitted to�The 2th Conference on Graph

Theory and Combinatorics of China�. This paper introduces the idea of combinato-

rial conjecture for mathematics and the contributions of combinatorial speculations

to mathematics such as those of algebra and geometries and to combinatorial cos-

moses, particularly for 5 or 6-dimensional cosmos based on the materials in my two

monographs published recently, i.e., Automorphism groups of maps, surfaces

and Smarandache geometries (American Research Press, 2005) and Smaran-

dache multi-space theory (Hexis, America, 2006).�The mathematics of 21st century aroused by theoretical physics-

Smarandache multi-space theory�is a paper for introducing the background,

approaches and results appeared in mathematics of the 21st century, such as those

of Big Bang in cosmological physics, Smarandache multi-spaces, Smarandache ge-

ometries, maps, map geometries and pseudo-metric space geometries, also includes

discussion for some open problems in theoretical physics. This paper is reported to

teachers and students of Wanyuan School in Mar. 2006, also a paper submitted to�The 2th Conference on Graph Theory and Combinatorics of China�.�A new view of combinatorial maps by Smarandache’s notion�is a

speculation paper for combinatorial maps by applying that of Smarandache’s no-

tion, reported at the Chinese Academy of Mathematics and System Science and the

Department of Applied Mathematics of Beijing Jiaotong University in May, 2005.
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This paper firstly introduces the conception of map geometries, which are generaliza-

tion of these 2-dimensional Smarandache manifolds defined by Dr.Iseri, also includes

some elementary properties and classification for map geometries. Open problems

for the combinatorization of some results in classical mathematics are also given in

the final section of this paper, which are benefit for mathematicians researching or

wish researching the combinatorization problem for classical mathematics.�An introduction to Smarandache geometries on maps�is a survey

paper reported at�The 2005 International Conference on Graph Theory and Com-

binatorics of China�. This paper introduces maps, map geometries, particularly the

necessary and sufficient conditions for parallel bundles in planar map geometries,

which are generalized works for the 5th postulate in Euclid plane geometry.�A multi-space model for Chinese bid evaluation with analyzing�and�A mathematical model for Chinese bid evaluation with its solution ana-

lyzing�are two papers coped with the suggestion of Dr.Perze, the editor of American

Research Press after I published a Chinese book Chinese Construction Project

Bidding Technique & Cases Analyzing-Smarandache Multi-Space Model

of Bidding in Xiquan Publishing House (2006). These papers firstly constructed

a mathematical model for bids evaluation system, pointed out that it is a decision

problem for finite multiple objectives under the law and regulations system for ten-

dering, also gave a graphical method for analyzing the order of bids. Some open

problems for weighted Smarandache multi-spaces and suggestions for solving prob-

lems existed in current bids evaluation system in China are presented in the final

section.�The number of complete maps on surfaces�and�On automorphisms

and enumeration of maps of Cayley graphs of a finite group�are two

papers finished in May, 2004 and Nov. 2001. Applying the group action idea, these

papers enumerate the unrooted complete maps and non-equivalent maps underlying

a Cayley graph of a finite group on orientable and non-orientable surfaces, which

generalize a scheme for enumerating non-equivalent embeddings of a graph presented

by White et.al. They are applications of classical mathematics to combinatorics.�A combinatorial refinement of Hurwitz theorem on Riemann Sur-

faces�is a paper by applying combinatorial maps to determine automorphisms of

Riemann surfaces and getting combinatorial refinement for some classical results.
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This paper is submitted to�The Symposia of 2004 Postdoctoral Forum on Frontal

& Interdisciplinary Sciences of Chinese Academy of Sciences�. It is the applications

of combinatorics to classical mathematics. It is due to this paper that I presented the

combinatorial conjecture for mathematics and open combinatorial problems for Rie-

mann surfaces, Riemann geometry, differential geometry and Riemann manifolds in

my monograph Automorphism groups of maps, surfaces and Smarandache

geometries.�The mathematical steps of mine�is a paper for encouraging young teach-

ers and students, reported at my old school Sichuan Wanyuan school in Mar. 2006.

This paper historically recalls each step that I passed from a scaffold erector to a

mathematician, including the period in Wanyuan school, in a construction company,

in Northern Jiaotong University, in Chinese Academy of Sciences and in Guoxin

Tendering Co.LTD. The social contact of mine with some mathematicians and the

process for raising the combinatorial conjecture for mathematics is also called to

mind.

Certainly, there are rights and obligations for a scientist such as those of

the choice of research theme and research methods is freedom without limitation;

all scientists are equal before research themes regardless their position in our society;

to participate and publish scientific results is freedom, can not be rejected if the

results disagrees with or contradicts preferred theory or not favor with the editors,

the referees, or other expert censors; every scientist bears a moral responsibility in

her or his research, can not allow her/his research work injurious to mankind.

Recently, Prof. Dimtri Rabounski, the chief editor of�Progress in Physics�,
issued an open letter Declaration of academic freedom: scientific human

rights in Vol. 1,2006, to clarify those opinions for scientific research. This is a

precondition for sciences in the 21st century and the harmonizing development of

the human society with the natural world, also an indispensable path for developing

mathematics of 21st century and bringing benefit to mankind by mathematics.

The�Mathematics of 21st Century–A Collection of Selected Papers�is
a serial collections in publication. Papers on the following 6 fields are welcome.

(1) Metrization of graphs and combinatorics, or the combinatorization for clas-

sical mathematics;
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(2) Multi-spaces, including algebraic multi-spaces, multi-metric spaces, non-

Euclid geometry, modern differential geometry;

(3) Topological graphs and combinatorial maps with applications in mathematics

and physics;

(4) General relativity theory with its applications to cosmological physics;

(5) Mathematics theory in string/M-theory;

(6) Other new models for the universe and its mathematical theory.

All these submitted papers can be directly sent to me by email or by post. My

email address is:�maolinfan@163.com�and my post address is�Academy of Math-

ematics and Systems, Chinese Academy of Sciences, Beijing 100080, P.R.China�.

L.F.Mao

Aug. 2006 in Beijing
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Combinatorial Speculations and

the Combinatorial Conjecture for Mathematics∗

Linfan Mao

(Chinese Academy of Mathematics and System Sciences, Beijing 100080)

maolinfan@163.com

Abstract: Combinatorics is a powerful tool for dealing with relations among

objectives mushroomed in the past century. However, an even more impor-

tant work for mathematician is to apply combinatorics to other mathematics

and other sciences beside just to find combinatorial behavior for objectives.

In the past few years, works of this kind frequently appeared on journals for

mathematics and theoretical physics for cosmos. The main purpose of this

paper is to survey these thinking and ideas for mathematics and cosmological

physics, such as those of multi-spaces, map geometries and combinatorial cos-

moses, also the combinatorial conjecture for mathematics proposed by myself

in 2005. Some open problems are included for the advance of 21st mathematics

by a combinatorial speculation.�>5eF2t�>B�e�z. S{��^"A&�|�'p1rr�N�FH�G&4;'#�hW?_'IÆ��BFHrS�	J�℄+q3Z'rS7JN�FHjmrhTFHY ÆhT|HDi7^o#rI!�^"A'
1Reported at the 2th Conference on Combinatorics and Graph Theory of China, Aug. 16-

19�2006, Tianjing, P.R.China
2e-print: arXiv: math.GM/0606702 and Sciencepaper Online:200607-128
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21 4;FHIÆ\�'℄2�ZOkÆUt'�℄�
Key words: combinatorial speculation, combinatorial conjecture for math-

ematics, Smarandache multi-space, M-theory, combinatorial cosmos.

Classification: AMS(2000) 03C05,05C15,51D20,51H20,51P05,83C05,83E50.

1. The role of classical combinatorics in mathematics

Modern science has so advanced that to find a universal genus in the society of

sciences is nearly impossible. Thereby a scientist can only give his or her contribution

in one or several fields. The same thing also happens for researchers in combinatorics.

Generally, combinatorics deals with twofold:

Question 1.1. to determine or find structures or properties of configurations,

such as those structure results appeared in graph theory, combinatorial maps and

design theory,..., etc..

Question 1.2. to enumerate configurations, such as those appeared in the enu-

meration of graphs, labelled graphs, rooted maps, unrooted maps and combinatorial

designs,...,etc..

Consider the contribution of a question to science. We can separate mathemat-

ical questions into three ranks:

Rank 1 they contribute to all sciences.

Rank 2 they contribute to all or several branches of mathematics.

Rank 3 they contribute only to one branch of mathematics, for instance, just

to the graph theory or combinatorial theory.

Classical combinatorics is just a rank 3 mathematics by this view. This conclu-

sion is despair for researchers in combinatorics, also for me 4 years ago. Whether

can combinatorics be applied to other mathematics or other sciences? Whether can

it contribute to human’s lives, not just in games?
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Although become a universal genus in science is nearly impossible, our world

is a combinatorial world. A combinatorician should stand on all mathematics and

all sciences, not just on classical combinatorics and with a real combinatorial no-

tion, i.e., combining different fields into a unifying field ([25]-[28]), such as combine

different or even anti branches in mathematics or science into a unifying science for

its freedom of research ([24]). This notion requires us answering three questions for

solving a combinatorial question before. What is this question working for? What

is its objective? What is its contribution to science or human’s society? After these

works be well done, modern combinatorics can applied to all sciences and all sciences

are combinatorization.

2. The combinatorics metrization and mathematics combinatorization

There is a prerequisite for the application of combinatorics to other mathematics

and other sciences, i.e, to introduce various metrics into combinatorics, ignored by

the classical combinatorics since they are the fundamental of scientific realization

for our world. This speculation is firstly appeared in the beginning of Chapter 5 of

my book [16]:

· · · our world is full of measures. For applying combinatorics to other branch

of mathematics, a good idea is pullback measures on combinatorial objects again,

ignored by the classical combinatorics and reconstructed or make combinatorial gen-

eralization for the classical mathematics, such as those of algebra, differential geome-

try, Riemann geometry, Smarandache geometries, · · · and the mechanics, theoretical

physics, · · ·.

The combinatorial conjecture for mathematics, abbreviated to CCM is stated

in the following.

Conjecture 2.1(CCM Conjecture) Mathematics can be reconstructed from or made

by combinatorization.

Remark 2.1 We need some further clarifications for this conjecture.

(i) This conjecture assumes that one can select finite combinatorial rulers and

axioms to reconstruct or make generalization for classical mathematics.
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(ii) Classical mathematics is a particular case in the combinatorization of

mathematics, i.e., the later is a combinatorial generalization of the former.

(iii) We can make one combinatorization of different branches in mathematics

and find new theorems after then.

Therefore, a branch in mathematics can not be ended if it has not been com-

binatorization and all mathematics can not be ended if its combinatorization has

not completed. There is an assumption in one’s realization of our world, i.e., every

science can be made mathematization. Whence, we similarly get the combinatorial

conjecture for science.

Conjecture 2.2(CCS Conjecture) Science can be reconstructed from or made by

combinatorization.

A typical example for the combinatorization of classical mathematics is the

combinatorial map theory, i.e., a combinatorial theory for surfaces([14]-[15]). Com-

binatorially, a surface is topological equivalent to a polygon with even number of

edges by identifying each pairs of edges along a given direction on it. If label each

pair of edges by a letter e, e ∈ E , a surface S is also identifying to a cyclic permuta-

tion such that each edge e, e ∈ E just appears two times in S, one is e and another is

e−1. Let a, b, c, · · · denote the letters in E and A, B, C, · · · the sections of successive

letters in a linear order on a surface S (or a string of letters on S). Then, a surface

can be represented as follows:

S = (· · · , A, a, B, a−1, C, · · ·),

where, a ∈ E ,A, B, C denote a string of letters. Define three elementary transfor-

mations as follows:

(O1) (A, a, a−1, B) ⇔ (A, B);

(O2) (i) (A, a, b, B, b−1, a−1) ⇔ (A, c, B, c−1);

(ii) (A, a, b, B, a, b) ⇔ (A, c, B, c);

(O3) (i) (A, a, B, C, a−1, D) ⇔ (B, a, A, D, a−1, C);

(ii) (A, a, B, C, a, D) ⇔ (B, a, A, C−1, a, D−1).

If a surface S can be obtained from S0 by these elementary transformations
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O1-O3, we say that S is elementary equivalent with S0, denoted by S ∼El S0. Then

we can get the classification theorem of compact surface as follows([29]):

Any compact surface is homeomorphic to one of the following standard surfaces:

(P0) the sphere: aa−1;

(Pn) the connected sum of n, n ≥ 1 tori:

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·anbna−1
n b−1

n ;

(Qn) the connected sum of n, n ≥ 1 projective planes:

a1a1a2a2 · · ·anan.

A map M is a connected topological graph cellularly embedded in a surface S.

In 1973, Tutte suggested an algebraic representation for an embedding graph on a

locally orientable surface ([16]):

A combinatorial map M = (Xα,β,P) is defined to be a basic permutation P,

i.e, for any x ∈ Xα,β, no integer k exists such that Pkx = αx, acting on Xα,β, the

disjoint union of quadricells Kx of x ∈ X (the base set), where K = {1, α, β, αβ} is

the Klein group satisfying the following two conditions:

(i) αP = P−1α;

(ii) the group ΨJ =< α, β,P > is transitive on Xα,β.

For a given map M = (Xα,β,P), it can be shown that M∗ = (Xβ,α,Pαβ) is also

a map, call it the dual of the map M . The vertices of M are defined as the pairs

of conjugatcy orbits of P action on Xα,β by the condition (i) and edges the orbits

of K on Xα,β, for example, for ∀x ∈ Xα,β, {x, αx, βx, αβx} is an edge of the map

M . Define the faces of M to be the vertices in the dual map M∗. Then the Euler

characteristic χ(M) of the map M is

χ(M) = ν(M) − ε(M) + φ(M)

where,ν(M), ε(M), φ(M) are the number of vertices, edges and faces of the map M ,

respectively. For each vertex of a map M , its valency is defined to be the length of

the orbits of P action on a quadricell incident with u.
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For example, the graph K4 on the tours with one face length 4 and another 8

shown in Fig.2.1

Fig.1. the graph K4 on the tours

can be algebraically represented by (Xα,β,P) with Xα,β = {x, y, z, u, v, w, αx, αy, αz,

αu, αv, αw, βx, βy, βz, βu, βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} and

P = (x, y, z)(αβx, u, w)(αβz, αβu, v)(αβy, αβv, αβw)

× (αx, αz, αy)(βx, αw, αu)(βz, αv, βu)(βy, βw, βv)

with 4 vertices, 6 edges and 2 faces on an orientable surface of genus 1.

By the view of combinatorial maps, these standard surfaces P0, Pn, Qn for n ≥ 1

is nothing but the bouquet Bn on a locally orientable surface with just one face.

Therefore, combinatorial maps are the combinatorization of surfaces.

Many open problems are motivated by the CCM Conjecture. For example, a

Gauss mapping among surfaces is defined as follows.

Let S ⊂ R3 be a surface with an orientation N. The mapping N :S → R3 takes

its value in the unit sphere

S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}

along the orientation N. The map N :S → S2, thus defined, is called the Gauss

mapping.
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we know that for a point P ∈ S such that the Gaussian curvature K(P ) 6= 0

and V a connected neighborhood of P with K does not change sign,

K(P ) = lim
A→0

N(A)

A
,

where A is the area of a region B ⊂ V and N(A) is the area of the image of B by

the Gauss mapping N : S → S2([2],[4]). Now the questions are

(i) what is its combinatorial meaning of the Gauss mapping? How to realizes it

by combinatorial maps?

(ii) how can we define various curvatures for maps and rebuilt the results in the

classical differential geometry?

Let S be a compact orientable surface. Then the Gauss-Bonnet theorem asserts

that

∫ ∫

S
Kdσ = 2πχ(S),

where K is the Gaussian curvature of S.

By the CCM Conjecture, the following questions should be considered.

(i) How can we define various metrics for combinatorial maps, such as those of

length, distance, angle, area, curvature,· · ·?

(ii) Can we rebuilt the Gauss-Bonnet theorem by maps for dimensional 2 or

higher dimensional compact manifolds without boundary?

One can see references [15] and [16] for more open problems for the classical

mathematics motivated by this CCM Conjecture, also raise new open problems for

his or her research works.

3. The contribution of combinatorial speculation to mathematics

3.1. The combinatorization of algebra

By the view of combinatorics, algebra can be seen as a combinatorial mathematics

itself. The combinatorial speculation can generalize it by the means of combinator-

ization. For this objective, a Smarandache multi-algebraic system is combinatorially

defined in the following definition.
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Definition 3.1([17],[18]) For any integers n, n ≥ 1 and i, 1 ≤ i ≤ n, let Ai be a set

with an operation set O(Ai) such that (Ai, O(Ai)) is a complete algebraic system.

Then the union

n⋃

i=1

(Ai, O(Ai))

is called an n multi-algebra system.

An example of multi-algebra system is constructed by a finite additive group.

Now let n be an integer, Z1 = ({0, 1, 2, · · · , n−1}, +) an additive group (modn) and

P = (0, 1, 2, · · · , n − 1) a permutation. For any integer i, 0 ≤ i ≤ n − 1, define

Zi+1 = P i(Z1)

satisfying that if k + l = m in Z1, then P i(k) +i P i(l) = P i(m) in Zi+1, where +i

denotes the binary operation +i : (P i(k), P i(l)) → P i(m). Then we know that

n⋃

i=1

Zi

is an n multi-algebra system .

The conception of multi-algebra systems can be extensively used for general-

izing conceptions and results in the algebraic structure, such as those of groups,

rings, bodies, fields and vector spaces, · · ·, etc.. Some of them are explained in the

following.

Definition 3.2 Let G̃ =
n⋃

i=1
Gi be a complete multi-algebra system with a binary

operation set O(G̃) = {×i, 1 ≤ i ≤ n}. If for any integer i, 1 ≤ i ≤ n, (Gi;×i) is a

group and for ∀x, y, z ∈ G̃ and any two binary operations�×�and�◦�, × 6= ◦,

there is one operation, for example the operation × satisfying the distribution law

to the operation�◦�provided their operation results exist , i.e.,

x × (y ◦ z) = (x × y) ◦ (x × z),

(y ◦ z) × x = (y × x) ◦ (z × x),

then G̃ is called a multi-group.
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For a multi-group (G̃, O(G)), G̃1 ⊂ G̃ and O(G̃1) ⊂ O(G̃), call (G̃1, O(G̃1))

a sub-multi-group of (G̃, O(G)) if G̃1 is also a multi-group under the operations in

O(G̃1), denoted by G̃1 � G̃. For two sets A and B, if A
⋂

B = ∅, we denote the

union A
⋃

B by A
⊕

B. Then we get a generalization of the Lagrange theorem of

finite group.

Theorem 3.1([18]) For any sub-multi-group H̃ of a finite multi-group G̃, there is

a representation set T , T ⊂ G̃, such that

G̃ =
⊕

x∈T

xH̃.

For a sub-multi-group H̃ of G̃, × ∈ O(H̃) and ∀g ∈ G̃(×), if for ∀h ∈ H̃,

g × h × g−1 ∈ H̃,

then call H̃ a normal sub-multi-group of G̃. An order of operations in O(G̃) is said

an oriented operation sequence, denoted by
−→
O (G̃). We get a generalization of the

Jordan-Hölder theorem for finite multi-groups.

Theorem 3.2([18]) For a finite multi-group G̃ =
n⋃

i=1
Gi and an oriented opera-

tion sequence
−→
O (G̃), the length of maximal series of normal sub-multi-groups is a

constant, only dependent on G̃ itself.

In Definition 2.2, choose n = 2, G1 = G2 = G̃. Then G̃ is a body. If (G1;×1)

and (G2;×2) both are commutative groups, then G̃ is a field. For multi-algebra

system with two or more operations on one set, we introduce the conception of

multi-rings and multi-vector spaces in the following.

Definition 3.3 Let R̃ =
m⋃

i=1
Ri be a complete multi-algebra system with double binary

operation set O(R̃) = {(+i,×i), 1 ≤ i ≤ m}. If for any integers i, j, i 6= j, 1 ≤ i, j ≤

m, (Ri; +i,×i) is a ring and for ∀x, y, z ∈ R̃,

(x +i y) +j z = x +i (y +j z), (x ×i y) ×j z = x ×i (y ×j z)

and
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x ×i (y +j z) = x ×i y +j x ×i z, (y +j z) ×i x = y ×i x +j z ×i x

provided all their operation results exist, then R̃ is called a multi-ring. If for any

integer 1 ≤ i ≤ m, (R; +i,×i) is a filed, then R̃ is called a multi-filed.

Definition 3.4 Let Ṽ =
k⋃

i=1
Vi be a complete multi-algebra system with binary

operation set O(Ṽ ) = {(+̇i, ·i) | 1 ≤ i ≤ m} and F̃ =
k⋃

i=1
Fi a multi-filed with

double binary operation set O(F̃ ) = {(+i,×i) | 1 ≤ i ≤ k}. If for any integers

i, j, 1 ≤ i, j ≤ k and ∀a,b, c ∈ Ṽ , k1, k2 ∈ F̃ ,

(i) (Vi; +̇i, ·i) is a vector space on Fi with vector additive +̇i and scalar multi-

plication ·i;

(ii) (a+̇ib)+̇jc = a+̇i(b+̇jc);

(iii) (k1 +i k2) ·j a = k1 +i (k2 ·j a);

provided all those operation results exist, then Ṽ is called a multi-vector space on

the multi-filed F̃ with a binary operation set O(Ṽ ), denoted by (Ṽ ; F̃ ).

Similar to multi-groups, we can also obtain results for multi-rings and multi-

vector spaces to generalize classical results in rings or linear spaces. Certainly, results

can be also found in the references [17] and [18].

3.2. The combinatorization of geometries

First, we generalize classical metric spaces by the combinatorial speculation.

Definition 3.5 A multi-metric space is a union M̃ =
m⋃

i=1
Mi such that each Mi is a

space with metric ρi for ∀i, 1 ≤ i ≤ m.

We generalized two well-known results in metric spaces.

Theorem 3.3([19]) Let M̃ =
m⋃

i=1
Mi be a completed multi-metric space. For an ǫ-

disk sequence {B(ǫn, xn)}, where ǫn > 0 for n = 1, 2, 3, · · ·, the following conditions

hold:

(i) B(ǫ1, x1) ⊃ B(ǫ2, x2) ⊃ B(ǫ3, x3) ⊃ · · · ⊃ B(ǫn, xn) ⊃ · · ·;

(ii) lim
n→+∞

ǫn = 0.
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Then
+∞⋂
n=1

B(ǫn, xn) only has one point.

Theorem 3.4([19]) Let M̃ =
m⋃

i=1
Mi be a completed multi-metric space and T a

contraction on M̃ . Then

1 ≤# Φ(T ) ≤ m.

Particularly, let m = 1. We get the Banach fixed-point theorem again.

Corollary 3.1(Banach) Let M be a metric space and T a contraction on M . Then

T has just one fixed point.

Smarandache geometries were proposed by Smarandache in [25] which are gen-

eralization of classical geometries, i.e., these Euclid, Lobachevshy-Bolyai-Gauss and

Riemann geometries may be united altogether in a same space, by some Smaran-

dache geometries under the combinatorial speculation. These geometries can be

either partially Euclidean and partially Non-Euclidean, or Non-Euclidean. In gen-

eral, Smarandache geometries are defined in the next.

Definition 3.6 An axiom is said to be Smarandachely denied if the axiom behaves

in at least two different ways within the same space, i.e., validated and invalided, or

only invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely

denied axiom(1969).

For example, let us consider an euclidean plane R2 and three non-collinear

points A, B and C. Define s-points as all usual euclidean points on R2 and s-

lines as any euclidean line that passes through one and only one of points A, B

and C. Then this geometry is a Smarandache geometry because two axioms are

Smarandachely denied comparing with an Euclid geometry:

(i) The axiom (A5) that through a point exterior to a given line there is only

one parallel passing through it is now replaced by two statements: one parallel and

no parallel. Let L be an s-line passing through C and is parallel in the euclidean

sense to AB. Notice that through any s-point not lying on AB there is one s-line

parallel to L and through any other s-point lying on AB there is no s-lines parallel
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to L such as those shown in Fig.3.1(a).

Fig.2. an example of Smarandache geometry

(ii) The axiom that through any two distinct points there exists one line

passing through them is now replaced by; one s-line and no s-line. Notice that

through any two distinct s-points D, E collinear with one of A, B and C, there is

one s-line passing through them and through any two distinct s-points F, G lying

on AB or non-collinear with one of A, B and C, there is no s-line passing through

them such as those shown in Fig.3.1(b).

A Smarandache n-manifold is an n-dimensional manifold that support a Smaran-

dache geometry. Now there are many approaches to construct Smarandache mani-

folds for n = 2. A general way is by the so called map geometries without or with

boundary underlying orientable or non-orientable maps proposed in references [14]

and [15] firstly.

Definition 3.7 For a combinatorial map M with each vertex valency≥ 3, associates

a real number µ(u), 0 < µ(u) < 4π
ρM (u)

, to each vertex u, u ∈ V (M). Call (M, µ) a

map geometry without boundary, µ(u) an angle factor of the vertex u and orientablle

or non-orientable if M is orientable or not.

Definition 3.8 For a map geometry (M, µ) without boundary and faces f1, f2, · · · , fl

∈ F (M), 1 ≤ l ≤ φ(M) − 1, if S(M) \ {f1, f2, · · · , fl} is connected, then call

(M, µ)−l = (S(M) \ {f1, f2, · · · , fl}, µ) a map geometry with boundary f1, f2, · · · , fl,

where S(M) denotes the locally orientable surface underlying map M .

The realization for vertices u, v, w ∈ V (M) in a space R3 is shown in Fig.3.2,

where ρM(u)µ(u) < 2π for the vertex u, ρM(v)µ(v) = 2π for the vertex v and

ρM (w)µ(w) > 2π for the vertex w, are called to be elliptic, euclidean or hyperbolic,
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respectively.

ρM(u)µ(u) < 2π ρM(u)µ(u) = 2π ρM(u)µ(u) > 2π

Fig.3. the realization of an elliptic, euclidean or hyperbolic point in R3

On an Euclid plane R2, a straight line passing through an elliptic or a hyperbolic

point is shown in Fig.3.3.

Fig.4. a straight line passes through an elliptic or hyperbolic point

Theorem 3.5([17]) There are Smarandache geometries, including paradoxist ge-

ometries, non-geometries and anti-geometries in map geometries without or with

boundary.

Generally, we can ever generalize the ideas in Definitions 3.7 and 3.8 to a metric

space and find new geometries.

Definition 3.9 Let U and W be two metric spaces with metric ρ, W ⊆ U . For

∀u ∈ U , if there is a continuous mapping ω : u → ω(u), where ω(u) ∈ Rn for an

integer n, n ≥ 1 such that for any number ǫ > 0, there exists a number δ > 0 and a

point v ∈ W , ρ(u − v) < δ such that ρ(ω(u) − ω(v)) < ǫ, then U is called a metric

pseudo-space if U = W or a bounded metric pseudo-space if there is a number N > 0

such that ∀w ∈ W , ρ(w) ≤ N , denoted by (U, ω) or (U−, ω), respectively.

For the case n = 1, we can also explain ω(u) being an angle function with
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0 < ω(u) ≤ 4π as in the case of map geometries without or with boundary, i.e.,

ω(u) =





ω(u)(mod4π), if u ∈ W,

2π, if u ∈ U \ W (∗)

and get some interesting metric pseudo-space geometries. For example, let U =

W = Euclid plane =
∑

, then we obtained some interesting results for pseudo-plane

geometries (
∑

, ω) as shown in the following([17]).

Theorem 3.6 In a pseudo-plane (
∑

, ω), if there are no euclidean points, then all

points of (
∑

, ω) is either elliptic or hyperbolic.

Theorem 3.7 There are no saddle points and stable knots in a pseudo-plane plane

(
∑

, ω).

Theorem 3.8 For two constants ρ0, θ0, ρ0 > 0 and θ0 6= 0, there is a pseudo-plane

(
∑

, ω) with

ω(ρ, θ) = 2(π −
ρ0

θ0ρ
) or ω(ρ, θ) = 2(π +

ρ0

θ0ρ
)

such that

ρ = ρ0

is a limiting ring in (
∑

, ω).

Now for an m-manifold Mm and ∀u ∈ Mm, choose U = W = Mm in Definition

3.9 for n = 1 and ω(u) a smooth function. We get a pseudo-manifold geometry

(Mm, ω) on Mm. By definitions in the reference [2], a Minkowski norm on Mm is a

function F : Mm → [0, +∞) such that

(i) F is smooth on Mm \ {0};

(ii) F is 1-homogeneous, i.e., F (λu) = λF (u) for u ∈ Mm and λ > 0;

(iii) for ∀y ∈ Mm \ {0}, the symmetric bilinear form gy : Mm ×Mm → R with

gy(u, v) =
1

2

∂2F 2(y + su + tv)

∂s∂t
|t=s=0

is positive definite and a Finsler manifold is a manifold Mm endowed with a function

F : TMm → [0, +∞) such that
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(i) F is smooth on TMm \ {0} =
⋃
{TxM

m \ {0} : x ∈ Mm};

(ii) F |TxMm → [0, +∞) is a Minkowski norm for ∀x ∈ Mm.

As a special case, we choose ω(x) = F (x) for x ∈ Mm, then (Mm, ω) is a Finsler

manifold. Particularly, if ω(x) = gx(y, y) = F 2(x, y), then (Mm, ω) is a Riemann

manifold. Therefore, we get a relation for Smarandache geometries with Finsler or

Riemann geometry.

Theorem 3.9 There is an inclusion for Smarandache, pseudo-manifold, Finsler

and Riemann geometries as shown in the following:

{Smarandache geometries} ⊃ {pseudo − manifold geometries}

⊃ {Finsler geometry}

⊃ {Riemann geometry}.

4. The contribution of combinatorial speculation to theoretical physics

The progress of theoretical physics in last twenty years of the 20th century enables

human beings to probe the mystic cosmos: where are we came from? where are we

going to?. Today, these problems still confuse eyes of human beings. Accompanying

with research in cosmos, new puzzling problems also arose: Whether are there finite

or infinite cosmoses? Is just one? What is the dimension of our cosmos? We do not

even know what the right degree of freedom in the universe is, as Witten said([3]).

We are used to the idea that our living space has three dimensions: length,

breadth and height, with time providing the fourth dimension of spacetime by Ein-

stein. Applying his principle of general relativity, i.e. all the laws of physics take

the same form in any reference system and equivalence principle, i.e., there are no

difference for physical effects of the inertial force and the gravitation in a field small

enough., Einstein got the equation of gravitational field

Rµν −
1

2
Rgµν + λgµν = −8πGTµν .

where Rµν = Rνµ = Rα
µiν ,

Rα
µiν =

∂Γi
µi

∂xν
−

∂Γi
µν

∂xi
+ Γα

µiΓ
i
αν − Γα

µνΓ
i
αi,
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Γg
mn =

1

2
gpq(

∂gmp

∂un
+

∂gnp

∂um
−

∂gmn

∂up
)

and R = gνµRνµ.

Combining the Einstein’s equation of gravitational field with the cosmological

principle, i.e., there are no difference at different points and different orientations

at a point of a cosmos on the metric 104l.y. , Friedmann got a standard model of

cosmos. The metrics of the standard cosmos are

ds2 = −c2dt2 + a2(t)[
dr2

1 − Kr2
+ r2(dθ2 + sin2 θdϕ2)]

and

gtt = 1, grr = −
R2(t)

1 − Kr2
, gφφ = −r2R2(t) sin2 θ.

The standard model of cosmos enables the birth of big bang model of our cosmos

in thirties of the 20th century. The following diagram describes the developing

process of our cosmos in different periods after the big bang.

Fig.5. the evolution of our cosmos
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4.1. The M-theory

The M-theory was established by Witten in 1995 for the unity of those five already

known string theories and superstring theories, which postulates that all matter

and energy can be reduced to branes of energy vibrating in an 11 dimensional space,

then in a higher dimensional space solve the Einstein’s equation of gravitational

field under some physical conditions ([1],[3],[22]-[23]). Here, a brane is an object or

subspace which can have various spatial dimensions. For any integer p ≥ 0, a p-

brane has length in p dimensions. For example, a 0-brane is just a point or particle;

a 1-brane is a string and a 2-brane is a surface or membrane, · · ·.

We mainly discuss line elements in differential forms in Riemann geometry. By

a geometrical view, these p-branes in M-theory can be seen as volume elements

in spaces. Whence, we can construct a graph model for p-branes in a space and

combinatorially research graphs in spaces.

Definition 4.1 For each m-brane B of a space Rm, let (n1(B), n2(B), · · · , np(B))

be its unit vibrating normal vector along these p directions and q : Rm → R4 a

continuous mapping. Now construct a graph phase (G, ω, Λ) by

V (G) = {p − branes q(B)},

E(G) = {(q(B1), q(B2))|there is an action between B1 and B2},

ω(q(B)) = (n1(B), n2(B), · · · , np(B)),

and

Λ(q(B1), q(B2)) = forces between B1 and B2.

Then we get a graph phase (G, ω, Λ) in R4. Similarly, if m = 11, it is a graph phase

for the M-theory.

As an example for applying M-theory to find an accelerating expansion cosmos

of 4-dimensional cosmos from supergravity compactification on hyperbolic spaces is

the Townsend-Wohlfarth type metric in which the line element is
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ds2 = e−mφ(t)(−S6dt2 + S2dx2
3) + r2

Ce2φ(t)ds2
Hm

,

where

φ(t) =
1

m − 1
(ln K(t) − 3λ0t), S2 = K

m
m−1 e−

m+2
m−1

λ0t

and

K(t) =
λ0ζrc

(m − 1) sin[λ0ζ |t + t1|]

with ζ =
√

3 + 6/m. This solution is obtainable from space-like brane solution and

if the proper time ς is defined by dς = S3(t)dt, then the conditions for expansion

and acceleration are dS
dς

> 0 and d2S
dς2

> 0. For example, the expansion factor is 3.04

if m = 7, i.e., a really expanding cosmos.

According to M-theory, the evolution picture of our cosmos started as a perfect

11 dimensional space. However, this 11 dimensional space was unstable. The original

11 dimensional space finally cracked into two pieces, a 4 and a 7 dimensional cosmos.

The cosmos made the 7 of the 11 dimensions curled into a tiny ball, allowing the

remaining 4 dimensional cosmos to inflate at enormous rates.

4.2. The combinatorial cosmos

The combinatorial speculation made the following combinatorial cosmos([17]).

Definition 4.2 A combinatorial cosmos is constructed by a triple (Ω, ∆, T ), where

Ω =
⋃

i≥0

Ωi, ∆ =
⋃

i≥0

Oi

and T = {ti; i ≥ 0} are respectively called the cosmos, the operation or the time set

with the following conditions hold.

(1) (Ω, ∆) is a Smarandache multi-space dependent on T , i.e., the cosmos

(Ωi, Oi) is dependent on time parameter ti for any integer i, i ≥ 0.

(2) For any integer i, i ≥ 0, there is a sub-cosmos sequence

(S) : Ωi ⊃ · · · ⊃ Ωi1 ⊃ Ωi0
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in the cosmos (Ωi, Oi) and for two sub-cosmoses (Ωij , Oi) and (Ωil, Oi), if Ωij ⊃ Ωil,

then there is a homomorphism ρΩij ,Ωil
: (Ωij , Oi) → (Ωil, Oi) such that

(i) for ∀(Ωi1, Oi), (Ωi2, Oi)(Ωi3, Oi) ∈ (S), if Ωi1 ⊃ Ωi2 ⊃ Ωi3, then

ρΩi1,Ωi3
= ρΩi1,Ωi2

◦ ρΩi2,Ωi3
,

where�◦�denotes the composition operation on homomorphisms.

(ii) for ∀g, h ∈ Ωi, if for any integer i, ρΩ,Ωi
(g) = ρΩ,Ωi

(h), then g = h.

(iii) for ∀i, if there is an fi ∈ Ωi with

ρΩi,Ωi

⋂
Ωj

(fi) = ρΩj ,Ωi

⋂
Ωj

(fj)

for integers i, j, Ωi

⋂
Ωj 6= ∅, then there exists an f ∈ Ω such that ρΩ,Ωi

(f) = fi for

any integer i.

By this definition, there is just one cosmos Ω and the sub-cosmos sequence is

R4 ⊃ R3 ⊃ R2 ⊃ R1 ⊃ R0 = {P} ⊃ R−
7 ⊃ · · · ⊃ R−

1 ⊃ R−
0 = {Q}.

in the string/M-theory. In Fig.4.1, we have shown the idea of the combinatorial

cosmos.

Fig.6. an example of combinatorial cosmoses

For 5 or 6 dimensional spaces, it has been established a dynamical theory by

this combinatorial speculation([20][21]). In this dynamics, we look for a solution in
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the Einstein equation of gravitational field in 6-dimensional spacetime with a metric

of the form

ds2 = −n2(t, y, z)dt2 + a2(t, y, z)d
2∑

k

+b2(t, y, z)dy2 + d2(t, y, z)dz2

where d
∑2

k represents the 3-dimensional spatial sections metric with k = −1, 0, 1 re-

spective corresponding to the hyperbolic, flat and elliptic spaces. For 5-dimensional

spacetime, deletes the undefinite z in this metric form. Now consider a 4-brane

moving in a 6-dimensional Schwarzschild-ADS spacetime, the metric can be written

as

ds2 = −h(z)dt2 +
z2

l2
d

2∑

k

+h−1(z)dz2,

where

d
2∑

k

=
dr2

1 − kr2
+ r2dΩ2

(2) + (1 − kr2)dy2

and

h(z) = k +
z2

l2
−

M

z3
.

Then the equation of a 4-dimensional cosmos moving in a 6-spacetime is

2
R̈

R
+ 3(

Ṙ

R
)2 = −3

κ4
(6)

64
ρ2 −

κ4
(6)

8
ρp − 3

κ

R2
−

5

l2

by applying the Darmois-Israel conditions for a moving brane. Similarly, for the

case of a(z) 6= b(z), the equations of motion of the brane are

d2ḋṘ − dR̈√
1 + d2Ṙ2

−

√
1 + d2Ṙ2

n
(dṅṘ +

∂zn

d
− (d∂zn − n∂zd)Ṙ2) = −

κ4
(6)

8
(3(p + ρ) + p̂),

∂za

ad

√
1 + d2Ṙ2 = −

κ4
(6)

8
(ρ + p − p̂),

∂zb

bd

√
1 + d2Ṙ2 = −

κ4
(6)

8
(ρ − 3(p − p̂)),
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where the energy-momentum tensor on the brane is

T̂µν = hναT α
µ −

1

4
Thµν

with T α
µ = diag(−ρ, p, p, p, p̂) and the Darmois-Israel conditions

[Kµν ] = −κ2
(6)T̂µν ,

where Kµν is the extrinsic curvature tensor.

The combinatorial cosmos also presents new questions to combinatorics, such

as:

(i) to embed a graph into spaces with dimensional≥ 4;

(ii) to research the phase space of a graph embedded in a space;

(iii) to establish graph dynamics in a space with dimensional≥ 4, · · ·, etc..

For example, we have gotten the following result for graphs in spaces in [17].

Theorem 4.1 A graph G has a nontrivial including multi-embedding on spheres

P1 ⊃ P2 ⊃ · · · ⊃ Ps if and only if there is a block decomposition G =
s⊎

i=1
Gi of G

such that for any integer i, 1 < i < s,

(i) Gi is planar;

(ii) for ∀v ∈ V (Gi), NG(x) ⊆ (
i+1⋃

j=i−1
V (Gj)).

Further research of the combinatorial cosmos will richen the knowledge of com-

binatorics and cosmology, also get the combinatorization for cosmology.
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(.�{G~EGt�d{GNj~�U 100080)�z. ��m4;G&R�w/�0ÆH=℄%*�rI�ÆH'℄2�e℄0�2Theory of everything��2k~�4�ÆH='T���r�m4;G�G}1��m70Æ/ 00 M- 0'Æ��ÆH=),#�I��2�e℄0'N0�rFH=:pI�u�&Bj'FH0�mT>'�J�m7G&℄4;'ÆH`fI�l	���,�hOkuIÆ'ha�rFH=�:pI�lG&℄4;'FH0�+:��ÆH=�Piy��� 0u M- 0I�')�FH=[I��℄2�a|"{G&℄4;FH'0��m7Smarandache3�A0�hjm'B-�70ÆH=Sk~'����S{℄2FH0�h`f�}Q0Æ'�~Z�S&C�[�'9ZJ'�r�e,X��℄0'x"Xg�Ok'9Z�℄�L)�9ZTLa09ZOk}�), �/�ay�N�FHL)�hÆ���/l#'l;Sm�[�9Z�mrS�7a�<��N'℄[?: [16] /'kYm��

The Mathematics of 21st Century Aroused by

Theoretical Physics

Abstract. Begin with 20s in last century, physicists devote their works to

establish a unified field theory for physics, i.e., the Theory of Everything. The

1�t��-FYM�EGti/GAM(#�2006 � 8 j�uW��}(�ÆZS���66�4 �2006 � 3 jÆ�
2e-print: .�{6/��$�200607-91
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aim is near in 1980s while the String/M-theory has been established. They

also realize the bottleneck for developing the String/M-theory is there are no

applicable mathematical theory for their research works. �the Problem is

that 21st-century mathematics has not been invented yet�, They said. In fact,

mathematician has established a new theory, i.e., the Smarandache multi-space

theory applicable for their needing while the the String/M-theory was estab-

lished. The purpose of this paper is to survey its historical background, main

thoughts, research problems, approaches and some results based on the mono-

graph [16] of mine. We can find the central role of combinatorial speculation

in this process..V	�WB)7�/\�M- /\�=�1�D	�℄�Smarandache�℄�(^��1�℄�Finsler�℄�#i8 AMS(2000): 03C05, 05C15, 51D20,51H20, 51P05, 83C05,83E50

§1. ��vÆ~k8��1sS9
1.1. Xj*eeh�1^Ct����wf�"�t = x, � = y�� = z�}%&eh�1,C}&aI[swf��dL (x, y, z)�Wh�1^Ct�����#1wf�wK"#1H�% t�}%&Wh�1,^CdL (x, y, z, t) wf�eh�1�>Hv:	 1.1��#1�%&HvIA�}p+u�%&#��8=WBrh%$�1�&WB=%&Mv (section)�

	 1.1. dLI=#1Hvp+=�o��%9M{�p+��=WB�1V�vWh�11%0=��p+��=�11 3 &=�wK)�#1H��}1 4 &=, �l1 Einstein =#�>�
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1.2. ���&��w�ju&pp+IJ�=>k�oN1 Einstein =79rz��</�(?7BWB=)7�/\��;/\r%�WBCdP%&℄UP��Oh=yn℄O�1��&�1rL�����Qy<=Hv�'�&yn=�L��=℄�1o�B7��_�	�8V�3|����-���OhK�	�8V_�B`��;5.<4�uL℄ 137 .�=�vr�BVv=XjWB�&p Hawking =>H�7�o�L�+UPK7G%pW=OK ([6]− [7])�w	 1.2 b*�

	 1.2. K7G%=pW	 1.3 7�WJwEBWBF)7�~(=�vV+��&/o�Vvp+>e;8=WBL��

	 1.3. WB)7�=L�



Æ1�ÆiJ(H'^5<GI –Smarandche 4�BÆ1 27&p)7�/\=![OK�WB1�,k=�vL�)0wK�� �WB)7�~(P%&��℄�1�%&g 137 .�N7�=�_(�℄��e=C(#1% 0�eL5S�=-^[5S)=q^��NzV�C*#=I�[</=FWM{2#=[��#1��7�~(��1"���t+�!)��h*� �#1 10−43 x�q^1 1093kg/m3�-^C8 1032K��#=WByniVd~�+L#1��1[��r���{*� �#1 10−35 x�-^C8 1028K�WBo�BI�6��>&gu 10−32 x=#1��)B 1050 <�6�7CBI�`p=8Vo���#\l79*��%=9�-$�0FP��L��R9�{9[K�9Zz)�~�o�=8V"kL`���%#<=VIV>e=L�)�[s�z�=VYhPu=V�>k-^C?�>I�==V[u=VU[iy�lKKB+L7V[4Vi�l�V8u=V=Vd~=P#=WB���*� �#1 10−6 x�-^% 1014K���*� �#1 10−2 x�-^% 1012K��<1�RC�{C[K�CD=`�~�WB7PB';8V�FP-^��1010K ,���8V=�"#1Z1�_=�eo�LUp-NiUpLv�_V�#zkP�&"*� �#1 1− 10 x�-^C/g 1010 − 5× 109K�4V[u4V�KV[�KVU[#iy�o�B)�=CV�7 V,�u7 V�	�8V~(O_�_VY���,CV�	=r)P (pola >-Q[WBO3=�9u�1�_)�5m�*� �#1 3 �8�-^C/g 109K�&g+�8g 1 C�)_�L℄}�<4_�%P�Yu:℄��,_#k�L4�=8VI[CVI=Ag%8B 10−9��	q^sl)P<4q^�m�1%�R�*� �,_#k�-^C?8 108K�';8VuUp-N75��V\*V�UpLv���=iyÆ�����#C, WB7';8VI=�^l_P0R�FP�#-^sl��CVL\5=���^q℄_vr�=_V�!k�=KV1d�b,2#kL�P_V�[�X�*� �#1 1000− 2000 ��-^C/g 105K�<4q^~()P�	q^�FPWB=+��CV8%q℄%H�5w%&��r�=_V�#Z�5�s7C=h;(b:i'>Rt�)i��7_�FP�sX^℄WB=+�iD=�)��dCV=Rt"lVa�)i��Va7_�X�
x℄&"�B|�g �#1 105 ��-^C/g 5000K�<4-^~(



28 Linfan Mao: H'^5<GI1�/?P�	-^�̀ =[`Y=	�8VI=A'2�eR�)gL%#���F7��<o�=CV=��lC8BV\,�^_V�/o_V=�^�WB�#l[xBCV[_VUp�-=�o#+��WBH�B�{=�-^)gC%
3000K���#~(�_V~(r��0"+�o�IY=^W�/PI==^W��1unI�enr�k�uen�Yr�=�enr�k�'en�Yo�B'WV�=-^�wL|=*=^W}1uwkn7o�nI=-N�7o7r�=�j\m� �#1 108 ���	-^C/g 100K�<4-^% 1K�ij;�?j�njE&}^��_��#1 109 ��-^C/g 12K�g�D=r�2ok$>e8=[d��ÆX� �#1 1010 ���	-^C/g 3K�nI<4-^g 105K�
1.3. ���w�ju~��1sS9/\</V%�</�jM{<4F};<48V��KV e���Æ u [K�Æ
d 3��m!-'�PB?;wE8V$1UpC=/\��l1 Einstein =Ud\[ Dirac =�V9��Ud\1wE79=/\�%'CP�jWB</��i�V9�1<P >8VC9=/\�0 K�9�RY�9�{Y�9��T;C93�B8V$1UpC=	�C9���&-'m!�+~(�}h</�(�0 Einstein �p%&09P�%�T;	�C9���%Ud\[�V9��?7</�=)�%/\��/Q7sP=Theory of Everything�L 80 h�=�j�1q%&kL;8bePw�1q=ÆHuPE0Ud\1<Pg>WB=/\�w6`I�g�I�bX>�>*�<41;��W=�i�V9�1<P >WB=/\�wKV�4V�7V>�>*�<41-~�W=�iV+℄T�x�j�*$Bp+r&IZ=%dk1q�Aww77z℄'2���iz℄�pC�mw7�{*9��yi#hTw7���"%h/'w7'|F)rC���'���bzÆ{' 3 |2�

Einstein &p>p=E0Udv_/�SpÆ�.�pz�/rp&'=0[>b_/��℄mQ0'�xO�?�Æh�'�Æ1j7i��Y'?7B79rz���
Rµν −

1

2
Rgµν + λgµν = −8πGTµν .O_WB�_/, �?��?{ 104l.y )�w7/�℄0Æ℄m0'�T,v
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ds2 = −c2dt2 + a2(t)[

dr2

1 − Kr2
+ r2(dθ2 + sin2 θdϕ2)].U:=WB~% Friedmann WB�Lh�=v/>k�Hubble u 1929 oP�p+mI=WB1%&u2)X+�=WB�9l^79rz�=)X+�P�B</�(=E�z[��>ze\y<

da

dt
> 0,

d2a

dt2
> 0.2o#9�z

a(t) = tµ, b(t) = tν,�1�
µ =

3 ±
√

3m(m + 2)

3(m + 3)
, ν =

3 ∓
√

3m(m + 2)

3(m + 3)
,} Kasner ^F

ds2 = −dt2 + a(t)2d2
R3 + b(t)2ds2(Tm)% Einstein rz�= 4 + m &��P�%'[�K��&PPV�( 4 &)X+�P�0^C#1L'd~H{

t → t+∞ − t, a(t) = (t+∞ − t)µ,2o;8%& 4 &=)X+�P�5%
da(t)

dt
> 0,

d2a(t)

dt2
> 0.m!-'�P= M- /\%Pw�E1qMRB	���%/\*�8VV14Hi1&IV�= p-F���T p &z[Lt^=V�1��1 p 1%&��I�1-F%'~ �2-F~�F�	 1.4 7(B 1- ��2- ��>pW�



30 Linfan Mao: H'^5<GI1�/

	 1.4. �=pW&p M /\�WB��~(#=�&℄r�1&I1 11 &=�)7�~(k�>7 4 &z[&u�t=!
��Æ�iJ� 7 &z[&}u�tua�̀ _���r�2oVv�;8= 4 &g>WB[�V:= 7 & >WB�4 &g>WB�=C9�_ Einstein 79rz��i 7 & >WB�=C9�_A"Æz��F�;8Kv�&O\��j 1.1 M- 0')�7℄m�;m0s�℄m 7 |�A R7 ' 4 |�A R4�:CR/ 1.1 [Ja�1�=w79=Yvy<�2o,;8Townsend-

Wohlfarthq= 4 &)X+�WB�q
ds2 = e−mφ(t)(−S6dt2 + S2dx2

3) + r2
Ce2φ(t)ds2

Hm
,�1

φ(t) =
1

m − 1
(ln K(t) − 3λ0t), S2 = K

m
m−1 e−

m+2
m−1

λ0tV
K(t) =

λ0ζrc

(m − 1) sin[λ0ζ |t + t1|]
,�1 ζ =

√
3 + 6/m. b#1 ς e\ dς = S3(t)dt�})X+�WB=y< dS

dς
> 0[ d2S

dς2
> 0 y;8e\�I'![M{�z m = 7 }+�5V% 3.04�



Æ1�ÆiJ(H'^5<GI –Smarandche 4�BÆ1 31�I�G^B�R/ 1.1 7=H%$�V1Hi1�1�F�7�=I�1q1 7\���X℄2FH�A�h/;m0R
%℄m 1 |a�'�A�&vM{�wK��=I��1"u��e%RV12ous��7�;8=�1�"V12ouJI�7[:L=�1�5wu 3 &Tv�17�l&H,M*% (x, y, z)�eV�0R%&&I)P>P 1 =V�1�
§2. Smarandache �eS=L�V%&5.=1q�

1 + 1 =?uWlII7�2o#9 1+1=2�u 2 [2p[sI7�2oz#9 1+1=10��1= 10 %$�z1 2�5%u 2 [2p[sI7+L?&p[^W 0 [ 1�>p[F}%
0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10.&p��R$�R>P�R�=��QX�2o^C%;�uQ&=�#�=�QX ([18] − [20]) $=k�,�&1q�=k�A 1 + 1 = 2 � 6= 2�2o#9 1, 2, 3, 4, 5, · · · ��=I3�WlII N�u�&II7�&pII=FW�l&I~%NvYHT=I=k%I�� 2 =k%I% 3�"% 2′ = 3����3′ = 4, 4′ = 5, · · ·���2ol;8B

1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4, 4 + 1 = 5, · · · ;�#z;8B
1 + 2 = 3, 1 + 3 = 4, 1 + 4 = 5, 1 + 5 = 6, · · ·��%dp[>)��iu�;WlI=p[sIK�2o+�;8 1 + 1 = 2 =O\�Pu�2o~:%Kp[=R0�(R%&�_ S�d ∀x, y ∈ S,R0 x∗y = z�/Q1 S �"u%& 2 ^O_=	 ∗ : S × S → S�';
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∗(x, y) = z.^C	P=z)�2o,C	!�;<Iu4v�M*$�=L! S 7=l&^C4v�=HM*�wK S 7L n &^�}u4v�lb n &V2T=H�?&H x, z $1;K%yL[T`�wK"u%&^ y '; x ∗ y = z, 2ou�yT`�L� ∗y�~%�T`=f=�w	 2.1 b*�

	 2.1. ;T�fzqJ/�;d:1 1− 1 =�" S d:=	% G[S]�Pu�wK2oX�8%&e\ 1 + 1 = 3 =p[I��2o,L( 1 + 1, 2 + 1, · · · >�'P�L	P$����} 2.1 ℄m�F�e (A; ◦) |{�℄'���℄ml� ̟ : A → A .&B
∀a, b ∈ A�(Z a ◦ b ∈ A�
��℄mz℄'y c ∈ A, c ◦ ̟(b) ∈ A�&j,| ̟{�℄l��2ov-;8,K<P+II� (A; ◦) V	 G[A] =<I=%&OK��j 2.1 � (A; ◦) {℄m�F�e�


(i) � (A; ◦) ���℄m�℄l� ̟�
 G[A] 7℄m Euler j�Q"�� G[A]7℄m Euler j�
 (A; ◦) 7℄m�℄�P�e�
(ii) � (A; ◦) 7℄ms�'�F�P�e�
 G[A] /;m60'�?{ |A|��q��� (A; ◦) �.�.}��
 G[A] 7℄ms�'3 2- jw;m60�℄m�.&i60"A'_{&B 2- _�Q"b��dPLS&^=[r�,^C%;LS	=z)FRbLp[OK�	 2.2(B |S| = 3 =?;p[sI�
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	 2.2. 3 &^=)qp[	F	 2.2(a) L
1+1 = 2, 1+2 = 3, 1+3 = 1; 2+1 = 3, 2+2 = 1, 2+3 = 2; 3+1 = 1, 3+2 = 2, 3+3 = 3.F	 2.2(b) L
1+1 = 3, 1+2 = 1, 1+3 = 2; 2+1 = 1, 2+2 = 2, 2+3 = 3; 3+1 = 2, 3+2 = 3, 3+3 = 1.d%&�_ S, |S| = n�,u>�R0 n3 ;V�=p[sI���2ol,u%&�_��#R0 h ;p[�h ≤ n3 i;8%& h- =p[sI
(S; ◦1, ◦2, · · · , ◦h)�uJ+I�7�k1.%=p[sI�y�Z�s>y1 2 =p[sI�%'D�2oR0%& Smarandache n- =�1wK��} 2.2 ℄m n- 3�A ∑�7d{ n m.� A1, A2, · · · , An 'f

∑
=

n⋃

i=1

Aiw;m.� Ai �v7d�℄2�P ◦i .& (Ai, ◦i) {℄m�F^���� n {��F�1 ≤ i ≤ n�u=�1=�-K�2o,[%XÆEJ+I�7k�y�Z�[��1=��i;8=k�=y�=Z�=[��1=���P;8U:=+IO3��} 2.3 � R̃ =
m⋃

i=1
Ri {℄msZ' m- 3�A�wB�F i, j, i 6= j, 1 ≤

i, j ≤ m, (Ri; +i,×i) {℄m�wBy ∀x, y, z ∈ R̃�(Z&j'�PT�v���
p
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(x +i y) +j z = x +i (y +j z), (x ×i y) ×j z = x ×i (y ×j z)a0

x ×i (y +j z) = x ×i y +j x ×i z, (y +j z) ×i x = y ×i x +j z ×i x,
| R̃ {℄m m- 3���B�F i, 1 ≤ i ≤ m, (R; +i,×i) 7℄mx�
| R̃{℄m m- 3x��} 2.4 � Ṽ =
k⋃

i=1
Vi{℄msZ' m-3�A�h�P.�{ O(Ṽ ) = {(+̇i, ·i) | 1 ≤

i ≤ m}�F̃ =
k⋃

i=1
Fi {℄m3x�h�P.�{ O(F̃ ) = {(+i,×i) | 1 ≤ i ≤ k}��B�F i, j, 1 ≤ i, j ≤ k 0y ∀a,b, c ∈ Ṽ , k1, k2 ∈ F̃ , (ZBj'�PT����


(i) (Vi; +̇i, ·i) {x Fi �',��A�h,�>L{�+̇i��b�~L{�·i��
(ii) (a+̇ib)+̇jc = a+̇i(b+̇jc);

(iii) (k1 +i k2) ·j a = k1 +i (k2 ·j a);
| Ṽ {3x F̃ �' k 3,��A�9{ (Ṽ ; F̃ )�F�2o#9�M- /\7=�1�q%$�1%;=�1�q��j 2.2 � P = (x1, x2, · · · , xn) { n- |W8�A Rn /'℄m0�
B�F
s, 1 ≤ s ≤ n�0 P R
℄m s 'G�A��C J/�5�1 Rn 7"uLR	 e1 = (1, 0, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0),

· · ·, ei = (0, · · · , 0, 1, 0, · · · , 0) (E i &^% 1�>R% 0), · · ·, en = (0, 0, · · · , 0, 1) '; Rn 7=q/H (x1, x2, · · · , xn) ,M*%
(x1, x2, · · · , xn) = x1e1 + x2e2 + · · ·+ xnenbZ F = {ai, bi, ci, · · · , di; i ≥ 1}�2oR0%&k=[��1

R− = (V, +new, ◦new),�1 V = {x1, x2, · · · , xn}�V�;Jv�2o*R x1, x2, · · · , xs 1\7=��z"uL� a1, a2, · · · , as ';
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a1 ◦new x1 +new a2 ◦new x2 +new · · ·+new as ◦new xs = 0,}RL a1 = a2 = · · · = 0new V"uL� bi, ci, · · · , di�1 ≤ i ≤ s�';
xs+1 = b1 ◦new x1 +new b2 ◦new x2 +new · · ·+new bs ◦new xs;

xs+2 = c1 ◦new x1 +new c2 ◦new x2 +new · · · +new cs ◦new xs;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ;

xn = d1 ◦new x1 +new d2 ◦new x2 +new · · ·+new ds ◦new xs.�i2o;8H P �=%& s- &V�1� ♮Fu 2.1 � P {W8�A Rn /'℄m0�
��℄mG�AC�
R−

0 ⊂ R−
1 ⊂ · · · ⊂ R−

n−1 ⊂ R−
n.& R−

n = {P} wG�A R−
i '|F{ n − i��� 1 ≤ i ≤ n�

§3. �C��CH:
3.1. Smarandache H:
Smarandache4� 1%;`Ew=}��℄�>�vS��NC#= Lobachevshy-

Bolyai �℄�Riemann �℄V Finsler �℄�>oH1^Cu}qDyb+�5�℄7=d:0��2o=L~:%K�5�℄�Ja�℄�Riemann �℄=�7L���5�℄=0/sIFKv�8y0�_��
(1)�;m0#;mhT'0^7�ah%%�
(2);`%%=�a�#Q{�
(3)a0{/8�b��o7'%℄0�aS℄|�
(4)Sp%O=&)�
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(5)`�O�p℄`%%u%�`%%&N�w�r℄`%%'℄rSN'�OO"Æ0r�%O�
��`%%^��℄r&N, �j 3.1 S1�

	 3.1. %y&TV?yV4s&TUE�1�6 a + 6 b < 180O�̀ k%y0��~%�5E80��ez,^CKv�;�Ezq��o7%%q'℄0�n��℄`%%uo7'%%i&N�W��50�0W,$�po%&v;>E80�V:�%0�P�e��d%u:�1%&}q�%��}hI�(09P^CNTy0�!{E80��0%&kL�/�P1LpXC>d*�+t�5E80��4�;8=0/sI1��=�1�"uhg�!k-'�Lobachevshy [ Bolyai�Riemann �N^CV�=*�b+�5E80��;�/�do^C=*��N1�
Lobachevshy-Bolyai *���o7%%q'℄0�)����`%%uo7'%%i&N�
Riemann *���o7%%q'℄0�i��%%uo7'%%i&N�
Riemann*�;8=9=_5uPF�,?7,f�℄�k�> Einstein C%>Ud\7=79#���!79r�%&,f�1���D�2o1�,[%Xd�H�50�;8k=�℄iS�_L=�5�℄�Lobachevshy-Bolyai �℄�Riemann �℄[ Finsler �℄�/Q [16] 7PwB�&1q�1q=Pw;9P:C Smarandache �℄QXi?7(^��1�℄��1d Smarandache �℄%&5�S�wK�K%NsS�(^��1�℄�
Smarandache �℄0RU04��V4��Q�k4�[Q4�>T;��N&pV�=0�?7�>7�U04�^C=0�%�50��1�-�4�,�Kvq℄%y0��
(P − 1) )���℄`%%Æd%%q'℄0�.&f�d0'%%vu�`
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(P − 2�)���℄`%%Æd%%q'℄0�.&f�d0n��℄`%%u�`%%i&N�
(P − 3) )���℄`%%Æd%%q'℄0�.&f�d0n��p#' k`%%u�`%%i&N�k ≥ 2�
(P − 4) )���℄`%%Æd%%q'℄0�.&f�d0n��F`%%u�`%%i&N�
(P − 5) )���℄`%%Æd%%q'℄0�.&f�d0'�%%vu�`%%&N�V4�^C=0/sI1�R�5�℄ 5 y0�7= 1 &�I&��^C,K%y�Iy0�b+�50�7=d:0��
(−1) �o7'�0i℄7��℄`%%�
(−2) ��℄`%%iP�#Q{�
(−3) o7℄0Æ℄m+F�fi℄7�a��℄m|�
(−4) %Ofi℄7&)�
(−5) �o7%%q'℄0�i℄7��℄`%%uo7'%%i&N�Q�k4�^C=0/sI1�R	<�℄7=%y�Iy0��U:^CKE0�b+�
(C − 1) )����`%%':p%%R
�mo7'0�
(C − 2) � A, B, C {�miv%'0�D, E {�mi0�� A, D, C Æ

B, E, C �0v%�
b� A, B '%%ub� D, E '%%i&N�
(C − 3) ;`%%)C
p�mi'0�Q4�^C=0/sI1�R Hilbert 0/sI7=%y�Iy0���} 3.1 ℄mt�|{Smarandache\7'��h�℄m�A/)d!�}�'i}��')�a�2a�T0d!i}��℄m
p Smarandache \7t�'4�|{Smarandache4��Kv�&5V,�Kv?_NM{ Smarandache �℄1;J"u=�l 3.1� A, B, C %�54v�}&V2T=H�R0&T%�54v��L A, B, C7IV%&H=&T�}2o;8%& Smarandache �℄�5%V�5�℄0/sIUAI�>7?y0�1 Smarandache �R=�
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(i) �5E80�Pu%f�℄`%%q'℄0���℄`'i��%%`>rd`%%bb+�*�&T L LH C V4sP&T AB�J/Lq℄%&Vu AB �=HIVL%y&T4sP L�iL&T AB �=q℄%HyV"u4sP L =&T�w	 3.2(a) b*�
(ii) 0�f��mi0��℄`%%Pu%f��mi0��℄`%%'i��%%b+�J/L?&H D, E��1 D, E V A, B, C 7=%H�wH C 2T�w	 3.2(b) b*�IVL%y&TL D, E�idq/?&u&T

AB H F, G �VV A, B, C 7%&H2T=?&H G, H yV"uLeo=&T�w	 3.2(b) b*�

	 3.2. s- &T=[�
3.2 +y/�C��:�7%&F|=R/M;m��'�{}��'�\r�}��p� 2pm<�;�m<"Aom℄m;��~G�&��'�\r�}��p� q m<�;m<om3\
K�'_Wuh&��r�{�7,����l7d{ p���{i�7,����l7d{ q��1R[=/Q1%&�&Pav=[��TavpW%ek~8oH1��H[�=z[�&>�#9℄v1R[=�iA3N*}1VR[=�w	 3.3 b*�>7 (a) %6~=,v�(b) %�_k=A3N*�

	 3.3. A3N*=r�



Æ1�ÆiJ(H'^5<GI –Smarandche 4�BÆ1 39D	1av=%;t��2�T�;t��av6~k�;8=l&v�y�&Pb! D = {(x, y)|x2 + y2 ≤ 1}�Tutte P 1973 �(BD	=+IR0�̂ C
[12] 7=DX�D	R0PK��} 3.2 ℄m,j M = (Xα,β,P)�7d{�(	.� X 'NyQt Kx, x ∈ X '�tvy'f. Xα,β �'℄m([+ P�w4L��'t 1 Æt 2���
K = {1.α, β, αβ} { Klein 4- y
�S� P {([+ �2i����F k, .&
Pkx = αx�+j 1�αP = P−1α;+j 2�
 ΨJ = 〈α, β,P〉 � Xα,β ��o�&pR0 3.2�D	=QH[v�NR0%1{ P [ Pαβ CP Xα,β �;8=2mG9�E% Klein 4- ^k K CP Xα,β �;8=G9�4CEuler-Poincaré0)�2o;8

|V (M)| − |E(M)| + |F (M)| = χ(M),�1 V (M), E(M), F (M) �NM*D	 M =QH��E�[v��χ(M) M*D	 M = Euler �%�>I'>PD	 M bPx=�&av= Euler �%�~%&D	 M = (Xα,β,P) 1i�7,'�z1{k ΨI = 〈αβ,P〉 u Xα,β �1K=��}~%�7,'�
	 3.4. 	 D0.4.0 u Kelin av�=Px%%&5V�	 3.4 7(B	 D0.4.0 u Kelin av�=%&Px�,^CD	 M = (Xα,β,P) M*wK��1

Xα,β =
⋃

e∈{x,y,z,w}

{e, αe, βe, αβe},

P = (x, y, z, w)(αβx, αβy, βz, βw)
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× (αx, αw, αz, αy)(βx, αβw, αβz, βy).	 3.4 7=D	L 2 QH v1 = {(x, y, z, w), (αx, αw, αz, αy)}, v2 = {(αβx, αβy, βz,

βw), (βx, αβw, αβz, βy)}, 4 yE e1 = {x, αx, βx, αβx}, e2 = {y, αy, βy, αβy}, e3 =

{z, αz, βz, αβz}, e4 = {w, αw, βw, αβw},� 2&v f2 = {(x, αβy, z, βy, αx, αβw),

(βx, αw, αβx, y, βz, αy)}, f2 = {(βw, αz), (w, αβz)}�> Euler �%%
χ(M) = 2 − 4 + 2 = 0V1{k ΨI = 〈αβ,P〉 u Xα,β �K���l�+IG^;8	 D0.4.0 u Kleinv�=Px�+℄T/\</�j=z��2oz,%'vD�V	u�1,�h=av�=Px�	u=av�=PxR0wK��} 3.3 �j G '60.�rp�Y V (G) =

k⋃
j=1

Vi, ��B�F 1 ≤ i, j ≤

k�Vi

⋂
Vj = ∅�q S1, S2, · · · , Sk {?��A E /' k m���k ≥ 1����℄m 1-1 �El� π : G → E .&B�F i, 1 ≤ i ≤ k�π|〈Vi〉 7℄mb�w

Si \ π(〈Vi〉) /';m�b_\r|Y D = {(x, y)|x2 + y2 ≤ 1}�
| π(G) 7 G��� S1, S2, · · · , Sk �'3s��R0 3.3 7av S1, S2, · · · , Sk =�1+1d=PxL<Y�2"u%; D
Si1 , Si2 , · · · , Sik�';dq/�I j, 1 ≤ j ≤ k�Sij 1 Sij+1

=V�1#�~% G u
S1, S2, · · · , Sk �=O
3s��<P℄v�LKv=O\��j 3.1 ℄mj G �}� P1 ⊃ P2 ⊃ · · · ⊃ Ps ��V`P'O
3s��v^�j G ����Y G =

s⊎
i=1

Gi�.&B�F i, 1 < i < s,

(i) Gi 7`�'�
(ii) B ∀v ∈ V (Gi), NG(x) ⊆ (

i+1⋃
j=i−1

V (Gj)).

3.3 �CH:,j4� 1uD		��3?= Smarandache �℄��#"1:I__I�VJI�=�*�D	�℄=��=Lu/Q [13] 7p�℄ku/Q [14]− [16] 7�oN1 [16] [sBJ0=�j�>R0wK��} 3.4 �,jM ;m60 u, u ∈ V (M)�as℄m+F µ(u), µ(u)ρM(u)(mod2π)�



Æ1�ÆiJ(H'^5<GI –Smarandche 4�BÆ1 41| (M, µ) {℄m,j4��µ(u) {0 u 'OgG�F�:�B'i�B���'�%��H℄m'H4m�D|d,j4��_W'p_W�	 3.5 7(B&T�LD	�=QH=[r�1=��G^�%)P��>P��_P��U:D�H u ~%�bH��5H[JaH�
	 3.5. &T�L�bH�JaH�bH��5H[JaHu 3 &�17y1,%P=��1H=%PLNP�5�1=[r��V%R14&=�Æ}�Hl1�5H�	 3.6 7(B�};Hu 3 &�1=%Pzq, 	7H u %�bH�v %�5Hi w %JaH�

	 3.6. �bH��5H[JaHu 3- &�1=%P�j 3.1 pW��W,j4�/v��U04��V4��Q�k4�ÆQ4��R/=!{:/Q [16]�%GP/P�2oKvS�4vD	�℄=[r�u�;[r�VZ,uQH�TG5VTI�z,�^;KQH$1=E1%&;�TI���d[%X/P4v�+IaT!�L/0�Awu4vD	�℄7L��=O\�`�,j4��|%%i��,j'��'0{W80�%%&5V�	 3.7 7sB	P�Tvs=%;4vD	�℄�>7QHE�=I'M{�QH 2 <=G5VTI'�
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	 3.7. %&4vD	�℄=5V	 3.8 7sB	 3.7 R0=4vD	�℄7&T=[r�+UD�	 3.9 7sB�4vD	�℄7=�;hEr�
	 3.8. 4vD	�℄=&T

	 3.9. 4vD	�℄=hEr
§4. N�neSH:
Einstein =E0Ud\a�B�1u79CK1�a=��/CT"V5���%Hu%$>e7*;8!%�D	�℄=QX%$�,%'DR0P%&^��1���u�^��1=l&H�T%&[�i?7(^��1�℄��} 4.1 5 U 8;(&18 ρ $&1.+�W ⊆ U�'2< ∀u ∈ U�3"?;(



Æ1�ÆiJ(H'^5<GI –Smarandche 4�BÆ1 430:=4 ω : u → ω(u)�A/�'2<B7 n, n ≥ 1�ω(u) ∈ Rn 6#'2<$C7
ǫ > 0�-"?;(7 δ > 0 );(% v ∈ W , ρ(u− v) < δ 6# ρ(ω(u)−ω(v)) < ǫ��3 U = W�! U 8;(9&1.+�*8 (U, ω)�3"?C7 N > 0 6#
∀w ∈ W , ρ(w) ≤ N��! U 8;(>,9&1.+�*8 (U−, ω)�J/ ω 1G5VTI#��(^��12o;8 Einstein =�a�1�%GP/P�2on\(4v�℄V ω %G5VTI=[r�=LLKv?&5.=O\��j 4.1 �~`� (P, ω) �'�0 u Æ v i℄7��W8d�'%%��j 4.2 �℄m~`� (

∑
, ω) ���i��W80�
 (

∑
, ω) h;m0v{n|0';m0v{I�0�dP4v+IaT�}LwKOK��j 4.3 �~`� (

∑
, ω) ����F�% F (x, y) = 0 f��x D /'0 (x0, y0)�w^� F (x0, y0) = 0 wB ∀(x, y) ∈ D�
(π −

ω(x, y)

2
)(1 + (

dy

dx
)2) = sign(x, y).Pu�2os~8(^��1��&pR0 4.1�d%& m- Nr Mm [q/H ∀u ∈ Mm�b U = W = Mm�n = 1 V ω(u) %%&CrTI�}2o;8Nr

Mm �=(Nr�℄ (Mm, ω)�2o#9�Nr Mm �=MinkowskiRFR0%e\wKy<=%&TI F :

Mm → [0, +∞)�
(i) F u Mm \ {0} ���Cr�
(ii) F 1 1- ��=��dq/= u ∈ Mm [ λ > 0�L F (λu) = λF (u)�
(iii) dq/= ∀y ∈ Mm \ {0}�e\y<

gy(u, v) =
1

2

∂2F 2(y + su + tv)

∂s∂t
|t=s=0

.=d~JTvq gy : Mm × Mm → R 1�R=�
Finsler)=%$�l1TB Minkowski vI=Nr�rs$Bl1Nr Mm�>U�1�=%&TI F : TMm → [0, +∞) Pe\wKy<�
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(i) F u TMm \ {0} =

⋃
{TxM

m \ {0} : x ∈ Mm} ���Cr�
(ii) dq/ ∀x ∈ Mm�F |TxMm → [0, +∞) 1%& Minkowski vI�%(^��1�℄=%&o5�dq/ x ∈ Mm�2o�| ω(x) = F (x)�}(^��1�℄ (Mm, ω) 1%& Finsler Nr�oND�wKb ω(x) = gx(y, y) =

F 2(x, y)�} (Mm, ω) l1 Riemann Nr����2ol;8KEO\��j 4.4 ~?��A4� (Mm, ω)�℄M,�Smarandache 4�/R
 Finsler 4���DR
 Riemann 4��
§5. pz[{|u^�S9m!%-'=/\</%I��jpB)�z��j=1q��12oZDo�&�juXjS9 5.1 pC�mw7�{*9��I!i�hTw7�A��7\uh�r��Ap|�#l,L5I&n℄�2llo}Lh&WB��l1/Q [10] 74sWB=>H�"1</�Q;JK�=>H�Einstein a�B�1u79CK1�a=���;/0�B�5�1u�%-Q71V"u=��%�>e=G^�p+Z�>e�e:8WlQ7�;UiV1>���5\1�&�1z1?&�1=	8 4 &�1�/Q [16] 7d�*Ld�X�s�J ��℄74CU[���s�a=zq&%P%doR=:_F}�%'v=�j�a�1:{Bd(^��1 (Mm, ω) [s�j�	P}4&�1=�j,oP�/�uI��o}4sWB="u�0p+�N=>ezq5q>e8�juXjS9 5.2 ��"%'w7|F#+7C��7\p#�m!-'�/\</=o��ump+�HIJ�$r�=�1>���i<YTI�=H$�%dF|=/\</�(*&�V�=M��> )i!$���A'Ho?#+7C���u2V/\V%�=y<K���Z�&1qL%R=�Æ�5%p+�V8�>eV8=TBghB�M/\7r%�1&I1 10�M-/\7=�1&I1 11 V8;*#=M�wM/\y1>�S[r�i�I</�(�u�j= F- /\=�1&I1 12�+℄T�;QX�,?7%'=�1&I/\�j Einstein rz��u�%H��I�([uB</�(=kv�
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1. What is a combinatorial map

A graph Γ is a 2-tuple (V, E) consists of a finite non-empty set V of vertices together

with a set E of unordered pairs of vertices, i.e., E ⊆ V ×V . Often denoted by V (Γ),

E(Γ) the vertex set and edge set of a graph Γ([9]).

For example, the graph in the Fig.1 is a complete graph K4 with vertex set

V = {1, 2, 3, 4} and edge set E = {12, 13, 14, 23, 24, 34}.

Fig.1

A map is a connected topological graph cellularly embedded in a surface. In

1973, Tutte gave an algebraic representation for embedding a graph on locally ori-

entable surface ([18]), which transfer a geometrical partition of a surface to a kind

of permutation in algebra as follows([7][8]).

A combinatorial map M = (Xα,β,P) is defined to be a basic permutation P,

i.e, for any x ∈ Xα,β, no integer k exists such that Pkx = αx, acting on Xα,β, the

disjoint union of quadricells Kx of x ∈ X (the base set), where K = {1, α, β, αβ} is

the Klein group, with the following two conditions holding:

(i) αP = P−1α;

(ii) the group ΨJ =< α, β,P > is transitive on Xα,β.

For a given map M = (Xα,β,P), it can be shown that M∗ = (Xβ,α,Pαβ) is also

a map, call it the dual of the map M . The vertices of M are defined as the pairs

of conjugatcy orbits of P action on Xα,β by the condition (Ci) and edges the orbits

of K on Xα,β, for example, for ∀x ∈ Xα,β, {x, αx, βx, αβx} is an edge of the map

M . Define the faces of M to be the vertices in the dual map M∗. Then the Euler

characteristic χ(M) of the map M is
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χ(M) = ν(M) − ε(M) + φ(M)

where, ν(M), ε(M), φ(M) are the number of vertices, edges and faces of the map

M , respectively. For each vertex of a map M , its valency is defined to be the length

of the orbits of P action on a quadricell incident with u.

Fig.2

For example, the graph K4 on the tours with one face length 4 and another 8 ,

shown in the Fig.2, can be algebraically represented as follows.

A map (Xα,β,P) with Xα,β = {x, y, z, u, v, w, αx, αy, αz, αu, αv, αw, βx, βy, βz,

βu, βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} and

P = (x, y, z)(αβx, u, w)(αβz, αβu, v)(αβy, αβv, αβw)

× (αx, αz, αy)(βx, αw, αu)(βz, αv, βu)(βy, βw, βv)

The four vertices of this map are {(x, y, z), (αx, αz, αy)}, {(αβx, u, w), (βx, αw, αu)},

{(αβz, αβu, v), (βz, αv, βu)} and {(αβy, αβv, αβw), (βy, βw, βv)} and six edges are

{e, αe, βe, αβe}, where, e ∈ {x, y, z, u, v, w}. The Euler characteristic χ(M) is

χ(M) = 4 − 6 + 2 = 0.

Geometrically, an embedding M of a graph Γ on a surface is a map and has an

algebraic representation. The graph Γ is said the underlying graph of the map M

and denoted by Γ = Γ(M). For determining a given map (Xα,β,P) is orientable or

not, the following condition is needed.
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(iii) If the group ΨI = 〈αβ,P〉 is transitive on Xα,β, then M is non-orientable.

Otherwise, orientable.

It can be shown that the number of orbits of the group ΨI = 〈αβ,P〉 in

the Fig.2 action on Xα,β = {x, y, z, u, v, w, αx, αy, αz, αu, αv, αw, βx, βy, βz, βu,

βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} is 2. Whence, it is an orientable map and

the genus of the surface is 1. Therefore, the algebraic representation is correspondent

with its geometrical meaning.

2. What are lost in combinatorial maps

As we known, mathematics is a powerful tool of sciences for its unity and neatness,

without any shade of mankind. On the other hand, it is also a kind of aesthetics

deep down in one’s mind. There is a famous proverb says that only the beautiful

things can be handed down to today, which is also true for the mathematics.

Here, the term unity and neatness is relative and local, also have various con-

ditions. For acquiring the target, many unimportant matters are abandoned in the

process. Whether are those matters in this time still unimportant in another time?

It is not true. That is why we need to think the question: what are lost in the

classical mathematics?

For example, a compact surface is topological equivalent to a polygon with even

number of edges by identifying each pairs of edges along a given direction on it([17]).

If label each pair of edges by a letter e, e ∈ E , a surface S is also identifying to a

cyclic permutation such that each edge e, e ∈ E just appears two times in S, one

is e and another is e−1. Let a, b, c, · · · denote the letters in E and A, B, C, · · · the

sections of successive letters in linear order on a surface S (or a string of letters on

S). Then, a surface can be represented as follows:

S = (· · · , A, a, B, a−1, C, · · ·),

where�a ∈ E andA, B, C denote a string of letters. Define three elementary trans-

formations by

(O1) (A, a, a−1, B) ⇔ (A, B);

(O2) (i) (A, a, b, B, b−1, a−1) ⇔ (A, c, B, c−1);
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(ii) (A, a, b, B, a, b) ⇔ (A, c, B, c);

(O3) (i) (A, a, B, C, a−1, D) ⇔ (B, a, A, D, a−1, C);

(ii) (A, a, B, C, a, D) ⇔ (B, a, A, C−1, a, D−1).

If a surface S0 can be obtained by the elementary transformations O1-O3 from a

surface S, it is said that S is elementary equivalent with S0, denoted by S ∼El S0.

We have known the following formula in [8]:

(i) (A, a, B, b, C, a−1, D, b−1, E) ∼El (A, D, C, B, E, a, b, a−1, b−1);

(ii) (A, c, B, c) ∼El (A, B−1, C, c, c);

(iii) (A, c, c, a, b, a−1, b−1) ∼El (A, c, c, a, a, b, b).

Then we can get the classification theorem of compact surfaces as follows([14]):

Any compact surface is homeomorphic to one of the following standard surfaces:

(P0) the sphere: aa−1;

(Pn) the connected sum of n, n ≥ 1, tori:

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·anbna−1
n b−1

n ;

(Qn) the connected sum of n, n ≥ 1, projective planes:

a1a1a2a2 · · ·anan.

Generally, a combinatorial map is a kind of decomposition of a surface. Notice

that all the standard surfaces are just one face map underlying an one vertex graph.

By a geometrical view, a combinatorial map is also a surface. But this assertion

need more clarifying. For example, see the left graph Π4 in the Fig. 3, which is just

the tetrahedron.

Fig.3
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Whether can we say it is the sphere? Certainly NOT. Since any point u on a

sphere has a neighborhood N(u) homeomorphic to the open disc, therefore, all

angles incident with the point 1 must all be 120◦ degree on a sphere. But in Π4,

they are all 60◦ degree. For making them topologically same, i.e., homeomorphism,

we must blow up the Π4 to a sphere, as shown in the Fig.3. Whence, for getting the

classification theorem of compact surfaces, we lose the angle,area, volume, distance,

curvature,· · ·, etc, which are also lost in the combinatorial maps.

Klein Erlanger Program says that any geometry is finding invariant prop-

erties under a transformation group of this geometry. This is essentially the group

action idea and widely used in mathematics today. In combinatorial maps, we know

the following problems are applications of the Klein Erlanger Program:

(i)to determine isomorphism maps or rooted maps;

(ii)to determine equivalent embeddings of a graph;

(iii)to determine an embedding whether exists;

(iv)to enumerate maps or rooted maps on a surface;

(v)to enumerate embeddings of a graph on a surface;

(vi) · · ·, etc.

All the problems are extensively investigated by researches in the last century

and papers related those problems are still appearing frequently on journals to-

day. Then, what are their importance to classical mathematics? and what are their

contributions to sciences? These are the central topics of this paper.

3. The Smarandache geometries

The Smarandache geometries is proposed by Smarandache in 1969 ([16]), which is

a generalization of the classical geometries, i.e., the Euclid, Lobachevshy-Bolyai-

Gauss and Riemannian geometries may be united altogether in a same space, by

some Smarandache geometries. These last geometries can be either partially Eu-

clidean and partially Non-Euclidean, or Non-Euclidean. It seems that the Smaran-

dache geometries are connected with the Relativity Theory (because they include

the Riemann geometry in a subspace) and with the Parallel Universes (because

they combine separate spaces into one space) too([5]). For a detail illustration, we

need to consider the classical geometries.
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The axioms system of Euclid geometry are the following:

(A1)there is a straight line between any two points.

(A2)a finite straight line can produce a infinite straight line continuously.

(A3)any point and a distance can describe a circle.

(A4)all right angles are equal to one another.

(A5)if a straight line falling on two straight lines make the interior angles on

the same side less than two right angles, then the two straight lines, if produced

indefinitely, meet on that side on which are the angles less than the two right angles.

The axiom (A5) can be also replaced by:

(A5’)given a line l and a point u exterior this line, there is one line passing

through u parallel to the line l.

The Lobachevshy-Bolyai-Gauss geometry, also called hyperbolic geometry, is a

geometry with axioms (A1) − (A4) and the following axiom (L5):

(L5) there are infinitely many line parallels to a given line passing through an

exterior point.

The Riemann geometry, also called elliptic geometry, is a geometry with axioms

(A1) − (A4) and the following axiom (R5):

there are no parallel to a given line passing through an exterior point.

By the thought of Anti-Mathematics: not in a nihilistic way, but in a positive

one, i.e., banish the old concepts by some new ones: their opposites, Smarandache

introduced the paradoxist geometry, non-geometry, counter-projective geometry and

anti-geometry in [16] by contradicts the axioms (A1) − (A5) in Euclid geometry,

generalized the classical geometries.

Paradoxist geometries

In these geometries, their axioms are (A1)− (A4) and with one of the following

as the axiom (P5):

(i)there are at least a straight line and a point exterior to it in this space for

which any line that passes through the point and intersect the initial line.

(ii)there are at least a straight line and a point exterior to it in this space for
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which only one line passes through the point and does not intersect the initial line.

(iii)there are at least a straight line and a point exterior to it in this space for

which only a finite number of lines l1, l2, · · · , lk, k ≥ 2 pass through the point and do

not intersect the initial line.

(iv)there are at least a straight line and a point exterior to it in this space for

which an infinite number of lines pass through the point (but not all of them) and

do not intersect the initial line.

(v)there are at least a straight line and a point exterior to it in this space for

which any line that passes through the point and does not intersect the initial line.

Non-Geometries

These non-geometries are geometries by denial some axioms of (A1) − (A5),

such as:

(A1−)it is not always possible to draw a line from an arbitrary point to another

arbitrary point.

(A2−)it is not always possible to extend by continuity a finite line to an infinite

line.

(A3−)it is not always possible to draw a circle from an arbitrary point and of

an arbitrary interval.

(A4−)not all the right angles are congruent.

(A5−)if a line, cutting two other lines, forms the interior angles of the same

side of it strictly less than two right angle, then not always the two lines extended

towards infinite cut each other in the side where the angles are strictly less than two

right angle.

Counter-Projective geometries

Denoted by P the point set, L the line set and R a relation included in P ×L.

A counter-projective geometry is a geometry with the following counter-axioms:

(C1)there exist: either at least two lines, or no line, that contains two given

distinct points.

(C2)let p1, p2, p3 be three non-collinear points, and q1, q2 two distinct points.

Suppose that {p1.q1, p3} and {p2, q2, p3} are collinear triples. Then the line contain-
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ing p1, p2 and the line containing q1, q2 do not intersect.

(C3)every line contains at most two distinct points.

Anti-Geometries

These geometries are constructed by denial some axioms of the Hilbert’s 21

axioms of Euclidean geometry. As shown in [5], there are at least 221 − 1 anti-

geometries.

The Smarandache geometries are defined as follows.

Definition 3.1 An axiom is said Smarandachely denied if the axiom behaves in at

least two different ways within the same space, i.e., validated and invalided, or only

invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely

denied axiom(1969).

A nice model for Smarandache geometries, called s-manifolds, is found by Iseri

in [3] and [4], which is defined as follows:

An s-manifold is any collection C(T, n) of these equilateral triangular disks

Ti, 1 ≤ i ≤ n satisfying the following conditions:

(i) each edge e is the identification of at most two edges ei, ej in two distinct

triangular disks Ti, Tj, 1 ≤ i, j ≤ n and i 6= j;

(ii) each vertex v is the identification of one vertex in each of five, six or seven

distinct triangular disks.

These vertices are classified by the number of the disks around them. A vertex

around five, six or seven triangular disks is called an elliptic vertex, an Euclid vertex

or a hyperbolic vertex, respectively.

An s-manifold is called closed if each edge is shared by exactly two triangular

disks. An elementary classification for closed s-manifolds by triangulation are made

in the reference [11]. These closed s-manifolds are classified into 7 classes in [11], as

follows:

Classical Type:

(1) ∆1 = {5 − regular triangular maps} (elliptic);

(2) ∆2 = {6 − regular triangular maps}(euclidean);

(3) ∆3 = {7 − regular triangular maps}(hyperbolic).
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Smarandache Type:

(4) ∆4 = {triangular maps with vertex valency 5 and 6} (euclid-elliptic);

(5) ∆5 = {triangular maps with vertex valency 5 and 7} (elliptic-hyperbolic);

(6) ∆6 = {triangular maps with vertex valency 6 and 7} (euclid-hyperbolic);

(7) ∆7 = {triangular maps with vertex valency 5, 6 and 7} (mixed).

It is proved in [11] that |∆1| = 2, |∆5| ≥ 2 and |∆i|, i = 2, 3, 4, 6, 7 are infinite.

Isier proposed a question in [3]: do the other closed 2-manifolds correspond to s-

manifolds with only hyperbolic vertices?. Since there are infinite Hurwitz maps, i.e.,

|∆3| is infinite, the answer is affirmative.

4. Map geometries

Combinatorial maps can be used to construct new geometries, which are nice models

for the Smarandache geometries, also a generalization of Isier’s model and Poincaré’s

model for the hyperbolic geometry.

4.1 Map geometries without boundary

For a given map on a surface, the map geometries without boundary are defined as

follows.

Definition 4.1 For a combinatorial map M with each vertex valency≥ 3, endows

a real number µ(u), 0 < µ(u) < π, with each vertex u, u ∈ V (M). Call (M, µ)

a map geometry with out boundary, µ(u) the angle factor of the vertex u and to be

orientablle or non-orientable if M is orientable or not.

The realization of each vertex u, u ∈ V (M) in R3 space is shown in the Fig.4

for each case of ρ(u)µ(u) > 2π, = 2π or < 2π.

ρ(u)µ(u) < 2π ρ(u)µ(u) = 2π ρ(u)µ(u) > 2π

Fig.4

As pointed out in Section 2, this kind of realization is not a surface, but it is
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homeomorphic to a surface. We classify points in a map geometry (M, µ) without

boundary as follows.

Definition 4.2 A point u in a map geometry (M, µ) is called elliptic, euclidean or

hyperbolic if ρ(u)µ(u) < 2π, ρ(u)µ(u) = 2π or ρ(u)µ(u) > 2π.

Then we have the following results.

Proposition 4.1 Let M be a map with ∀u ∈ V (M), ρ(u) ≥ 3. Then for ∀u ∈ V (M),

there is a map geometries (M, µ) without boundary such that u is elliptic, euclidean

or hyperbolic in this geometry.

Proof Since ρ(u) ≥ 3, we can choose the angle factor µ(u) such that µ(u)ρ(u) <

2π, µ(u)ρ(u) = 2π or µ(u)ρ(u) > 2π. Notice that

0 <
2π

ρ(u)
< π.

Whence, we can also choose µ(u) satisfying that 0 < µ(u) < π ♮

Proposition 4.2 Let M be a map of order≥ 3 and ∀u ∈ V (M), ρ(u) ≥ 3. Then

there exists a map geometry (M, µ) without boundary, in which all points are one of

the elliptic vertices, euclidean vertices and hyperbolic vertices or their mixed.

Proof According to the Proposition 4.1, we can choose an angle factor µ such

that a vertex u, u ∈ V (M) to be elliptic, or euclidean, or hyperbolic. Since |V (M)| ≥

3, we can also choose the angle factor µ such that any two vertices v, w ∈ V (M)\{u}

to be elliptic, or euclidean, or hyperbolic as we wish. Then the map geometry (M, µ)

makes the assertion holding. ♮

A geodesic in a manifold is a curve as straight as possible. Similarly, in a map

geometry, its m-lines and m-points are defined as follows.

Definition 4.3 Let (M, µ) be a map geometry without boundary. An m-line in

(M, µ) is a curve with a constant curvature and points in it are called m-points.

Examples for an m-line on the torus and Klein bottle are shown in Fig.5.
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Fig.5

If an m-line pass through an elliptic point or a hyperbolic point u, it must has

the angle µ(u)ρ(u)
2

with the entering line, not 180◦, which are explained in Fig.6.

a = µ(u)ρ(u)
2

< π a = µ(u)ρ(u)
2

> π

Fig.6

The following proposition asserts that map geometries without boundary are

Smarandache geometries.

Proposition 4.3 For a map M on a locally orientable surface with order≥ 3 and

vertex valency≥ 3, there is an angle factor µ such that (M, µ) is a Smarandache

geometry by denial the axiom (A5) with the axioms (A5),(L5) and (R5).
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Proof According to Proposition 4.1, we know that there exist an angle factor

µ such that there are elliptic vertices, euclidean vertices and hyperbolic vertices in

(M, µ) simultaneously. The proof is divided into three cases.

Case 1. M is a planar map

Notice that for a given line L not pass through the vertices in the map M and

a point u in (M, µ), if u is an euclidean point, then there is one and only one line

passing through u not intersecting with L, and if u is an elliptic point, then there

are infinite lines passing through u not intersecting with L, but if u is a hyperbolic

point, then each line passing through u will intersect with L, see also the Fig.7,

in where, the planar graph is the complete graph K4 and the points 1, 2 is elliptic

vertices, the point 3 is euclidean and the point 4 hyperbolic. Then all m-lines in

the filed A do not intersect with L and each m-line passing through the point 4 will

intersect with the line L. Therefore, (M, µ) is a Smarandache geometry by denial

the axiom (A5) with the axioms (A5), (L5) and (R5).

Fig.7

Case 2. M is an orientable map

According to the classification theorem of compact surfaces, We only need to
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prove this result for the torus. Notice that on the torus, an m-line has the following

properties ([15]):

If the slope ς of m-line L is a rational number, then L is a closed line on the

torus. Otherwise, L is infinite, and moreover L passes arbitrarily close to every

point of the torus.

Whence, if L1 is an m-line on the torus, not passes through an elliptic or

hyperbolic point, then for any point u exterior L1, we know that if u is an euclidean

point, then there is only one m-line passing through u not intersecting with L1, and

if u is elliptic or hyperbolic, then any m-line passing through u will intersect with

L1.

Now let L2 be an m-line passes through an elliptic or hyperbolic point, such as

the m-line in Fig.8 and v an euclidean point.

Fig.8

Then any m-line L in the shade filed passing through the point v will not intersect

with L2. Therefore, (M, µ) is a Smarandache geometry by denial the axiom (A5)

with the axioms (A5),(L5) and (R5).

Case 3. M is a non-orientable map

Similar to the Case 2, by the classification theorem of the compact surfaces, we

only need to prove this result for the projective plane. An m-line in a projective

plane is shown in the Fig.9, in where, case (a) is an m-line passes through euclidean

points, (b) passes through an elliptic point and (c) passes through a hyperbolic



A New View of Combinatorial Maps by Smarandache’s Notion∗ 61

point.

Fig.9

Now let the m-line passes through the center in the circle. Then if u is an euclidean

point, there is only one m-line passing through u, see (a) in the Fig.10. If v is an

elliptic point and there is an m-line passes through it and intersect with L, see (b)

in Fig.10, assume the point 1 is a point such that the m-line 1v passes through 0,

then any m-line in the shade of (b) passing through the point v will intersect with

L.

Fig.10

If w is a hyperbolic point and there is an m-line passing through it and does not

intersect with L, see Fig.10(c), then any m-line in the shade of (c) passing through

the point w will not intersect with L. Since the position of vertices of the map M

on the projective plane can be choose as we wish, the proof is complete. ♮.

4.2 Map geometries with boundary

The Poincaré’s model for the hyperbolic geometry hints us to introduce the map

geometries with boundary, which are defined as follows.
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Definition 4.4 For a map geometry (M, µ) without boundary and faces f1, f2, · · · , fl ∈

F (M), 1 ≤ l ≤ φ(M)−1, if (M, µ)\{f1, f2, · · · , fl} is connected, then call (M, µ)−l =

(M, µ) \ {f1, f2, · · · , fl} a map geometry with boundary f1, f2, · · · , fl and orientable

or not if (M, µ) is orientable or not.

A connected curve with constant curvature in (M, µ)−l is called an m−-line and

points m−-points.

Two m−-lines on the torus and projective plane are shown in Fig.11 and Fig.12.

Fig.11

Fig.12

The map geometries with boundary also are Smarandache geometries, which is

convince by the following result.
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Proposition 4.4 For a map M on a locally orientable surface with order≥ 3, vertex

valency≥ 3 and a face f ∈ F (M), there is an angle factor µ such that (M, µ)−1 is

a Smarandache geometry by denial the axiom (A5) with the axioms (A5),(L5) and

(R5).

Proof Similar to the proof of Proposition 4.3, consider the map M being a

planar map, an orientable map on a torus or a non-orientable map on a projective

plane, respectively. We get the assertion. ♮

Notice that for an one face map geometry (M, µ)−1 with boundary, if we choose

all points being euclidean, then (M, µ)−1 is just the Poincaré’s model for the hyper-

bolic geometry.

4.3 Classification of map geometries

For the classification of map geometries, we introduce the following definition.

Definition 4.5 Two map geometries (M1, µ1), (M2, µ2) or (M1, µ1)
−l, (M2, µ2)

−l are

called to be equivalent if there is a bijection θ : M1 → M2 such that for ∀u ∈ V (M),

θ(u) is euclidean, elliptic or hyperbolic iff u is euclidean, elliptic or hyperbolic.

The relation of the numbers of unrooted maps with the map geometries is in

the following.

Proposition 4.5 If M is a set of non-isomorphisc maps with order n and m faces,

then the number of map geometries without boundary is 3n|M| and the number of

map geometries with one face being its boundary is 3nm|M|.

Proof By the definition, for a map M ∈ M, there are 3n map geometries

without boundary and 3nm map geometries with one face being its boundary by

Proposition 4.3. Whence, we get 3n|M| map geometries without boundary and

3nm|M| map geometries with one face being its boundary from M. ♮.

We have the following enumeration result for non-equivalent map geometries

without boundary.

Proposition 4.6 The numbers nO(Γ, g), nN (Γ, g) of non-equivalent orientable, non-

orientable map geometries without boundary underlying a simple graph Γ by denial

the axiom (A5) by (A5), (L5) or (R5) are
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nO(Γ, g) =

3|Γ|
∏

v∈V (Γ)
(ρ(v) − 1)!

2|AutΓ|
,

and

nN(Γ, g) =

(2β(Γ) − 1)3|Γ|
∏

v∈V (Γ)
(ρ(v) − 1)!

2|AutΓ|
,

where β(Γ) = ε(Γ) − ν(Γ) + 1 is the Betti number of the graph Γ.

Proof Denote by M(Γ) the set of all non-isomorphic maps underlying the graph

Γ on locally orientable surfaces and by E(Γ) the set of all embeddings of the graph Γ

on locally orientable surfaces. For a map M, M ∈ M(Γ), there are 3|M|

|AutM |
different

map geometries without boundary by choosing the angle factor µ on a vertex u such

that u is euclidean, elliptic or hyperbolic. From permutation groups, we know that

|AutΓ × 〈α〉 | = |(AutΓ)M ||MAutΓ×〈α〉| = |AutM ||MAutΓ×〈α〉|.

Therefore, we get that

nO(Γ, g) =
∑

M∈M(Γ)

3|M |

|AutM |

=
3|Γ|

|AutΓ × 〈α〉 |

∑

M∈M(Γ)

|AutΓ × 〈α〉 |

|AutM |

=
3|Γ|

|AutΓ × 〈α〉 |

∑

M∈M(Γ)

|MAutΓ×〈α〉|

=
3|Γ|

|AutΓ × 〈α〉 |
|EO(Γ)|

=

3|Γ|
∏

v∈V (Γ)
(ρ(v) − 1)!

2|AutΓ|
.

Similarly, we get that

nN (Γ, g) =
3|Γ|

|AutΓ × 〈α〉 |
|EN(Γ)|

=

(2β(Γ) − 1)3|Γ|
∏

v∈V (Γ)
(ρ(v) − 1)!

2|AutΓ|
.
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This completes the proof. ♮

For the classification of map geometries with boundary, we have the following

result.

Proposition 4.7 The numbers nO(Γ,−g), nN (Γ,−g) of non-equivalent orientable,

non-orientable map geometries with one face being its boundary and underlying a

simple graph Γ by denial the axiom (A5) by (A5), (L5) or (R5) are respective

nO(Γ,−g) =
3|Γ|

2|AutΓ|
[(β(Γ) + 1)

∏

v∈V (Γ)

(ρ(v) − 1)! −
2d(g[Γ](x))

dx
|x=1]

and

nN (Γ,−g) =
(2β(Γ) − 1)3|Γ|

2|AutΓ|
[(β(Γ) + 1)

∏

v∈V (Γ)

(ρ(v) − 1)! −
2d(g[Γ](x))

dx
|x=1],

where g[Γ](x) is the genus polynomial of the graph Γ ( see [12]), i.e., g[Γ](x) =
γm(Γ)∑
k=γ(Γ)

gk[Γ]xk with gk[Γ] being the number of embeddings of Γ on the orientable sur-

face of genus k.

Proof Notice that ν(M)−ε(M)+φ(M) = 2−2g(M) for an orientable map M

by the Euler characteristic. Similar to the proof of Proposition 4.6 with the notation

M(Γ), by Proposition 4.5 we know that

nO(Γ,−g) =
∑

M∈M(Γ)

φ(M)3|M |

|AutM |

=
∑

M∈M(Γ)

(2 + ε(Γ) − ν(Γ) − 2g(M))3|M |

|AutM |

=
∑

M∈M(Γ)

(2 + ε(Γ) − ν(Γ))3|M |

|AutM |
−

∑

M∈M(Γ)

2g(M)3|M |

|AutM |

=
(2 + ε(Γ) − ν(Γ))3|M |

|AutΓ × 〈α〉 |

∑

M∈M(Γ)

|AutΓ × 〈α〉 |

|AutM |

−
2 × 3|Γ|

|AutΓ × 〈α〉 |

∑

M∈M(Γ)

g(M)|AutΓ × 〈α〉 |

|AutM |

=
(β(Γ) + 1)3|M |

|AutΓ × 〈α〉 |

∑

M∈M

(Γ)|MAutΓ×〈α〉|
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−
3|Γ|

|AutΓ|

∑

M∈M(Γ)

g(M)|MAutΓ×〈α〉|

=
(β(Γ) + 1)3|Γ|

2|AutΓ|

∏

v∈V (Γ)

(ρ(v) − 1)! −
3|Γ|

|AutΓ|

γm(Γ)∑

k=γ(Γ)

kgk[Γ]

=
3|Γ|

2|AutΓ|
[(β(Γ) + 1)

∏

v∈V (Γ)

(ρ(v) − 1)! −
2d(g[Γ](x))

dx
|x=1].

Notice that nL(Γ,−g) = nO(Γ,−g)+nN(Γ,−g) and the number of re-embeddings

of an orientable map M on surfaces is 2β(M) (see also [13]). We have that

nL(Γ,−g) =
∑

M∈M(Γ)

2β(M) × 3|M |φ(M)

|AutM |

= 2β(M)nO(Γ,−g).

Whence, we get that

nN (Γ,−g) = (2β(M) − 1)nO(Γ,−g)

=
(2β(M) − 1)3|Γ|

2|AutΓ|
[(β(Γ) + 1)

∏

v∈V (Γ)

(ρ(v) − 1)! −
2d(g[Γ](x))

dx
|x=1].

This completes the proof. ♮

4.4 Polygons in a map geometry

A k-polygon in a map geometry is a k-polygon with each line segment being m-lines

or m−-lines. For the sum of the internal angles in a k-polygon, we have the following

result.

Proposition 4.8 Let P be a k-polygon in a map geometry with each line segment

passing through at most one elliptic or hyperbolic point. If H is the set of elliptic

points and hyperbolic points on the line segment of P , then the sum of the internal

angles in P is

(k + |H| − 2)π −
1

2

∑

u∈H

ρ(u)µ(u).
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Proof Denote by U, V the sets of elliptic points and hyperbolic points in H and

|U | = p, |V | = q. If an m-line segment passes through an elliptic point u, add an

auxiliary line segment in the plane as shown in Fig.13(1). Then we get that

angle a = angle1 + angle2 = π −
ρ(u)µ(u)

2
.

If an m-line passes through an hyperbolic point v, also add an auxiliary line

segment in the plane as shown in Fig.13(2). Then we get that

angle b = angle3 + angle4 =
ρ(v)µ(v)

2
− π.

Fig.13

Since the sum of the internal angles of a k-polygon in the plane is (k − 2)π, we

know that the sum of the internal angles in P is

(k −2)π +
∑

u∈U

(π −
ρ(u)µ(u)

2
) −

∑

v∈V

(
ρ(u)µ(u)

2
− π)

= (k + p + q − 2)π −
1

2

∑

u∈H

ρ(u)µ(u)

= (k + |H| − 2)π −
1

2

∑

u∈H

ρ(u)µ(u).

This completes the proof. ♮

As a corollary, we get the sum of the internal angles of a triangle in a map

geometry as follows, which is consistent with the classical results.
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Corollary 4.1 Let △ be a triangle in a map geometry. Then

(i) if △ is euclidean, then then the sum of its internal angles is equal to π;

(ii) if △ is elliptic, then the sum of its internal angles is less than π;

(iii) if △ is hyperbolic, then the sum of its internal angles is more than π.

5. Open problems for applying maps to classical geometries

Here is a collection of open problems concerned combinatorial maps with these

Riemann geometry and Smarandache geometries. Although they are called open

problems, in fact, any solution for one of these problems needs to establish a new

mathematical system first.

5.1 The uniformization theorem for simple connected Riemann surfaces

The uniformization theorem for simple connected Riemann surfaces is one of those

beautiful results in the Riemann surface theory, which is stated as follows([2]).

If S is a simple connected Riemann surface, then S is conformally equivalent

to one and only one of the following three:

(a) C
⋃
∞;

(b) C;

(c) △ = {z ∈ C||z| < 1}.

We have proved in [11] that any automorphism of a map is conformal. Therefore, we

can also introduced the conformal mapping between maps. Then, how can we define

the conformal equivalence for maps enabling us to get the uniformization theorem of

maps? What is the correspondent map classes with the three type (a)− (c) Riemann

surfaces?

5.2 Combinatorial construction of an algebraic curve of genus

A complex plane algebraic curve Cl is a homogeneous equation f(x, y, z) = 0 in P2C =

(C2 \ (0, 0, 0))/ ∼, where f(x, y, z) is a polynomial in x, y and z with coefficients in

C. The degree of f(x, y, z) is said the degree of the curve Cl. For a Riemann surface

S, a well-known result is ([2])there is a holomorphic mapping ϕ : S → P2C such that

ϕ(S) is a complex plane algebraic curve and
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g(S) =
(d(ϕ(S)) − 1)(d(ϕ(S)) − 2)

2
.

By map theory, we know a combinatorial map also is on a surface with genus.

Then whether can we get an algebraic curve by all edges in a map or by make

operations on the vertices or edges of the map to get plane algebraic curve with

given k-multiple points? and how do we find the equation f(x, y, z) = 0?

5.3 Classification of s-manifolds by maps

We present an elementary classification for the closed s-manifolds in the Section 3.

For the general s-manifolds, their correspondent combinatorial model is the maps

on surfaces with boundary, founded by Bryant and Singerman in 1985 ([1]). The

later are also related to the modular groups of spaces and need to investigate further

themselves. The questions are

(i) how can we combinatorially classify the general s-manifolds by maps with

boundary?

(ii) how can we find the automorphism group of an s-manifold?

(iii) how can we know the numbers of non-isomorphic s-manifolds, with or

without root?

(iv) find rulers for drawing an s-manifold on a surface, such as, the torus, the

projective plane or Klein bottle, not only the plane.

These s-manifolds only using triangulations of surfaces with vertex valency in

{5, 6, 7}. Then what are the geometrical meaning of the other maps, such as, the

4-regular maps on surfaces. It is already known that the later is related to the Gauss

cross problem of curves([9]).

5.4 Map geometries

As we have seen in the previous section, map geometries are nice models of the

Smarandache geometries. More works should be dong for them.

(i) For a given graph G, determine properties of map geometries underlying G.

(ii) For a given locally orientable surface S, determine the properties of map
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geometries on S.

(iii) Classify map geometries on a locally orientable surface.

(iv) Enumerate non-equivalent map geometries underlying a graph or on a lo-

cally orientable surface.

(v) Establish the surface geometry by map geometries.

5.5 Gauss mapping among surfaces

In the classical differential geometry, a Gauss mapping among surfaces is defined as

follows([10]):

Let S ⊂ R3 be a surface with an orientation N. The mapping N : S → R3

takes its value in the unit sphere

S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}

along the orientation N. The map N : S → S2, thus defined, is called the Gauss

mapping.

We know that for a point P ∈ S such that the Gaussian curvature K(P ) 6= 0

and V a connected neighborhood of P with K does not change sign,

K(P ) = lim
A→0

N(A)

A
,

where A is the area of a region B ⊂ V and N(A) is the area of the image of B by

the Gauss mapping N : S → S2. The questions are

(i) what is its combinatorial meaning of the Gauss mapping? How to realizes

it by maps?

(ii) how can we define various curvatures for maps and rebuilt the results in

the classical differential geometry?

5.6 The Gauss-Bonnet theorem

Let S be a compact orientable surface. Then

∫ ∫

S
Kdσ = 2πχ(S),
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where K is the Gaussian curvature on S.

This is the famous Gauss-Bonnet theorem for compact surface ([2], [6]). The

questions are

(i) what is its combinatorial meaning of the Gauss curvature?

(ii) how can we define the angle, area, volume, curvature, · · ·, of a map?

(iii) can we rebuilt the Gauss-Bonnet theorem by maps? or can we get a gen-

eralization of the classical Gauss-Bonnet theorem by maps?

5.7 Riemann manifolds

A Riemann surface is just a Riemann 2-manifold, which has become a source of the

mathematical creative power. A Riemann n-manifold (M, g) is a n-manifold M with

a Riemann metric g. Many important results in Riemann surfaces are generalized to

Riemann manifolds with a higher dimension ([6]). For example, let M be a complete,

simple-connected Riemann n-manifold with constant sectional curvature c, then we

know that M is isometric to one of the model spaces Rn, SRn or HRn . Whether can

we systematically rebuilt the Riemann manifold theory by combinatorial maps? or

can we make a combinatorial generalization of results in the Riemann geometry, for

example, the Chern-Gauss-Bonnet theorem ([6])?
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Abstract: A map is a connected topological graph cellularly embedded in a

surface. On the past century, works on maps are concentrated on its combi-

natorial counterpart without metrics, such as, the embedding of graphs and

the enumeration of maps. For returning to its original face, the conception

of map geometries is introduced, which are nice models of the Smarandache

geometries, also a new kind of intrinsic geometry of surfaces. Some properties

of parallel bundles in planar map geometries are obtained in this paper. Open

problems related combinatorial maps with the differential geometry, Riemann

geometry and Smarandache geometries are also presented for further applica-
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1. Questions for a combinatorial problem

When we research a mathematical problem, the following four questions should

be asked firstly by ourself, which is the same for a combinatorial problem.

• What is its contribution to combinatorics?

• What is its contribution to mathematics?

• What is its contribution to sciences?

• Is its contribution local or global?

The topic introduced in this report has stood a trial by the four questions.

2. What are Smarandache geometries?

Definition 2.1 An axiom is said Smarandachely denied if the axiom behaves in at

least two different ways within the same space, i.e., validated and invalided, or only

invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely

denied axiom (1969).

F. Smarandache, Mixed noneuclidean geometries, eprint arXiv: math/0010119, 10/2000.

L.F.Mao, Automorphism groups of maps, surfaces and Smarandache geometries, American

Research Press, Rehoboth, NM,2005. Also see the web page: www. gallup. unm. edu/

smarandache/Linfan.pdf

• Applications to classical geometries

The axioms system of Euclid geometry is in the following:

(A1)there is a straight line between any two points.

(A2)a finite straight line can produce a infinite straight line continuously.

(A3)any point and a distance can describe a circle.

(A4)all right angles are equal to one another.

(A5)if a straight line falling on two straight lines make the interior angles on

the same side less than two right angles, then the two straight lines, if produced
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indefinitely, meet on that side on which are the angles less than the two right angles.

The axiom (A5) can be also replaced by:

(A5’)given a line and a point exterior this line, there is one line parallel to this

line.

The Lobachevshy-Bolyai-Gauss geometry, also called hyperbolic geometry, is a

geometry with axioms (A1) − (A4) and the following axiom (L5):

(L5) there are infinitely many line parallels to a given line passing through an

exterior point.

The Riemann geometry is a geometry with axioms (A1)−(A4) and the following

axiom (R5):

there is no parallel to a given line passing through an exterior point.

• Further applications

(1)Relativity Theory (Because they include the Riemann geometry in a sub-

space)

(2)Parallel Universes (Because they combine separate spaces into one space)

L.Kuciuk and M.Antholy, An Introduction to Smarandache Geometries, Mathematics

Magazine, Aurora, Ca- nada, Vol.12(2003)

• Iseri’s model for Smarandache geometries

An s-manifold is any collection C(T, n) of these equilateral triangular disks

Ti, 1 ≤ i ≤ n satisfying the following conditions:

(i) Each edge e is the identification of at most two edges ei, ej in two distinct

triangular disks Ti, Tj, 1 ≤ i, j ≤ n and i 6= j;

(ii) Each vertex v is the identification of one vertex in each of five, six or seven

distinct triangular disks.

H.Iseri, Smarandache manifolds, American Research Press, Rehoboth, NM,2002.

3. What is a map?

A combinatorial map is a connected topological graph cellularly embedded in a

surface.

Definition 3.1: A combinatorial map M = (Xα,β,P) is defined to be a basic per-
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mutation P, i.e, for any x ∈ Xα,β, no integer k exists such that Pkx = αx, act-

ing on Xα,β, the disjoint union of quadricells Kx of x ∈ X (the base set), where

K = {1, α, β, αβ} is the Klein group, with the following two conditions holding:

(i) αP = P−1α;

(ii) the group ΨJ =< α, β,P > is transitive on Xα,β.

W.T.Tutte, What is a maps? in New Directions in the Theory of Graphs (ed.by F.Harary),

Academic Press (1973), 309 325.

Y.P.Liu, Advances in Combinatorial Maps(in Chinese), Northern Jiaotong University Pub-

lisher, Beijing (2003).

Y.P.Liu, Enumerative Theory of Maps, Kluwer Academic Publisher, Dordrecht / Boston

/ London (1999).

• Orientation:

If the group ΨI = 〈αβ,P〉 is transitive on Xα,β, then M is non-orientable.

Otherwise, orientable.

• An Example of Maps: K4 on the torus.

Fig.1

M = (Xα,β,P):

Xα,β = {x, y, z, u, v, w, αx, αy, αz, αu, αv,

αw, βx, βy, βz, βu, βv, βw, αβx, αβy,

αβz, αβu, αβv, αβw}



An Introduction to Smarandache Geometries on Maps 77

P = (x, y, z)(αβx, u, w)(αβz, αβu, v)

× (αβy, αβv, αβw)(αx, αz, αy)(βx, αw, αu)

× (βz, αv, βu)(βy, βw, βv)

Vertices:

v1 = {(x, y, z), (αx, αz, αy)}

v2 = {(αβx, u, w), (βx, αw, αu)}

v3 = {(αβz, αβu, v), (βz, αv, βu)}

v4 = {(αβy, αβv, αβw), (βy, βw, βv)}

Edges:

{e, αe, βe, αβe}, e ∈ {x, y, z, u, v, w}

Faces:

f1 = {(x, u, v, αβw, αβx, y, αβv, αβz), (βx, αz, αv, βy, αx, αw, βv, βu)}

f2 = {(z, αβu, w, αβy), (βz, αy, βw, αu)}

4. Map geometries

Definition 4.1 For a combinatorial map M , endows a real number µ(u), 0 <

µ(u) < π, with each vertex u, u ∈ V (M). Call (M, µ) a map geometry without

boundary, µ(u) the angle factor of the vertex u and to be orientablle or non-orientable

if M is orientable or not.

L.F.Mao, A new view of combinatorial maps by Smarandache’s notion, arXiv: Math.

GM/0506232.

• A realization of a vertex u, u ∈ V (M) in R3 space.

ρ(u)µ(u) < 2π ρ(u)µ(u) = 2π ρ(u)µ(u) > 2π

Fig.2
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Theorem 4.1 For a map M on a locally orientable surface with order≥ 3, there is

an angle factor µ such that (M, µ) is a Smarandache geometry by denial the axiom

(A5) with the axioms (A5),(L5) and (R5).

Definition 4.2 For a map geometry (M, µ) without boundary and faces f1, f2, · · · , fl ∈

F (M), 1 ≤ l ≤ φ(M)−1, if (M, µ)\{f1, f2, · · · , fl} is connected, then call (M, µ)−l =

(M, µ) \ {f1, f2, · · · , fl} a map geometry with boundary f1, f2, · · · , fl and orientable

or not if (M, µ) is orientable or not.

• An one face map geometry (M, µ)−1 with boundary is just the Poincaré’s model

for the hyperbolic geometry if we choose all points being euclidean.

Theorem 4.2 For a map M on a locally orientable surface with order≥ 3 and a face

f ∈ F (M), there is an angle factor µ such that (M, µ)−1 is a Smarandache geometry

by denial the axiom (A5) with the axioms (A5),(L5) and (R5).

• Map geometries are a generalization of s-manifolds.

• Enumeration results for map geometries:

Theorem 4.3 The numbers nO(Γ, g), nN(Γ, g) of non-equivalent orientable, non-

orientable map geometries without boundary underlying a simple graph Γ by denial

the axiom (A5) by (A5), (L5) or (R5) are

nO(Γ, g) =

3|Γ|
∏

v∈V (Γ)
(ρ(v) − 1)!

2|AutΓ|
,

and

nN(Γ, g) =

(2β(Γ) − 1)3|Γ|
∏

v∈V (Γ)
(ρ(v) − 1)!

2|AutΓ|
,

where β(Γ) = ε(Γ) − ν(Γ) + 1 is the Betti number of the graph Γ.

Similarly, we can also get enumeration results for map geometries with boundary.

5. Parallel bundles in planar map geometries

Definition 5.1 A family L of infinite lines not intersecting each other in a planar

geometry is called a parallel bundle.
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Fig.3

Theorem 5.1 Let (M, µ) be a planar map geometry, C = {u1v1, u2v2, · · · , ulvl} a

cut of the map M with order u1v1, u2v2, · · · , ulvl from the left to the right, l ≥ 1 and

the angle functions on them are f1, f2, · · · , fl, respectively, also see the Fig.4.

Fig.4

Then a family L of parallel lines passing through C is a parallel bundle iff for any

x, x ≥ 0,

f ′
1(x) ≥ 0

f ′
1+(x) + f ′

2+(x) ≥ 0

f ′
1+(x) + f ′

2+(x) + f ′
3+(x) ≥ 0

· · · · · · · · · · · ·

f ′
1+(x) + f ′

2+(x) + · · · + f ′
l+(x) ≥ 0.

Theorem 5.2 Let (M, µ) be a planar map geometry, C = {u1v1, u2v2, · · · , ulvl} a
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cut of the map M with order u1v1, u2v2, · · · , ulvl from the left to the right, l ≥ 1 and

the angle functions on them are f1, f2, · · · , fl. Then the parallel lines parallel the

initial parallel lines after them passing through C iff for ∀x ≥ 0,

f ′
1(x) ≥ 0

f ′
1+(x) + f ′

2+(x) ≥ 0

f ′
1+(x) + f ′

2+(x) + f ′
3+(x) ≥ 0

· · · · · · · · · · · ·

f ′
1+(x) + f ′

2+(x) + · · ·+ f ′
l−1+(x) ≥ 0

and

f1(x) + f2(x) + · · ·+ fl(x) = lπ.

• Linear criterion

Theorem 5.3 Let (M, µ) be a planar map geometry, C = {u1v1, u2v2, · · · , ulvl} a

cut of the map M with order u1v1, u2v2, · · · , ulvl from the left to the right, l ≥ 1.

Then under the linear assumption, a family L of parallel lines passing through C is

a parallel bundle iff the angle factor µ satisfies the following linear inequality system

ρ(v1)µ(v1) ≥ ρ(u1)µ(u1)

ρ(v1)µ(v1)

d(u1v1)
+

ρ(v2)µ(v2)

d(u2v2)
≥

ρ(u1)µ(u1)

d(u1v1)
+

ρ(u2)µ(u2)

d(u2v2)

· · · · · · · · · · · ·

ρ(v1)µ(v1)

d(u1v1)
+

ρ(v2)µ(v2)

d(u2v2)
+ · · · +

ρ(vl)µ(vl)

d(ulvl)
≥

ρ(u1)µ(u1)

d(u1, v1)
+ · · · +

ρ(ul)µ(ul)

d(ul, vl)
.

Corollary 5.1 Let (M, µ) be a planar map geometry with M underlying a regular

graph, C = {u1v1, u2v2, · · · , ulvl} a cut of the map M with order u1v1, u2v2, · · · , ulvl
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from the left to the right, l ≥ 1. Then under the linear assumption, a family L of

parallel lines passing through C is a parallel bundle iff the angle factor µ satisfies

the following linear inequality system

µ(v1) ≥ µ(u1)

µ(v1)

d(u1v1)
+

µ(v2)

d(u2v2)
≥

µ(u1)

d(u1v1)
+

µ(u2)

d(u2v2)

· · · · · · · · · · · ·

µ(v1)

d(u1v1)
+

µ(v2)

d(u2v2)
+ · · · +

µ(vl)

d(ulvl)
≥

µ(u1)

d(u1v1)
+

µ(u2)

d(u2v2)
+ · · · +

µ(ul)

d(ulvl)

and particularly, if assume that all the lengths of edges in C are the same, then

µ(v1) ≥ µ(u1)

µ(v1) + µ(v2) ≥ µ(u1) + µ(u2)

· · · · · · · · · · · · · · ·

µ(v1) + µ(v2) + · · ·+ µ(vl) ≥ µ(u1) + µ(u2) + · · ·+ µ(ul).

Theorem 5.4 Let (M, µ) be a planar map geometry, C = {u1v1, u2v2, · · · , ulvl} a

cut of the map M with order u1v1, u2v2, · · · , ulvl from the left to the right, l ≥ 1. If

for any integer i, i ≥ 1,

ρ(ui)

ρ(vi)
≤

µ(vi)

µ(ui)
,

then under the linear assumption, a family L of parallel lines passing through C is

a parallel bundle.

• A example of parallel bundle:
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Fig.5

More results for parallel bundles can be seen in:

Linfan Mao, Parallel bundles in planar map geometries, e-print: arXiv: math.GM/0506386,

also appearing in Scientia Magna, Vol.1(2005), No.2,120-133.

6. Open Problems

• The uniformization theorem for simple connected Riemann surfaces:

If S is a simple connected Riemann surface, then S is conformally equivalent

to one and only one of the following three:

(a) C
⋃
∞;

(b) C;

(c) △ = {z ∈ C||z| < 1}.

Problem 6.1: How can we define the conformal equivalence for maps enabling us

to get the uniformization theorem of maps?

Problem 6.2 What is the correspondence class maps with the three type (a) − (c)

Riemann surfaces?

• The Gauss-Bonnet Theorem

Let S be a compact orientable surface. Then
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∫ ∫

S
Kdσ = 2πχ(S),

where K is Gaussian curvature on S.

Problem 6.3 What is its combinatorial meaning of the Gauss curvature?

Problem 6.4 How can we define the angle, area, volume, curvature, · · ·, of a map?

Problem 6.5 Can we rebuilt the Gauss-Bonnet theorem by maps? Or can we get a

generalization of the classical Gauss-Bonnet theorem by maps?

• Map Geometries

Problem 6.6 For a given graph, determine the properties of map geometries under-

lying this graph.

Problem 6.7 For a given locally orientable surface, determine the properties of map

geometries on this surface.

Problem 6.8 Classify map geometries on a given locally orientable surface.

Problem 6.9 Enumerate non-equivalent map geometries underlying a graph or on

a locally orientable surface.

Problem 6.10 Establish the surface geometry by map geometries.



84 Linfan Mao: Mathematics of 21st Century–A Collection of Selected Papers

A Multi-Space Model for

Chinese Bids Evaluation with Analyzing∗

Linfan Mao

Chinese Academy of Mathematics and System Sciences, Beijing 100080, P.R.China

maolinfan@163.com

Abstract. A tendering is a negotiating process for a contract through by

a tenderer issuing an invitation, bidders submitting bidding documents and

the tenderer accepting a bidding by sending out a notification of award. As

a useful way of purchasing, there are many norms and rulers for it in the

purchasing guides of the World Bank, the Asian Development Bank, · · ·, also

in contract conditions of various consultant associations. In China, there is

a law and regulation system for tendering and bidding. However, few works

on the mathematical model of a tendering and its evaluation can be found in

publication. The main purpose of this paper is to construct a Smarandache

multi-space model for a tendering, establish an evaluation system for bidding

based on those ideas in the references [7] and [8] and analyze its solution by

applying the decision approach for multiple objectives and value engineering.

Open problems for pseudo-multi-spaces are also presented in the final section.�z�R<℄��fT�lF�Z$[�z. �b7�b�I�Y�Y{�gb�_qY{/NY���b�I�/bb!��VY�'℄2�YZ���S{ox'℄2T0�4W?[�N$Ær�EL3$�hox'M/B�b'>{C
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§1. Introduction

The tendering is an efficient way for purchasing in the market economy. According to

the Contract Law of the People’s Republic of China (Adopted at the second meeting

of the Standing Committee of the 9th National People’s Congress on March 15,1999),

it is just a civil business through by a tenderer issuing a tendering announcement

or an invitation, bidders submitting bidding documents compiled on the tendering

document and the tenderer accepting a bidding after evaluation by sending out a

notification of award. The process of this business forms a negotiating process of a

contract. In China, there is an interval time for the acceptation of a bidding and

becoming effective of the contract, i.e., the bidding is accepted as the tenderer send

out the notification of award, but the contract become effective only as the tenderer

and the successful bidder both sign the contract.

In the Tendering and Bidding Law of the People’s Republic of China (Adopted

at the 11th meeting of the Standing Committee of the 9th National People’s Congress

on August 30,1999), the programming and liability or obligation of the tenderer,

the bidders, the bid evaluation committee and the government administration are

stipulated in detail step by step. According to this law, the tenderer is on the side

of raising and formulating rulers for a tender project and the bidders are on the

side of response each ruler of the tender. Although the bid evaluation committee is

organized by the tenderer, its action is independent on the tenderer. In tendering

and bidding law and regulations of China, it is said that any unit or person can

not disturbs works of the bid evaluation committee illegally. The action of them

should consistent with the tendering and bidding law of China and they should place
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themselves under the supervision of the government administration.

The role of each partner can be represented by a tetrahedron such as those

shown in Fig.1.

Fig.1

The 41th item in the Tendering and Bidding Law of the People’s Republic of

China provides conditions for a successful bidder:

(1) optimally responsive all of the comprehensive criterions in the tendering

document;

(2) substantially responsive criterions in the tender document with the lowest

evaluated bidding price unless it is lower than this bidder’s cost.

The conditions (1) and (2) are often called the comprehensive evaluation method

and the lowest evaluated price method. In the same time, these conditions also

imply that the tendering system in China is a multiple objective system, not only

evaluating in the price, but also in the equipments, experiences, achievements, staff

and the programme, etc.. However, nearly all the encountered evaluation methods

in China do not apply the scientific decision of multiple objectives. In where, the

comprehensive evaluation method is simply replaced by the 100 marks and the lowest

evaluated price method by the lowest bidding price method. Regardless of whether

different objectives being comparable, there also exist problems for the ability of

bidders and specialists in the bid evaluation committee creating a false impression

for the successful bidding price or the successful bidder. The tendering and bidding

is badly in need of establishing a scientific evaluation system in accordance with

these laws and regulations in China. Based on the reference [7] for Smarandache

multi-spaces and the mathematical model for the tendering in [8], the main purpose
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of this paper is to establish a multi-space model for the tendering and a scientific

evaluation system for bids by applying the approach in the multiple objectives and

value engineering, which enables us to find a scientific approach for tendering and

its management in practice. Some cases are also presented in this paper.

The terminology and notations are standard in this paper. For terminology and

notation not defined in this paper can be seen in [7] for multi-spaces, in [1]− [3] and

[6] for programming, decision and graphs and in [8] for the tendering and bidding

laws and regulations in China.

§2. A multi-space model for tendering

Under an idea of anti-thought or paradox for mathematics :combining different fields

into a unifying field, Smarandache introduced the conception of multi-spaces in

1969([9]-[12]), including algebraic multi-spaces and multi-metric spaces. The con-

tains the well-known Smarandache geometries([5]− [6]), which can be used to Gen-

eral Relativity and Cosmological Physics([7]). As an application to Social Sciences,

multi-spaces can be also used to establish a mathematical model for tendering.

These algebraic multi-spaces are defined in the following definition.

Definition 2.1 An algebraic multi-space
∑

with multiple m is a union of m sets

A1, A2, · · · , Am

∑
=

m⋃

i=1

Ai,

where 1 ≤ m < +∞ and there is an operation or ruler ◦i on each set Ai such that

(Ai, ◦i) is an algebraic system for any integer i, 1 ≤ i ≤ m.

Notice that if i 6= j, 1 ≤ i, j ≤ m, there must not be Ai

⋂
Aj = ∅, which are just

correspondent with the characteristics of a tendering. Thereby, we can construct a

Smarandache multi-space model for a tendering as follows.

Assume there are m evaluation items A1, A2, · · · , Am for a tendering Ã and there

are ni evaluation indexes ai1, ai2, · · · , aini
for each evaluation item Ai, 1 ≤ i ≤ m.

By applying mathematics, this tendering can be represented by

Ã =
m⋃

i=1

Ai,



88 Linfan Mao: Mathematics of 21st Century–A Collection of Selected Papers

where, for any integer i, 1 ≤ i ≤ m,

(Ai, ◦i) = {ai1, ai2, · · · , aini
|◦i}

is an algebraic system. Notice that we do not define other relations of the tendering

Ã and evaluation indexes aij with Ai, 1 ≤ i ≤ m unless Ai ⊆ Ã and aij ∈ Ai in this

multi-space model.

Now assume there are k, k ≥ 3 bidders R1, R2, · · · , Rk in the tendering Ã and

the bidding of bidder Rj , 1 ≤ j ≤ k is

Rj(Ã) = Rj




A1

A2

· · ·

Am




=




Rj(A1)

Rj(A2)

· · ·

Rj(Am)




.

According to the successful bidding criterion in the Tendering and Bidding Law

of the People’s Republic of China and regulations, the bid evaluation committee

needs to determine indexes i1, i2, · · · , ik, where {i1, i2, · · · , ik} = {1, 2, · · · , k} such

that there is an ordered sequence

Ri1(Ã) ≻ Ri2(Ã) ≻ · · · ≻ Rik(Ã)

for these bidding R1(Ã), R2(Ã), · · · , Rk(Ã) of bidders R1, R2, · · · , Rk. Here, these

bidders Ri1 , Ri2 and Ri3 are pre-successful bidders in succession determined by the

bid evaluation committee in the laws and regulations in China.

Definition 2.2 An ordered sequence for elements in the symmetry group Sn on

{1, 2, · · · , m} is said an alphabetical sequence if it is arranged by the following crite-

rions:

(i) (1, 0 · · · , 0) � P for any permutation P ∈ Sn.

(ii) if integers s1, s2, · · · , sh ∈ {1, 2, · · · , m}, 1 ≤ h < m and permutations

(s1, s2, · · · , sh, t, · · ·), (s1, s2, · · · , sh, l, · · ·) ∈ Sn, then

(s1, s2, · · · , sh, t, · · ·) ≻ (s1, s2, · · · , sh, l, · · ·)
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if and only if t < l. Let {xσi
}n

1 be a sequence, where σ1 ≻ σ2 ≻ · · · ≻ σn and σi ∈ Sn

for 1 ≤ i ≤ n, then the sequence {xσi
}n

1 is said an alphabetical sequence.

Now if xσ ≻ xτ , xσ is preferable than xτ in order. If xσ � xτ , then xσ is

preferable or equal with xτ in order. If xσ � xτ and xτ � xσ, then xσ is equal xτ in

order, denoted by xσ ≈ xτ .

We get the following result for an evaluation of a tendering.

Theorem 2.1 Let O1, O2, O3 · · · be ordered sets. If Rj(Ã) ∈ O1 ×O2 ×O3 × · · · for

any integer j, 1 ≤ j ≤ k, then there exists an arrangement i1, i2, · · · , ik for indexes

1, 2, · · · , k such that

Ri1(Ã) � Ri2(Ã) � · · · � Rik(Ã).

Proof By the assumption, for any integer j, 1 ≤ j ≤ k,

Rj(Ã) ∈ O1 × O2 × O3 × · · · .

Whence, Rj(Ã) can be represented by

Rj(Ã) = (xj1, xj2, xj3, · · ·),

where xjt ∈ Ot, t ≥ 1. Define a set

St = {xjt; 1 ≤ j ≤ m}.

Then the set St ⊆ Ot is finite. Because the set Ot is an ordered set, so there exists

an order for elements in St. Not loss of generality, assume the order is

x1t � x2t � · · · � xmt,

for elements in St. Then we can apply the alphabetical approach to Ri1(Ã), Ri2(Ã),

· · · , Rik(Ã) and get indexes i1, i2, · · · , ik such that

Ri1(Ã) � Ri2(Ã) � · · · � Rik(Ã). ♮



90 Linfan Mao: Mathematics of 21st Century–A Collection of Selected Papers

If we choose Oi, i ≥ 1 to be an ordered function set in Theorem 2.1, particularly,

let O1 = {f}, f : Ai → R, 1 ≤ i ≤ m be a monotone function set and Ot = ∅ for

t ≥ 2, then we get the next result.

Theorem 2.2 Let Rj : Ai → R, 1 ≤ i ≤ m, 1 ≤ j ≤ k be monotone functions. Then

there exists an arrangement i1, i2, · · · , ik for indexes 1, 2, · · · , k such that

Ri1(Ã) � Ri2(Ã) � · · · � Rik(Ã).

We also get the following consequence for evaluation numbers by Theorem 2.2.

Corollary 2.1 If Rj(Ai) ∈ [−∞, +∞] × [−∞, +∞] × [−∞, +∞] × · · · for any

integers i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ k, then there exists an arrangement i1, i2, · · · , ik for

indexes 1, 2, · · · , k such that

Ri1(Ã) � Ri2(Ã) � · · · � Rik(Ã).

Notice that in the above ordered sequence, if we arrange Ris ≻ Ril or Ril ≻ Ris

further in the case of Ris ≈ Ril , s 6= l, then we can get an ordered sequence

Ri1(Ã) ≻ Ri2(Ã) ≻ · · · ≻ Rik(Ã),

and the pre-successful bidders accordance with the laws and regulations in China.

§3. A mathematical analog for bids evaluation

For constructing an evaluation system of bids by the multi-space of tendering, the

following two problems should be solved in the first.

Problem 1 For any integers i, j, 1 ≤ i, j ≤ m, how to determine Rj(Ai) on account

of the responsiveness of a bidder Rj on indexes ai1, ai2, · · · , aini
?

Problem 2 For any integer j, 1 ≤ j ≤ m, how to determine Rj(Ã) on account of

the vector (Rj(A1), Rj(A2), · · · , Rj(Am))t?

Different approaches for solving Problems 1 and 2 enable us to get different

mathematical analogs for bids evaluation.

3.1. An approach of multiple objectives decision
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This approach is originated at the assumption that Rj(A1), Rj(A2), · · · , Rj(Am), 1 ≤

j ≤ m are independent and can not compare under a unified value unit. The

objectives of tendering is multiple, not only in the price, but also in the equipments,

experiences, achievements, staff and the programme, etc., which are also required by

the 41th item in the Tendering and Bidding Law of the People’s Republic of China.

According to Theorems 2.1 − 2.2 and their inference, we can establish a pro-

gramming for arranging the order of each evaluation item Ai, 1 ≤ i ≤ m and getting

an ordered sequence of bids R1(Ã), R2(Ã), · · · , Rk(Ã) of a tendering Ã =
m⋃

i=1
Ai, as

follows:

STEP 1 determine the order of the evaluation items A1, A2, · · · , Am. For ex-

ample, for m = 5, A1 ≻ A2 ≈ A3 ≻ A4 ≈ A5 is an order of the evaluation items

A1, A2, A3, A4, A5.

STEP 2 for two bids Rj1(Ai), Rj2(Ai), j1 6= j2, 1 ≤ i ≤ m, determine the

condition for Rj1(Ai) ≈ Aj2(A2). For example, let A1 be the bidding price. Then

Rj1(A1) ≈ Rj2(A1) providing |Rj1(A) − Rj2(A1)| ≤ 100(10 thousand yuan).

STEP 3 for any integer i, 1 ≤ i ≤ m, determine the order of R1(Ai), R2(Ai),

· · · , Rk(Ai). For example, arrange the order of bidding price from lower to higher

and the bidding programming dependent on the evaluation committee.

STEP 4 alphabetically arrange R1(Ã), R2(Ã), · · · , Rk(Ã), which need an ap-

proach for arranging equal bids Rj1(Ã) ≈ Rj2(Ã) in order. For example, arrange

them by the ruler of lower price preferable and get an ordered sequence

Ri1(Ã) ≻ Ri2(Ã) ≻ · · · ≻ Rik(Ã)

of these bids R1(Ã), R2(Ã), · · · , Rk(Ã).

Notice that we can also get an ordered sequence through by defining the weight

functions

ω(Ã) = H(ω(A1), ω(A2), · · · , ω(Am))

and

ω(Ai) = F (ω(ai1), ω(ai2), · · · , ω(aini
)).

For the weight function in detail, see the next section.
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Theorem 3.1 The ordered sequence of bids of a tendering Ã can be gotten by the

above programming.

Proof Assume there are k bidders in this tendering. Then we can alphabetically

arrange these bids Ri1(Ã), Ri2(Ã), · · · , Rik(Ã) and get

Ri1(Ã) � Ri2(Ã) � · · · � Rik(Ã).

Now applying the arranging approach in the case of Rj1(Ã) ≈ Rj2(Ã), we finally

obtain an ordered sequence

Ri1(Ã) ≻ Ri2(Ã) ≻ · · · ≻ Rik(Ã). ♮

Example 3.1 There are 3 evaluation items in a building construction tendering Ã

with A1 =price, A2=programming and A3=similar achievements in nearly 3 years.

The order of the evaluation items is A1 ≻ A3 ≻ A2 and Rj1(Ai) ≈ Rj2(Ai), 1 ≤ i ≤ 3

providing |Rj1(A1) − Rj2(A1)| ≤ 150, Rj1(A2) and Rj2(A2) are in the same rank or

the difference of architectural area between Rj1(A3) and Rj2(A3) is not more than

40000m2. For determining the order of bids for each evaluation item, it applies the

rulers that from the lower to the higher for the price, from higher rank to a lower

rank for the programming by the bid evaluation committee and from great to small

amount for the similar achievements in nearly 3 years and arrange Rj1(Ã), Rj2(Ã),

1 ≤ j1, j2 ≤ k =bidders by the ruler of lower price first for two equal bids in order

Rj1(Ã) ≈ Rj2(Ã).

There were 4 bidders R1, R2, R3, R4 in this tendering. Their bidding prices are

in table 1.

bidder R1 R2 R3 R4

A1 3526 3166 3280 3486

table 1

Applying the arrangement ruler for A1, the order for R2(A1), R3(A1), R4(A1),

R1(A1) is

R2(A1) ≈ R3(A1) ≻ R4(A1) ≈ R1(A1).



A Multi-Space Model for Chinese Bids Evaluation with Analyzing 93

The evaluation order for A2 by the bid evaluation committee is R3(A2) ≈

R2(A2) ≻ R1(A2) ≻ R4(A2). They also found the bidding results for A3 are in

table 2.

bidder R1 R2 R3 R4

A3(m
2) 250806 210208 290108 300105

table 2

Whence the order of R4(A3), R3(A3), R1(A3), R2(A3) is

R4(A3) ≈ R3(A3) ≻ R1(A3) ≈ R2(A3).

Therefore, the ordered sequence for these bids R1(Ã), R2(Ã), R3(Ã) and R4(Ã)

is

R3(Ã) ≻ R2(Ã) ≻ R4(Ã) ≻ R1(Ã).

Let the order of evaluation items be A1 ≻ A2 ≻ · · · ≻ Am. Then we can

also get the ordered sequence of a tendering by applying a graphic method. By

the terminology in graph theory, to arrange these bids of a tendering is equivalent

to find a directed path passing through all bidders R1, R2, · · · , Rk in a graph G[Ã]

defined in the next definition. Generally, the graphic method is more convenience in

the case of less bidders, for instance 7 bidders for a building construction tendering

in China.

Definition 3.1 Let R1, R2, · · · , Rk be all these k bidders in a tendering Ã =
m⋃

i=1
Ai.

Define a directed graph G[Ã] = (V (G[Ã]), E(G[Ã])) as follows.

V (G[Ã]) = {R1, R2, · · · , Rk} × {A1, A2, · · · , Am}, E(G[Ã]) = E1
⋃

E2
⋃

E3,

where E1 consists of all these directed edges (Rj1(Ai), Rj2(Ai)), 1 ≤ i ≤ m, 1 ≤

j1, j2 ≤ k and Rj1(Ai) ≻ Rj2(Ai) is an adjacent order. Notice that if Rs(Ai) ≈

Rl(Ai) ≻ Rj(Ai), then there are Rs(Ai) ≻ Rj(Ai) and Rl(Ai) ≻ Rj(Ai) simulta-

neously. E2 consists of edges Rj1(Ai)Rj2(Ai), 1 ≤ i ≤ m, 1 ≤ j1, j2 ≤ k, where

Rj1(Ai) ≈ Rj2(Ai) and E3 = {Rj(Ai)Rj(Ai+1)|1 ≤ i ≤ m − 1, 1 ≤ j ≤ k}.

For example, the graph G[Ã] for Example 3.1 is shown in Fig.2.
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Fig.2

Now we need to find a directed path passing through R1, R2, R3, R4 with start

vertex R2(A1) or R3(A1). By the ruler in an alphabetical order, we should travel

starting from the vertex R3(A1) passing through A2, A3 and then arriving at A1.

Whence, we find a direct path correspondent with the ordered sequence

R3(Ã) ≻ R2(Ã) ≻ R4(Ã) ≻ R1(Ã).

3.2. An approach of simply objective decision

This approach is established under the following considerations for Problems 1 and

2.

Consideration 1 In these evaluation items A1, A2, · · · , Am of a tendering Ã, seek

the optimum of one evaluation item. For example, seek the lowest bidding price in a

construction tendering for a simply building or seek the optimum of design scheme

in a design project tendering, etc..

Consideration 2 The value of these evaluation items A1, A2, · · · , Am is comparable

which enables us to measure each of them by a unify unit and to construct various

weighted functions on them. For example, the 100 marks and the lowest evaluated

price method widely used in China are used under this consideration.

3.2.1. The optimum of one objective

Assume the optimal objective being A1 in a tendering Ã =
m⋃

i=1
Ai. We need to deter-

mine the acceptable basic criterions for all other items A2, A3, · · · , Ak, then arrange

R1(A1), R2(A1), · · · , Rl(A1) among these acceptable bids R1, R2, · · · , Rl for items

A2, A3, · · · , Ak in Ri, 1 ≤ i ≤ k. For example, evaluating these items A2, A3, · · · , Ak
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by qualification or by weighted function on A2, A3, · · · , Ak up to these criterions,

then arrange these acceptable bids R1, R2, · · · , Rl under their response to A1 and

the order of Ri(Ã), Ri(Ã) if Ri(A1) ≈ Rj(A1). According to Theorem 3.1, we get

the following result.

Theorem 3.2 The approach of one optimal objective can get an ordered sequence

of bids for a tendering Ã.

Example 3.2 The optimum of design scheme is the objective in a design project

tendering Ã which is divided into 5 ranks A, B, C, D, E and other evaluation items

such as human resources, design period and bidding price by a qualifiable approach

if the bidding price is in the interval of the service fee norm of China. The final

order of bids is determined by the order of design schemes with qualifiable human

resources, design period and bidding price and applying the ruler of lower price first

for two equal design scheme in order.

There were 8 bidders in this tendering. Their bidding prices are in table 3.

bidder R1 R2 R3 R4 R5 R6 R7 R8

bidding price 251 304 268 265 272 283 278 296

table 3

After evaluation for these human resources, design period and bidding price,

4 bidders are qualifiable unless the bidder R5 in human resources. The evaluation

result for bidding design schemes is in table 4.

rank A B C D E

design scheme R3�R6 R1 R2�R8 R7 R4

table 4

Therefore, the ordered sequence for bids is

R3(
˜

A) ≻ R6(Ã) ≻ R1(Ã) ≻ R8(Ã) ≻ R2(Ã) ≻ R7(Ã) ≻ R4(Ã).

Example 3.3 The optimum objective in a tendering Ã for a construction of a

dwelling house is the bidding price A1. All other evaluation items, such as qualifica-

tions, management persons and equipments is evaluated by a qualifiable approach.
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There were 7 bidders Ri, 1 ≤ i ≤ 7 in this tendering. The evaluation of price

is by a weighted function approach, i.e., determine the standard price S first, then

calculate the mark N of each bidder by the following formulae

S =
(

7∑
i=1

Ai − max{Ri(A1)|1 ≤ i ≤ 7} − min{Ri(A1)|1 ≤ i ≤ 7}

5
,

Ni = 100 − t × |
Ri(A1) − S

S
| × 100, 1 ≤ i ≤ 7,

where, if Ri(A1) − S > 0 then t = 6 and if Ri(A1) − S < 0 then t = 3.

After evaluation, all bidders are qualifiable in qualifications, management per-

sons and equipments. Their bidding prices are in table 5.

bidder R1 R2 R3 R4 R5 R6 R7

A1 3518 3448 3682 3652 3490 3731 3436

table 5

According to these formulae, we get that S = 3558 and the mark of each bidder

as those shown in table 6.

bidder R1 R2 R3 R4 R5 R6 R7

mark 96.70 91.27 79.12 84.16 94.27 73.84 89.68

table 6

Therefore, the ordered sequence of bids is

R1(Ã) ≻ R5(Ã) ≻ R2(Ã) ≻ R7(Ã) ≻ R4(Ã) ≻ R3(Ã) ≻ R6(Ã).

3.2.2. The pseudo-optimum of multiple objectives

This approach assumes that there is a unifying unit between these evaluation items

A1, A2, · · · , Am in an interval [a, b]. Whence it can be transformed into case 3.2.1

and sought the optimum of one objective. Not loss of generality, we assume the

unifying unit is ̟ and

̟(Ai) = fi(̟), 1 ≤ i ≤ m,
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where fi denotes the functional relation of the metric ̟(Ai) with unit ̟. Now the

objective of tendering turns to a programming of one objective

max
̟

F (f1(̟), f2(̟), · · · , fm(̟)) or min
̟

F (f1(̟), f2(̟), · · · , fm(̟)),

where F denotes the functional relation of the tendering Ã with these evaluation

items A1, A2, · · · , Am, which can be a weighted function, such as a linear function

F (f1(̟), f2(̟), · · · , fm(̟)) =
m∑

i=1

fi(̟)

or an ordered sequence. According to Theorem 3.2, we know the following result.

Theorem 3.3 If the function F of a tendering Ã only has one maximum value in

[a, b], then there exists an ordered sequence for these bids Ri(Ã), 1 ≤ i ≤ k after

determined how to arrange Ri(Ã) and Rj(Ã) when F (Ri(Ã)) = F (Rj(Ã)), i 6= j.

The 100 marks and the lowest evaluated price method widely used in China

both are applications of this approach. In the 100 marks, the weight function is a

linear function

F (f1(̟), f2(̟), · · · , fm(̟)) =
m∑

i=1

fi(̟),

with 0 ≤ F (f1(̟), f2(̟), · · · , fm(̟)) ≤ 100, fi ≥ 0, 1 ≤ i ≤ m. In the lowest

evaluated price method, each difference of an evaluation item Ai, 2 ≤ i ≤ m is

changed to the bidding price ̟(A1), i.e.,

fi = (R(Ai) − S(Ai))̟(A1), 1 ≤ i ≤ m,

where S(Ai) is the standard line for Ai, ̟(Ai) is one unit difference of Ai in terms

of A1. The weighted function of the lowest evaluated price method is

F (̟(A1), f2(̟(A1)), · · · , fm(̟(A1))) = (1 +
m∑

j=2

(R(Ai) − S(Ai)))̟(A1).

For example, we can fix one unit difference of a technological parameter 15, i.e.,

̟(A1) = 15 ten thousand dollars in terms of the bidding price.
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§4. Weighted functions and their construction

We discuss weighted functions on the evaluation items or indexes in this section.

First, we give a formal definition for weighted functions.

Definition 4.1 For a tendering Ã =
m⋃

i=1
Ai, where Ai = {ai1, ai2, · · · , ain}, 1 ≤ i ≤ m

with k bidders R1, R2, · · · , Rk, if there is a continuous function ω : Ã → [a, b] ⊂

(−∞, +∞) or ω : Ai → [a, b] ⊂ (−∞, +∞), 1 ≤ i ≤ m such that for any integers

l, s, 1 ≤ l, s ≤ k, Rl(ω(Ã)) > Rs(ω(Ã)) or Rl(ω(Ã)) = Rs(ω(Ã)) as Rl(Ã) ≻ Rs(Ã)

or Rl(Ã) ≈ Rs(Ã) and Rl(ω(Ai) > Rs(ω(Ai)) or Rl(ω(Ai)) = Rs(ω(Ai)) as Rl(Ai) ≻

Rs(Ai) or Rl(Ai) ≈ Rs(Ai), 1 ≤ i ≤ m, then ω is called a weighted function for the

tendering Ã or the evaluation items Ai, 1 ≤ i ≤ m.

According to the decision theory of multiple objectives([3]), the weighted func-

tion ω(Ai) must exists for any integer i, 1 ≤ i ≤ m. but generally, the weight

function ω(Ã) does not exist if the values of these evaluation items A1, A2, · · · , Am

can not compare. There are two choice for the weighted function ω(Ai).

Choice 1 the monotone functions in the interval [a, b], such as the linear functions.

Choice 2 The continuous functions only with one maximum value in the interval

[a, b], such as ω(Ai) = −2x2 + 6x + 12 or

ω(Ai) =





x, if 0 ≤ x ≤ 2,

−x + 4, if x ≥ 4.

As examples of concrete weighted functions ω, we discuss the tendering of civil

engineering constructions.

4.1. The weighted function for the bidding price

Let A1 be the bidding price. We often encounter the following weighted function

ω(A1) in practice.

ω(Ri(A1)) = −ς ×
Ri(A1) − S

S
+ ζ

where,

S =
R1(A1) + R2(A1) + · · ·+ Rk(A1)

k
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or

S =





R1(A1)+R2(A1)+···+Rk(A1)−M−N

k−2
, k ≥ 5,

R1(A1)+R2(A1)+···+Rk(A1)
k

, 3 ≤ k ≤ 4

or

S = T × A% +
R1(A1) + R2(A1) + · · ·+ Rk(A1)

k
× (1 − A%).

Where T ,A%,k, M and N are the pre-price of the tender, the percentage of T in S,

the number of bidders and the maximum and minimum bidding price, respectively,

Ri(A1), i = 1, 2, · · · , k denote the bidding prices and ς, ζ are both constants.

There is a postulate in these weighted functions, i.e., each bidding price is

random and accord with the normal distribution. Then the best excepted value

of this civil engineering is the arithmetic mean of these bidding prices. However,

each bidding price is not random in fact. It reflects the bidder’s expected value and

subjectivity in a tendering. We can not apply any definite mathematics to fix its

real value. Therefore, this formula for a weighted function can be only seen as a

game, not a scientific decision.

By the view of scientific decision, we can apply weighted functions according

to the expected value and its cost in the market, such as

(1) the linear function

ω(Ri(A1)) = −p ×
Ri(A1) − N

M − N
+ q

in the interval [N, M ], where M, N are the maximum and minimum bidding prices

p is the deduction constant and q is a constant such that Ri(ω(A1)) ≥ 0, 1 ≤ i ≤ k.

The objective of this approach is seek a lower bidding price.

(2) non-linear functions in the interval [N, M ], such as

ω(Ri(A1)) = −p ×
Ri(A1) −

T+
k∑

j=1

Ri(A1)

k+1

+
q,

ω(Ri(A1)) = −p ×
Ri(A1) −

k+1

√
R1(A1)R2(A1) · · ·Rk(A1)T

k+1

√
R1(A1)R2(A1) · · ·Rk(A1)T

+ q
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or

ω(Ri(A1)) = −p ×
Ri(A1) −

√
R2

1(A1)+R2
2(A1)+···+R2

k
(A1)+T 2

k+1√
R2

1(A1)+R2
2(A1)+···+R2

k
(A1)+T 2

k+1

+ q

etc.. If we wish to analog a curve for these bidding prices and choose a point on this

curve as ω(Ri(A1)), we can apply the value of a polynomial of degree k + 1

f(x) = ak+1x
k+1 + akx

k + · · · + a1x + a0

by the undetermined coefficient method. Arrange the bidding prices and pre-price

of the tender from lower to higher. Not loss of generality, let it be Rj1(A1) ≻

R(j2)(A1) ≻ · · · ≻ T ≻ · · · ≻ Rjk
(A1). Choose k + 2 constants c1 > c2 > · · · >

ck+1 > 0, for instance k + 1 > k > · · · > 1 > 0. Solving the equation system

Rj1(A1) = ak+1c
k+1
1 + akc

k
1 + · · ·+ a1c1 + a0

Rj2(A1) = ak+1c
k+1
2 + akc

k
2 + · · ·+ a1c2 + a0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Rjk−1
(A1) = ak+1c

k+1
k + akc

k
k + · · ·+ a1ck + a0

Rjk
(A1) = a0

we get a polynomial f(x) of degree k + 1. The bidding price has an acceptable

difference in practice. Whence, we also need to provide a bound for the difference

which does not affect the ordered sequence of bids.

4.2. The weighted function for the programming

Let A2 be the evaluation item of programming with evaluation indexes {a21, a22,

· · · , a2n2}. It is difficult to evaluating a programming in quantify, which is not only

for the tender, but also for the evaluation specialists. In general, any two indexes of

A2 are not comparable. Whence it is not scientific assigning numbers for each index

since we can not explain why the mark of a programming is 96 but another is 88.

This means that it should qualitatively evaluate a programming or a quantify after

a qualitatively evaluation. Its weight function ω(Ri(A2)), 1 ≤ i ≤ k can be chosen

as a linear function
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ω(Ri(A2)) = ω(Ri(a21)) + ω(Ri(a22)) + · · ·+ ω(Ri(a2n2)).

For example, there are 4 evaluation indexes for the programming, and each

with A, B, C, D ranks in a tendering. The corespondent mark for each rank is in

table 7.

index a21 a22 a23 a24

A 4 2 2 1

B 3 1.5 1.5 0.8

C 2 1 1 0.5

D 1 0.5 0.5 0.3

table 7

If the evaluation results for a bidding programming Ri, 1 ≤ i ≤ 4 are ω(Ri(a21)) =

A, ω(Ri(a22)) = B, ω(Ri(a23)) = B and ω(Ri(a24)) = A, then the mark of this pro-

gramming is

Ri(ω(A2)) = Ri(ω(a21)) + Ri(ω(a22)) + Ri(ω(a23)) + Ri(ω(a24))

= 4 + 3 + 1.5 + 1 = 9.5.

By the approach in Section 3, we can alphabetically or graphicly arrange the

order of these programming if we can determine the rank of each programming.

Certainly, we need the order of these indexes for a programming first. The index

order for programming is different for different constructions tendering.

§5. Further discussions

5.1 Let Ã =
m⋃

i=1
Ai be a Smarandache multi-space with an operation set O(Ã) =

{◦i; 1 ≤ i ≤ m}. If there is a mapping Θ on Ã such that Θ(Ã) is also a Smarandache

multi-space, then (Ã, Θ) is called a pseudo-multi-space. Today, nearly all geometries,

such as the Riemann geometry, Finsler geometry and these pseudo-manifold geome-

tries are particular cases of pseudo-multi-geometries.

For applying Smarandache multi-spaces to an evaluation system, choose Θ(Ã)

being an order set. Then Theorem 3.1 only asserts that any subset of Θ(Ã) is an
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order set, which enables us to find the ordered sequence for all bids in a tendering.

Particularly, if Θ(Ã) is continuous and Θ(Ã) ⊆ [−∞, +∞], then Θ is a weighted

function on Ã widely applied in the evaluation of bids in China. By a mathematical

view, many problems on (Ã, Θ) is valuable to research. Some open problems are

presented in the following.

Problem 5.1 Characterize these pseudo-multi-spaces (Ã, Θ), particularly, for these

cases of Θ(Ã) =
n⋃

i=1
[ai, bi], Θ(Ã) =

n⋃
i=1

(Gi, ◦i) and Θ(Ã) =
n⋃

i=1
(R; +i, ◦i) with (Gi, ◦i)

and (R; +i, ◦i) being a finite group or a ring for 1 ≤ i ≤ n.

Problem 5.2 Let Θ(Ã) be a group, a ring or a filed. Can we find an ordered sequence

for a finite subset of Ã?

Problem 5.3 Let Θ(Ã) be n lines or n planes in an Euclid space Rn. Characterize

these pseudo-multi-spaces (Ã, Θ). Can we find an arrangement for a finite subset of

Ã?

5.2 The evaluation approach in this paper can be also applied to evaluate any multi-

ple objectives, such as the evaluation of a scientific project, a personal management

system, an investment of a project, · · ·, etc..
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A Mathematical Model for

Chinese Bids Evaluation with Its Solution Analyzing

Abstract. A tendering is a negotiating process for a contract through by

a tenderer issuing an invitation, bidders submitting bidding documents and

the tenderer accepting a bidding by sending out a notification of award. As

a useful way of purchasing, there are many norms and rulers for it in the

purchasing guides of the World Bank, the Asian Development Bank, · · ·, also

in contract conditions of various consultant associations.

1e-print: .�{6/��$�200607-112.
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In China, there is a law and regulation system for tendering and bidding. How-

ever, few works on the mathematical model of a tendering and its evaluation

can be found in publication. The main purpose of this paper is to construct a

Smarandache multi-space model for a tendering, establish an evaluation sys-

tem for bidding based on those ideas in the references [7] and [8] and analyze

its solution by applying the decision approach for multiple objectives and value

engineering. The final section discusses some questions for the bids evaluation

system already existed in China today. Some suggestions for solving these

questions are presented in this section..V	��b�gb�bb�Smarandache3�A�/b`H�CJbtq��Jbtq�~J�b?�#i8 AMS(2000): 90B50,90C35,90C90

1. �xÆL17r�7=%;s$Lb=^4z)�&p	7qpz2[J_�q
�EkThJpz+M)��1999 � 3 k 15 u�7=FR�ÆL%$�1ÆLp�LÆL0!��L�\Bo.z�g�\��Lp&p�\GE�LT�g�ÆLpo7L�#B���g=%;z.�W��WL���3�B%;_�j"=L���L�;z)jR=_��>_��7V_��bL%R=#1l��ÆLp[7Lpo7L�#B/*T_��7�0+LJz&qLSBBv_�k\M{_��b�	7qpz2[JÆL�Lq
�EkThJpz+M)��1999 � 8 k 30u�7FRBÆL�L���aVÆL�L�W=ÆLp��Lp�7L'a�[ÆL�Ls .[?/Yn'z={q�f4V0>�>7ÆLp1p&qÆLZ��2RÆLF}=%z��Lp}1&pÆLF}Y:�L=%z�>VÆLF}=�_v}F&q_?=E}z7L'a�$7"�\lqWFR7L'a�FÆLp&q_?�0>s%V&%PÆLp��#FRq℄.+[&pV;}q�℄�<Y7L=L�[OK�1Ud\7=E}z��E}zuÆL�L�W7=s%:�_qWFR�K�L<s .[?/Yn&q%�=.[�7JÆL�LqWsIFR=ÆL�L,^C�1�Tvs�w	 1 d'zs%[sr\wE�
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	 1. ÆL�W'z=<I	7qpz2[JÆL�Lq
ET!%yFRB7Lp:2�_KEy<$%��1��5`)S^De\ÆL/<7FR='ZY_7,LR��2��5e\ÆL/<=%4v�^�PV7�=�L,%`?�01�L,%?P��,=Æ���1=y<�1�[�2�%$�l1s:8=�Y_76q�[�7�=`?7L,q���%y�#"℄*Tu7JJ�%s=ÆLs21%;h�Ls2�V.��V,%5W��#z�V�DM=�%9�paO��[z�=DF>5W�li��Ns:8=7Lzq}�>5.v�Vd�Vh�Lw=
�zq[:��V=1q�wY_76q%$�m#�2'�b+�i7�=`?7L,q}%5.=`?�L,qb+�VV\�;h�Ls2KV��L$11�"u,'Av�.l�N�Lp[7LK(K#W4u�L�7"7l"u}h1q�&Kz�Z�7L�����7LOK����j�w℄uqWQR=y<K?7%;
�=7,sIl�B2>$���/=E��=uP&p�k℄umJ*=KF [7] 7 Smardanche =�1/\[ [8] 7=ÆLI��q�̂ Ch�Lw[,'-�/\�?7%;�%=ÆL7,sI=I��q�P[s/\�A[%9dA�,<	^%;
�=ÆL7,sI�[ie\%$ÆL�?/=z���/7L<=�1=DX:/Q [7]�>eFt�w[	\zv=DX: [1]-[3][ [6]�7JÆL�LqWqFzv=DX:/Q [8]�
2. �zAz�2t�l&p>p=�uQ&���h\�QX�Smarandache P 1969 �pB=�1



��_�(GIE<1�VZ� 107=���[9]-[12]���%��0 +I=�1[=^��1?;�k�0 �NJ$�E%�Q= Smarandache �℄�[5]-[6]��,&K:CPE0Ud\[WB</��[7]��i%=^��1=%&%$:C�eNIVC$3zÆL7,sI=I��q��} 2.1 ℄m m- 3�A ∑�7d{ m m.� A1, A2, · · · , Am 'f���
1 ≤ m < +∞,

∑
=

m⋃

i=1

Aiw;m.� Ai �v7d�℄2�P'�
 ◦i .& (Ai, ◦i) {℄m�F^����
n {��F�1 ≤ i ≤ m�J/�z i 6= j, 1 ≤ i, j ≤ m��1PV%R�^ Ai

⋂
Aj = ∅�VÆLZ�=oH�Vd:�p�,d%&ÆLZ�3z Smarandache =�1�qwK�*R%&ÆLZ� Ã 7�1B m &7,Z� A1, A2, · · · , Am�l&7,Z�

Ai 7N�1B ni &7�)L ai1, ai2, · · · , aini
��1�1 ≤ i ≤ m�̂ CI�ME��&ÆLZ�%

Ã =
m⋃

i=1

Ai,>7�dq/�I i, 1 ≤ i ≤ m,

(Ai, ◦i) = {ai1, ai2, · · · , aini
|◦i}%%;+IsI�J/�Æ Ai ⊆ Ã [ aij ∈ Ai ��2oPkLFRÆLZ� Ã,�7L)L aij V Ai, 1 ≤ i ≤ m =<I�Pu*R�Z�L k, k ≥ 3 &�Lp R1, R2, · · · , Rk a)B�L��Lp

Rj , 1 ≤ j ≤ k =�L[�1
Rj(Ã) = Rj




A1

A2

· · ·

Am




=




Rj(A1)

Rj(A2)

· · ·

Rj(Am)




.
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�>U<qFFR=jR7Lpzq%4�z�&p�Lp R1, R2, · · · , Rk =�L R1(Ã), R2(Ã), · · · , Rk(Ã) `:jRGL
i1, i2, · · · , ik��1 {i1, i2, · · · , ik} = {1, 2, · · · , k}�';>�L"u �

Ri1(Ã) ≻ Ri2(Ã) ≻ · · · ≻ Rik(Ã),i Ri1 , Ri2 [ Ri3 l17JqWqFjR=&�Æ8=7Li�p��} 2.2 �F. {1, 2, · · · , m} �'�^+ Sn _qa�z
_>'XC|{I1XC�
(i) B+ P ∈ Sn�(1, 0 · · · , 0) � P�
(ii) ��F s1, s2, · · · , sh ∈ {1, 2, · · · , m}, 1 ≤ h ≤ m�+ (s1, s2, · · · , sh, t, · · ·),

(s1, s2, · · · , sh, l, · · ·) ∈ Sn�

(s1, s2, · · · , sh, t, · · ·) ≻ (s1, s2, · · · , sh, l, · · ·)�w^� t < l�� {xσi

}n
1 7℄mC���� σ1 ≻ σ2 ≻ · · · ≻ σn w σi ∈ Sn�
|C� {xσi

}n
1 {℄mI1XCC��� xσ ≻ xτ�
| xσ Cnr xτ�� xσ � xτ�
| xσ Ci�r xτ�q� xσ � xτw xτ � xσ��>| xσ u xτ C�2o;8Kv�&<PÆLOK �=%'vOK��j 2.1 �.� O1, O2, O3 · · · {�C.��B�F j, 1 ≤ j ≤ k, Rj(Ã) ∈

O1 × O2 × O3 × · · ·, 
��Ob 1, 2, · · · , k '℄2XCTL i1, i2, · · · , ik .&
Ri1(Ã) � Ri2(Ã) � · · · � Rik(Ã).�C &p*��dq/�I j, 1 ≤ j ≤ k,

Rj(Ã) ∈ O1 × O2 × O3 × · · · ,9 Rj(Ã) ,M*�
Rj(Ã) = (xj1, xj2, xj3, · · ·),�1 xjt ∈ Ot, t ≥ 1�R0�_
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St = {xjt; 1 ≤ j ≤ m},}L St ⊆ Ot %LS�_�5% Ot %h���9 St 7=^"u ��V�;Jv�>%
x1t � x2t � · · · � xmt,},^CXJ �=zqd Ri1(Ã), Ri2(Ã), · · · , Rik(Ã) [s ��̀ k;8GL

i1, i2, · · · , ik�';
Ri1(Ã) � Ri2(Ã) � · · · � Rik(Ã). ♮zbR/ 2.1 7 Oi, i ≥ 1 %rLh�=TI�_�oND�O1 = {f}, f : Ai →

R, 1 ≤ i ≤ m %.PTI�Vz t ≥ 2�Ot = ∅�}FR/ 2.1 #�j 2.2 � Rj : Ai → R, 1 ≤ i ≤ m, 1 ≤ j ≤ k {�4�F, 
��Ob
1, 2, · · · , k '℄2XCTL i1, i2, · · · , ik .&

Ri1(Ã) � Ri2(Ã) � · · · � Rik(Ã).oND�R/ 2.2 LwKÆ\�Fu 2.1 �B�F i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ k�p Rj(Ai) ∈ R×R×R×· · ·�
��Ob 1, 2, · · · , k '℄2XCTL i1, i2, · · · , ik .&
Ri1(Ã) � Ri2(Ã) � · · · � Rik(Ã).J/u�E �7�z&p%$[�[%XgR Ris ≈ Ril , s 6= l #= �zq�}2ol,;8e\7JqWqF�^= �
Ri1(Ã) ≻ Ri2(Ã) ≻ · · · ≻ Rik(Ã),�i&qÆ87Li�p�

3. �z�R<℄�2t��u�%NÆL�LI��q	��?7ÆL7,sIz�Pw,K?&1q�



110 8!O: H'^5<GI1�/S9 1�B�F i, j, 1 ≤ i, j ≤ m��X_qgb� Rj �'b ai1, ai2, · · · ,

aini
/'gb	7 Rj(Ai)?S9 2�B�F j, 1 ≤ j ≤ m��X_q,� (Rj(A1), Rj(A2), · · · , Rj(Am))tZA Rj(Ã)?d,�?&1q=V�r&�*$ÆL7,sIV�=I���zq�
3.1. ��y`�;\�;sI=I�oH1r%1q 2 7= Rj(A1), Rj(A2), · · · , Rj(Am) Up\7�V�^C�%=,'-�[sdA�	PÆLV.�1�%&V=,%��#�^7LpL>V=�DW4�#Æ[?/%9��"1	7qpz2[JÆL�Lq
ET!%y7Ly<bQ^=�&p�%NR/ 2.1−2.2�>Æ\�2o,%'vD?7ÆLZ� Ã =

m⋃
i=1

Ai=l&7,Z� Ai, 1 ≤ i ≤ m =I� �zq�[iwRhY�L R1(Ã), R2(Ã),

· · · , Rk(Ã) = ��>jRXCwK�� 1 |�	7b?+J A1, A2, · · · , Am 'XCT���� m = 5 )�A1 ≻

A2 ≈ A3 ≻ A4 ≈ A5 m7b?+J A1, A2, A3, A4, A5 '℄2XCT��� 2 |� B�mi'gb Rj1(Ai), Rj2(Ai), j1 6= j2, 1 ≤ i ≤ m�	7
Rj1(Ai) ≈ Aj2(A2) '`H�� A1 �dgbT?����7� |Rj1(A)−Rj2(A1)| ≤

100 ty�B℄�
 Rj1(A1) ≈ Rj2(A1)�� 3 |�B�F i, 1 ≤ i ≤ m�	7 R1(Ai), R2(Ai), · · · , Rk(Ai) 'XCT����B7Bbom?=be�BgbT?omo*#h	7XC)�� 4 |�FI1XCL	7 R1(Ã), R2(Ã), · · · , Rk(Ã) 'XC�>A	7�!Cz� Rj1(Ã) ≈ Rj2(Ã) )'XCTL���_q�gbT?��n��'z
_>XC�P�&# R1(Ã), R2(Ã), · · · , Rk(Ã) 'Mld�'XCT�
Ri1(Ã) ≻ Ri2(Ã) ≻ · · · ≻ Rik(Ã).J/�,���7y,^CR0fTI ω(Ã) = H(ω(A1), ω(A2), · · · , ω(Am))[ ω(Ai) = F (ω(ai1), ω(ai2), · · · , ω(aini

)) =zq$wR�s��Z ��<PfTI=3zW:K%N��j 3.1 Br℄m�b+J Ã��C�C�a&#gb�'MlXC��C *�L k '�Lpa)�L�}FXJ �q2o;8 �
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Ri1(Ã) � Ri2(Ã) � · · · � Rik(Ã).s4CP��[� Rj1(Ã) ≈ Rj2(Ã) #= �zq�2o`:;8�% �
Ri1(Ã) ≻ Ri2(Ã) ≻ · · · ≻ Rik(Ã). ♮l 3.1 Hmr�%r�b+J	7� 3 mb?+J�_�{ A1 = gbT?�A2 = 7BTI�A3 = gb�a�R�O+J\,�hC|�{ A1 ≻ A3 ≻ A2��7� |Rj1(A1) − Rj2(A1)| ≤ 150�Rj1(A2) u Rj2(A2) ��&Æ Rj1(A3) u

Rj2(A3) '�*Fwi�r 40000m2 ) Rj1(Ai) ≈ Rj2(Ai), 1 ≤ i ≤ 3�)��7gbT?XCo*#h�7BTIXCobb?=_q��	7Æa�R�O+J\,a�*FC�_>XC�a0CgbP1XCa�?*n��'z
_>XC�d+Jvp 4 mgb� R1, R2, R3, R4 p>�gb�hgbT?��d 1�gb� R1 R2 R3 R4

A1(ty) 3526 3166 3280 3486d 1. gbT?d�X�_q��,7'�
�B A1 gbT�'XC{
R2(A1) ≈ R3(A1) ≻ R4(A1) ≈ R1(A1).bb}{$B A2 'b�T�{ R3(A2) ≈ R2(A2) ≻ R1(A2) ≻ R4(A2)�)I!hBb�+J A3 'gbT���d 2�gb� R1 R2 R3 R4

A3(m
2) 250806 210208 290108 300105d 2. a�R�O+J'�*FzhXCT�{

R4(A3) ≈ R3(A3) ≻ R1(A3) ≈ R2(A3).�X�_qI1XC'z
P�XCT�{
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R3(Ã) ≻ R2(Ã) ≻ R4(Ã) ≻ R1(Ã).*�7,Z�=�<I% A1 ≻ A2 ≻ · · · ≻ Am�}�;h�L7,sIz,^C	�#qjR ��̂ C	\7=DX�jR`: �=%4>�PuwKR0=	 G[Ã] 7jR%y�LbL�Lp R1, R2, · · · , Rk =L[R�i�dP�LpIVh=[r1!�G4=��} 3.1 B℄mp k mgb� R1, R2, · · · , Rk p>gb'�b+J Ã =

m⋃
i=1

Ai�7d℄mj G[Ã] ���
V (G[Ã]) = {R1, R2, · · · , Rk} × {A1, A2, · · · , Am},

E(G[Ã]) = E1
⋃

E2
⋃

E3,h/ E1 oSpp,_ (Rj1(Ai), Rj2(Ai)) w}��� 1 ≤ i ≤ m, 1 ≤ j1, j2 ≤ k w
Rj1(Ai) ≻ Rj2(Ai) {&"C�>� Rs(Ai) ≈ Rl(Ai) ≻ Rj(Ai)�
) Rs(Ai) ≻

Rj(Ai) Æ Rl(Ai) ≻ Rj(Ai)�E2, E3 v{�,_�h/ E2 o_ Rj1(Ai)Rj2(Ai), 1 ≤

i ≤ m, 1 ≤ j1, j2 ≤ k w}��� Rj1(Ai) ≈ Rj2(Ai); E3 = {Rj(Ai)Rj(Ai+1)|1 ≤ i ≤

m − 1, 1 ≤ j ≤ k}�5w��v5 3.1 d:=L[	%

	 2. 5 3.1 d:=L[	Pu�2oz�u	 2 7jR%yF R2(A1) � R3(A1) %CH�LbL�Lp=L[R�&pXJ ��2o:F R3(A1) o�L A2, A3�̀ k8% A1���l;8�<I R3(Ã) ≻ R2(Ã) ≻ R4(Ã) ≻ R1(Ã)�
3.2. �y`�;\.�LwsI	Pd1q 1 [ 2 =,K?;r&�



��_�(GIE<1�VZ� 113� 1 ����bb?+J A1, A2, · · · , Am /�B~H℄mb?+J'Pn�����℄2BmI<%r�b)�B~T?Pn�D�℄2�8�b/�B~�8TIPn)�� 2 ���bb?+J A1, A2, · · · , Am rp?&�\?��D�aome℄'?�BSpb?+J_>���_D�+n2��FBh_>��\QD&&J�b?Pn'Jb���!�/��O�bb?^�/zm'LY,�YÆfb�'P*bb?L)�
3.2.1. .�L`Dv�;zq,Q^=.%7,Z�`D�2:>d7,Z�%�L�*�ÆLZ�

Ã =
m⋃

i=1
Ai bQ^=`D7,Z�% A1�}z�d>d7,Z� A2, A3, · · · , Ak �1`?=K�	R�lkud A2, A3, · · · , Ak K�=�L, �% R1, R2, · · · , Rl7d R1(A1), R2(A1), · · · , Rl(A1) [s ��[iwRÆ8=7Li�p|.�5wd7,Z� A2, A3, · · · , Ak ^C_%27��^CfTI=zqd A2, A3, · · · , Ak[s'���1_%	RT�lk&p_%=�L R1, R2, · · · , Rl d7,Z� A1 =�L[�[s ��P2R Ri(A1) ≈ Rj(A1) # Ri(Ã) V Ri(Ã) = �zq�&pR/ 3.1 2o;8,KOK��j 3.2 Br℄m�b+J Ã��JbPn�a&#gbT�'MlXC�l 3.2Hr��8TI�b+J ÃaB~�8TIPn{Jb�vY{ A, B, C,

D, E 8 5 m����7��{℄Z��85f4L℄7'`H�gbT?�r�=�7'�XbC�B'℄?O{�l�f�7��8TIb?��&)F�?*n��'z
_>XC�d+Jvp 8 mgb�p>gb�hT?��d 3�gb� R1 R2 R3 R4 R5 R6 R7 R8gbT? (ty) 251 304 268 265 272 283 278 296d 3. gbT?df�b���gb� R5 ℄Z'�{i^��bZ~q�hTgb�'T?��85fÆ�{℄Zv^�Z~�Bgb��8TI'b�T���d 4��� A B C D EgbTI�� R3�R6 R1 R2�R8 R7 R4d 4. �8TIb�T�
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R3(

˜
A) ≻ R6(Ã) ≻ R1(Ã) ≻ R8(Ã) ≻ R2(Ã) ≻ R7(Ã) ≻ R4(Ã).l 3.3 Heb=�r�%r�b+J Ã Bgb�o��Fl�+J~�{Æ7BAZ�vb�,'(	�_>?l A1 b�'TL�vp 7 mgb� Ri, 1 ≤

i ≤ 7 p>�gb�h?lb�om���F'TL�2<�	7bb(C? S���8Pgb�&Y N���
S =

(
7∑

i=1
Ai − max{Ri(A1)|1 ≤ i ≤ 7} − min{Ri(A1)|1 ≤ i ≤ 7}

5
,

Ni = 100 − t × |
Ri(A1) − S

S
| × 100, 1 ≤ i ≤ 7,���� Ri(A1) − S > 0 
 t = 6�� Ri(A1) − S < 0 
 t = 3�)�7�&Y&)�F�*?n��z
XC�f�b��7 mgb�'Fl�+J~�{Æ7BAZ℄Z�%rN$�8v^�Z~�gb�'T?��d 5�gb� R1 R2 R3 R4 R5 R6 R7

A1(ty) 3518 3448 3682 3652 3490 3731 3436d 5. gbT?d_qa�8PTL�&# S = 3558 Ægb�&Ygb� N1 N2 N3 N4 N5 N6 N7&Y 96.70 91.27 79.12 84.16 94.27 73.84 89.68d 6. T?&YdzgbXCT�{�
R1(Ã) ≻ R5(Ã) ≻ R2(Ã) ≻ R7(Ã) ≻ R4(Ã) ≻ R3(Ã) ≻ R6(Ã).

3.2.2. (Y_7,`D



��_�(GIE<1�VZ� 115�;zq*�7,Z� A1, A2, · · · , Am u%&%I`1 [a, b] �"u�%=^�	R��i,v% 3.2.1 =[rQ^.�L`D�V�;Jv�2o,*�>�%^�% ̟�V>Up1=<I%
̟(Ai) = fi(̟), 1 ≤ i ≤ m,�1 fi M*TI<I�}Pu=ÆLlLv�B.�LFt

max
̟

F (f1(̟), f2(̟), · · · , fm(̟))�
min

̟
F (f1(̟), f2(̟), · · · , fm(̟)),�1 F M*ÆLZ� Ã V7,Z� A1, A2, · · · , Am 1=<I�,1fTI�wTvTI

F (f1(̟), f2(̟), · · · , fm(̟)) =
m∑

i=1

fi(̟)�1�;�<I�4CR/ 3.2�2o;8KEOK��j 3.3 ��F F ��A [a, b]���z℄'P�&�f�_℄j�7 Ri(Ã) =

Rj(Ã), i 6= j ) Ri(Ã)u Rj(Ã)'XCTL�
~J�b?&#gb� Ri, 1 ≤ i ≤ kB�b+J Ã gbT� Ri(Ã), 1 ≤ i ≤ k 'MlC��N7JJ�ÆL#^C=#�2'�[7�=`?7L,q%$�y1�%7,sI=:C�u#�2'�7�2o�CTvTI
F (f1(̟), f2(̟), · · · , fm(̟)) =

m∑

i=1

fi(̟),V 0 ≤ F (f1(̟), f2(̟), · · · , fm(̟)) ≤ 100, fi ≥ 0, 1 ≤ i ≤ m�iu7�=`?7L,q7��>d7,Z� A2, A3, · · · , Am =�L1ly�[��L,% A1��
fi = (l(Ai) − l0(Ai))̟(A1), 1 ≤ i ≤ m,�1 l0 17,Z�=7,	RH�̟ (A1) 1.+1l),)L�i^C=fTI%
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F (̟(A1), f2(̟(A1)), · · · , fm(̟(A1))) = (1 +

m∑

i=2

(l(Ai) − l0(Ai)))̟(A1).5wFR2�&}<;v�DaIIz^=)Ll%R'#��)>7L,%
10�� ̟(A1) = 10 �^�

4. �72F�-
�%Nn\R0P7,Z��7�)L�=fTI�2o=L(>I�R0��} 4.1 Br℄mp kmgb� R1, R2, · · · , Rk pugb'�b+J Ã =
m⋃

i=1
Ai'b?+J Ai = {ai1, ai2, · · · , ain}, 1 ≤ i ≤ m����℄m�E�F ω : Ã →

[a, b] ⊂ (−∞, +∞) ' ω : Ai → [a, b] ⊂ (−∞, +∞), 1 ≤ i ≤ m�.&�F
l, s, 1 ≤ l, s ≤ k�Rl(Ã) ≻ Rs(Ã) ' Rl(Ã) ≈ Rs(Ã) )p Rl(ω(Ã)) > Rs(ω(Ã)) '
Rl(ω(Ã)) = Rs(ω(Ã))�'� Rl(Ai) ≻ Rs(Ai) ' Rl(Ai) ≈ Rs(Ai), 1 ≤ i ≤ m )p
Rl(ω(Ai) > Rs(ω(Ai)) ' Rl(ω(Ai)) = Rs(ω(Ai))�
| ω {�b+J Ã 'b?+J Ai, 1 ≤ i ≤ m �'℄m��F�fTI1R�7�ÆLZ�=	��FP%$-7�Lp=I�1LS=�&ph�Lw/\�[3]��dq/�I i, 1 ≤ i ≤ m, fTI ω(Ai) %R"u�0%'D�z7,Z� A1, A2, · · · , Am =,'VrLAv�}fTI ω(Ã) V"u�<P ω(Ai) ,L,K?;�|zq�

(1)�A [a, b] �'Ml�4�F��%?�F)�
(2)�A [a, b] �rpz℄P�&'�E�F���%�F�G��F)�Kv2o,-�ÆL%5�dfTI ω [s[%X�A�
4.1. uQ�61� A1 %�L5,�%$-7s[8^CwKzq![fTI ω(A1)�=L![7L	R, S�

S =
R1(A1) + R2(A1) + · · ·+ Rk(A1)

k�
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S =





R1(A1)+R2(A1)+···+Rk(A1)−M−N

k−2
, k ≥ 5,

R1(A1)+R2(A1)+···+Rk(A1)
k

, 3 ≤ k ≤ 4�uLLB#^C
S = T × A% +

R1(A1) + R2(A1) + · · ·+ Rk(A1)

k
× (1 − A%).�1�Ri(A1), i = 1, 2, · · · , k M*�L5,�k %�Lp=&I�M�N �N%`��`?�L5,�T %LB,%�A% %LB,%u7L	R,7b�f=�}fTI Ri(ω(A1)), 1 ≤ i ≤ k =![0)%

Ri(ω(A1)) = −ς ×
Ri(A1) − S

S
+ ζ�1�ς %��sI�i ζ %%&' ω(A1) ≥ 0 =sI��%![zq*�5,�q1�h�W�w�^CI/�!=zq,[`K℄%$-�,%=%�Lp5,=[D4yI�0%$��ÆL7=�L5,V1%;℄
.<�>5,L�mqL�Lp=E>e�[<�'��;<�'u}h[rKV�^CR�zq$d��b,�
�wG^B��;zqVL1%;7"i}
�wF}�&pÆLp=,%<�[7rs[�,^CwKfTI�

(1)�A [N, M ] �'%?��F
Ri(ω(A1)) = −p ×

Ri(A1) − N

M − N
+ q,���p {�YzF�D q {℄m. Ri(ω(A1)) ≥ 0, 1 ≤ i ≤ k 'zF��2TL�BgbT?b�)B~?lP*�

(2)�A [N, M ] �'V%?��F��
Ri(ω(A1)) = −p ×

Ri(A1) −
T+

k∑
j=1

Ri(A1)

k+1

+
q,

Ri(ω(A1)) = −p ×
Ri(A1) −

k+1

√
R1(A1)R2(A1) · · ·Rk(A1)T

k+1

√
R1(A1)R2(A1) · · ·Rk(A1)T

+ q'
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Ri(ω(A1)) = −p ×

Ri(A1) −

√
R2

1(A1)+R2
2(A1)+···+R2

k
(A1)+T 2

k+1√
R2

1(A1)+R2
2(A1)+···+R2

k
(A1)+T 2

k+1

+ q)��� p, q 
d��wK�Vd�5,=J 1l�}z,^5,= k + 1 �hZ)aT��*R�L5,% k + 1 �hZ)
f(x) = ak+1x

k+1 + akx
k + · · · + a1x + a0='�lk&p�L5,�LB,%F?8�=����% Rj1(A1) ≻ R(j2)(A1) ≻

· · · ≻ T ≻ · · · ≻ Rjk
(A1)�&�d: k + 2 &sI c1 > c2 > · · · > ck+1 > 0�5w

k + 1 > k > · · · > 1 > 0�Pz�_
Rj1(A1) = ak+1c

k+1
1 + akc

k
1 + · · ·+ a1c1 + a0

Rj2(A1) = ak+1c
k+1
2 + akc

k
2 + · · ·+ a1c2 + a0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Rjk−1
(A1) = ak+1c

k+1
k + akc

k
k + · · ·+ a1ck + a0

Rjk
(A1) = a0i;8 k + 1 �hZ) f(x)�[ijR> ��;�zq�0:J/��L5,u%$-7o}L1l�b,^C�;zq��z�FRh)=5,1lV<Y �OK�

4.2. "r�61�z�=7,Z�% A2�>7�)L% {a21, a22, · · · , a2n2}�R�"a%&z�=DF1AI�Æ=��V01dÆLpi��d7LK("w��z�=7�)Lss1VA=�b,�s^Cd7�)LTV��'=aq%$�Vb=�5%2oÆP3Z�%$j%&z�; 96 �iJ%&z�+�; 92 ��dz�=7�)^CRv7��uRv	��=R�7��>fTI Ri(ω(A2)), 1 ≤ i ≤ k,b%TvTI
Ri(ω(A2)) = Ri(ω(a21)) + Ri(ω(a22)) + · · ·+ Ri(ω(a2n2)).



��_�(GIE<1�VZ� 119idl&7�)L=fTI ω(a2i), 1 ≤ i ≤ n2 )^CRv7�	��=R�7��V�=�Nd:V�=fTI�5w�ÆLZ�=z�7�2� 4 &7�)L�l&)L�% A, B, C, D T&�N�;�LRM 7 b*�7�)L a21 a22 a23 a24

A 4 2 2 1

B 3 1.5 1.5 0.8

C 2 1 1 0.5

D 1 0.5 0.5 0.3M 7. z�4��d:=;�wK%&�L Ri=Rv7�OK% Ri(ω(a21)) = A,Ri(ω(a22)) = B, Ri(ω(a23))

= B,Ri(ω(a24)) = A�}��Lp=z�;�%
Ri(ω(A2)) = Ri(ω(a21)) + Ri(ω(a22)) + Ri(ω(a23)) + Ri(ω(a24))

= 4 + 3 + 1.5 + 1 = 9.5.� �G^B�+�7�z�=�N�4C�%N=XJ ��	�#ql,jR'�Lpz�= �OK�2l�u�$NzjR7�)L1=�<I�V�=-�ÆLZ��>z�7�)L=�<I1V%�=�
5. I(q\|}7v�T:	7qpz2[JÆL�Lq
LO�h=%9�*u7JÆL�LIZq2v?�zvdB%)X�0+℄TqW=%��"T�6Q%du%$-7D{Pw=1q�wV�#[sFv�/Dz�VqW�9=;9i���1�2od�&1q[s%d�X�AVn\�S9 1: �y�=>1jÆ.\ 5>1(�ÆL1%_�?/	>=<`iV1�=��?�$1=<IR+uqWfv�1!�Z�=�0℄�=%9M{�7JJ�ÆL)L%;,r)+t�v�,[<��[��+t_�?/=_/�&Kz�BÆL[Lr�ÆL�L��))[-��U�2�b��XLbDPwV�&1q�D{&pqWR+�r&ZÆLV_�?/=1q�)RÆLp��



120 8!O: H'^5<GI1�/Lp�7L'a��a[ÆL�L.?Yn=q2v?��K#/\=�F�'�>}��iLbD2*ÆL�LL�7=Vqs%�%P�0~�04�0�[�%mC�=ÆL�L_}��27�%pÆLZ��2RÆLF}=ÆLp1<;�%9M{�+�ÆLp&q-.��NuÆL�LIZ6Q$=1q	��Z,uÆL/<�>7,sI=2R[ÆL_%7;8LbD℄{VPw�0w℄dÆLp[sLb2g��w℄uqWqFfv��/VÆLp"q}z"uI)�i�z�7Ck�qWxS�qF2S#
�J/�S9 2: �yy��d/A b,7LLR=�>v1q�l1�^�bL=7,Z�[7�)L(�>7"LRVzq�[i&ph�Lwzq7�[Æ87Li�p��NJ�d�L5,[�>Y�=7�	��%PB�>7��VV\>�>7�zq1�
�_/��0d�DY��w�Dz���-_%�!��DF%>=7�}�hE(B7L'a�&p>E?"a7�=zq�&Kz�B%d7�OKd�LpV04[-P;kb>"q"F.<=o���27L>�>_5�0*E�=�uP7L'a��a=$d[>K#W4V%�d��%&�L="ass�;V�=7"OK�E>1u^CR�7�zq#6Q;*{N�2l�)R7LK(=#>'
[7L��=
<�5Y�DPw�&1q�0>)duP�%d5q�v=7�)LE(B7L'a�dR�7�Pa80���>V
���l1%<!��Æ=.[�)$K(=W4�?V4��-Pz�7LOK���u2N7LK(#>W4�?V4�ip7L��=y<K�))U%℄�=�j9^��7LLR[s�>v�vh�Lw%.�Lw5(1%;Lb=Pw
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1. Introduction

All surfaces considered in this paper are 2-dimensional compact closed manifolds

without boundary, graphs are connected and simple graphs with the maximum va-

lency ≥ 3 and groups are finite. For terminologies and notations not defined here

can be seen in [21] for maps, [20] for graphs and in [2] for permutation groups.

The enumeration of rooted maps on surfaces, especially, the sphere, has been

intensively investigated by many researchers after the Tutte’s pioneer work in 1962

(see [21]). Comparing with rooted maps, observation for the enumeration of un-

rooted maps on surface is not much. By applying the automorphisms of the sphere,

Liskovets gave an enumerative scheme for unrooted planar maps(see [12]). Liskovets,

Walsh and Liskovets got many enumeration results for general planar maps, regular

planar maps, Eulerian planar maps, self-dual planar maps and 2-connected planar

maps, etc (see [12] − [14]).

General results for the enumeration of unrooted maps on surface other than

sphere are very few. Using the well known Burnside Lemma in permutation group

theory, Biggs and White presented a formula for enumerating non-equivalent em-

beddings of a given graph on orientable surfaces[2], which are the classification of em-

beddings by orientation-preserving automorphisms of orientable surfaces. Following

their idea, the numbers of non-equivalent embeddings of complete graphs,complete

bipartite graphs, wheels and graphs whose automorphism group action on its or-

dered pair of adjacent vertices is semi-regular are gotten in references [15]− [16], [20]

and [11]. Although this formula is not very efficient and need more clarifying for the

actual enumeration of non-equivalent embeddings of a graph, the same idea is more

practical for enumerating rooted maps on orientable or non-orientable surfaces with

given underlying graphs(see [8] − [10]).

For projective maps with a given 3-connected underlying graph, Negami got an

enumeration result for non-equivalent embeddings by establishing the double planar

covering of projective maps(see [18]). In [7], Jin Ho Kwak and Jaeun Lee obtained

the number of non-congruent embeddings of a graph, which is also related to the

topic discussed in this paper.

Combining the idea of Biggs and White for non-equivalent embeddings of a

graph on orientable surfaces and the Tutte’s algebraic representation for maps on
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surface[19],[21], a general scheme for enumerating unrooted maps on locally orientable

surfaces with a given underlying graph is obtained in this paper. Whence, the

enumeration of unrooted maps on surfaces can be carried out by the following pro-

gramming:

STEP 1. Determined all automorphisms of maps with a given underlying graph;

STEP 2. Calculation the the fixing set Fix(ς) for each automorphism ς of

maps;

STEP 3. Enumerating the unrooted maps on surfaces with a given underlying

graph by this scheme.

Notice that this programming can be used for orientable or non-orientable sur-

faces, respectively and get the numbers of orientable or non-orientable unrooted

maps underlying a given graph.

The main purpose of this paper is to enumerate the orientable or non-orientable

complete maps. In 1971, Biggs proved[1] that the order of automorphism group of

an orientable complete map of order n divides n(n − 1), and equal n(n − 1) only if

the automorphism group of the complete map is a Frobenius group. In this paper,

we get a representation by the permutation on its vertices for the automorphisms of

orientable or non-orientable complete maps. Then as soon as we completely calculate

the fixing set Fix(ς) for each automorphism ς of complete maps, the enumeration

of unrooted orientable or non-orientable complete maps can be well done by our

programming.

The problem of determining which automorphism of a graph is an automor-

phism of a map is also interesting for Riemann surfaces or Klein surfaces - surfaces

equipped with an analytic or dianalytic structure, for example, automorphisms

of Riemann or Klein surfaces have be given more attention since 1960s, see for

example,[3] − [4], [6], [17], but it is difficult to get a concrete representation for an

automorphism of Riemann or Klein surfaces. The approach used in this paper can be

also used for combinatorial discussion automorphisms of Riemann or Klein surface.

Terminologies and notations used in this paper are standard. Some of them are

mentioned in the following.

For a given connected graph Γ, an embedding of Γ is a pair (J , λ), where J is

a rotation system of Γ, and λ : E(Γ) → Z2. The edge with λ(e) = 0 or λ(e) = 1 is



The Number of Complete Maps on Surfaces 125

called the type 0 or type 1 edge, respectively.

A map M = (Xα,β,P) is defined to be a permutation P acting on Xα,β of

a disjoint union of quadricells Kx of x ∈ X, where, X is a finite set and K =

{1, α, β, αβ} is the Klein group, satisfying the following conditions:

i) ∀x ∈ Xα,β, there does not exist an integer k such that Pkx = αx;

ii) αP = P−1α;

iii) the group ΨJ = 〈α, β,P〉 is transitive on Xα,β.

According to the condition ii), the vertices of a map are defined to be the pairs

of conjugate of P action on Xα,β and edges the orbits of K on Xα,β, for example, for

∀x ∈ Xα,β, {x, αx, βx, αβx} is an edge of the map M . Geometrically, any map M

is an embedding of a graph Γ on a surface, denoted by M = M(Γ) and Γ = Γ(M)

( see also [19] − [21] for details). The graph Γ is called the underlying graph of the

map M . If r ∈ Xα,β is marked beforehand, then M is called a rooted map, denoted

by M r. A map is said non-orientable or orientable if the group ΨI = 〈αβ,P〉 is

transitive on Xα,β or not.

For example, the graph K4 on the tours with one face length 4 and another 8 ,

shown in the following Fig.1,

Fig.1

can be algebraically represented as follows:

A map (Xα,β,P) with Xα,β = {x, y, z, u, v, w, αx, αy, αz, αu, αv, αw, βx, βy, βz, βu,

βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} and
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P = (x, y, z)(αβx, u, w)(αβz, αβu, v)(αβy, αβv, αβw)

× (αx, αz, αy)(βx, αw, αu)(βz, αv, βu)(βy, βw, βv)

The four vertices of this map are {(x, y, z), (αx, αz, αy)}, {(αβx, u, w), (βx, αw, αu)},

{(αβz, αβu, v), (βz, αv, βu)} and {(αβy, αβv, αβw), (βy, βw, βv)} and six edges are

{e, αe, βe, αβe} for ∀e ∈ {x, y, z, u, v, w}.

Two maps M1 = (X 1
α,β,P1) and M2 = (X 2

α,β,P2) are said to be isomorphic if

there exists a bijection τ : X 1
α,β −→ X 2

α,β such that for ∀x ∈ X 1
α,β,τα(x) = ατ(x),

τβ(x) = βτ(x) and τP1(x) = P2τ(x). τ is called an isomorphism between them. If

M1 = M2 = M , then an isomorphism between M1 and M2 is called an automorphism

of M . All automorphisms of a map M form a group, called the automorphism group

of M and denoted by AutM. Similarly, two rooted maps M r
1 , M r

2 are said to be

isomorphic if there is an isomorphism θ between them such that θ(r1) = r2, where

r1, r2 are the roots of M r
1 , M r

2 , respectively and denote the automorphism group of

M r by AutMr. It has been known that AutMr is a trivial group.

According to their action, isomorphisms between maps can divided into two

classes: cyclic order-preserving isomorphism and cyclic order-reversing isomorphism,

defined as follows, which is useful for determining automorphisms of a map under-

lying a graph.

For two maps M1 and M2, a bijection ξ between M1 and M2 is said to be cyclic

order-preserving if for ∀x ∈ X 1
α,β,τα(x) = ατ(x), τβ(x) = βτ(x), τP1(x) = P2τ(x)

and cyclic order-reversing if τα(x) = ατ(x), τβ(x) = βτ(x) τP1(x) = P−1
2 τ(x).

Now let Γ be a connected graph. The notations EO(Γ), EN(Γ) and EL(Γ) denote

the embeddings of Γ on the orientable surfaces, non-orientable surfaces and locally

surfaces, M(Γ) and AutΓ denote the set of non-isomorphic maps underlying Γ and

its automorphism group, respectively.

2. The enumerative scheme for maps underlying a graph

A permutation p on set Ω is called semi-regular if all of its orbits have the same

length. For a given connected graph Γ, ∀g ∈ AutΓ, M = (Xα,β,P) ∈ M(Γ), define

an extended action of g on M to be
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g∗ : Xα,β −→ Xα,β,

such that Mg∗ = gMg−1 with gα = αg and gβ = βg.

We have already known the following two results.

Lemma 2.1[21] For any rooted map M r, AutM r is trivial.

Lemma 2.2[2],[21] For a given map M , ∀ξ ∈ AutM , ξ transforms vertices to vertices,

edges to edges and faces to faces on a map M , i.e, ξ can be naturally extended to an

automorphism of surfaces.

Lemma 2.3 If there is an isomorphism ξ between maps M1 and M2, then Γ(M1) =

Γ(M2) = Γ and ξ ∈ AutΓ if ξ is cyclic order-preserving or ξα ∈ AutΓ if ξ is cyclic

order-reversing.

Proof By the definition of an isomorphism between maps, if M1 = (X 1
α,β,P1)

is isomorphic with M2 = (X 2
α,β,P2), then there is an 1 − 1 mapping ξ between X 1

α,β

and X 2
α,β such that (P1)

ξ = P2 . Since isomorphic graphs are considered to be equal,

we get that Γ(M1) = Γ(M2) = Γ. Now since

(P2)
−1 = (P2)

α.

We get that Γξ = Γ or Γξα = Γ, whence, ξ ∈ AutΓ or ξα ∈ AutΓ. ♮

According to Lemma 2.3, For ∀g ∈ AutΓ, ∀M ∈ EL(Γ), the induced action g∗

of g on M is defined by Mg∗ = gMg−1 = (Xα,β, gPg−1).

Since P is a permutation on the set Xα,β, by a simple result in permutation

group theory, Pg is just the permutation replaced each element x in P by g(x).

Whence M and Mg∗ are isomorphic. Therefore, we get the following enumerative

theorem for unrooted maps underlying a graph.

Theorem 2.1 For a connected graph Γ, let E ⊂ EL(Γ). Then the number n(E , Γ)

of unrooted maps in E is

n(E , Γ) =
1

|AutΓ × 〈α〉 |

∑

g∈AutΓ×〈α〉

|Φ(g)|,

where, Φ(g) = {P|P ∈ E and Pg = P}.
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Proof According to Lemma 2.1, two maps M1, M2 ∈ E are isomorphic if and

only if there exists an isomorphism θ ∈ AutΓ× < α > such that Mθ∗

1 = M2.

Whence, we get that all the unrooted maps in E are just the representations of

orbits in E under the action of AutΓ × 〈α〉. By the Burnside Lemma, we get the

following result for the number of unrooted maps in E

n(E , Γ) =
1

|AutΓ × 〈α〉 |

∑

g∈AutΓ×〈α〉

|Φ(g)|. ♮

Corollary 2.1 For a given graph Γ, the numbers of unrooted maps in EO(Γ), EN(Γ)

and EL(Γ) are

nO(Γ) =
1

|AutΓ × 〈α〉 |

∑

g∈AutΓ×〈α〉

|ΦO(g)|; (2.1)

nN(Γ) =
1

|AutΓ × 〈α〉 |

∑

g∈AutΓ×〈α〉

|ΦN(g)|; (2.2)

nL(Γ) =
1

|AutΓ × 〈α〉 |

∑

g∈AutΓ×〈α〉

|ΦL(g)|, (2.3)

where, ΦO(g) = {P|P ∈ EO(Γ) and Pg = P}, ΦN (g) = {P|P ∈ EN(Γ) and Pg =

P}, ΦL(g) = {P|P ∈ EL(Γ) and Pg = P}.

Corollary 2.2 Let E(S, Γ) be the embeddings of Γ in the surface S, then the number

n(Γ, S) of unrooted maps on S with underlying gΓ is

n(Γ, S) =
1

|AutΓ × 〈α〉 |

∑

g∈AutΓ×〈α〉

|Φ(g)|,

where, Φ(g) = {P|P ∈ E(S, Γ) and Pg = P}.

Corollary 2.3 In formulae (2.1)-(2.3), |Φ(g)| 6= 0 i and only if g is an automor-

phism of an orientable or non-orientable map underlying Γ.

Directly using these formulae (2.1)-(2.3) to count unrooted maps with a given

underlying graph is not straightforward. More observation should be considered.

The following two lemmas give necessary conditions for an induced automorphism

of a graph Γ to be an cyclic order-preserving automorphism of a surface.
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Lemma 2.4 For a map M underlying a graph Γ, ∀g ∈ AutM, ∀x ∈ Xα,β with

X = E(Γ),

(i) |xAutM| = |AutM| ;

(ii) |x<g>| = o(g),

where, o(g) denotes the order of g.

Proof For a subgroup H < AutM, we know that |H| = |xH ||Hx|. Since

Hx < AutMx, where Mx is a rooted map with root x, we know that |Hx| = 1 by

Lemma 2.1. Whence, |xH | = |H|. Now take H = AutM or < g >, we get the

assertions (i) and (ii). ♮

Lemma 2.5 Let Γ be a connected graph and g ∈ AutΓ. If there is a map M ∈ EL(Γ)

such that the induced action g∗ ∈ AutM, then for ∀(u, v), (x, y) ∈ E(Γ),

[lg(u), lg(v)] = [lg(x), lg(y)] = constant,

where, lg(w) denotes the length of the cycle containing the vertex w in the cycle

decomposition of g and [a, b] the least common multiple of integers a and b.

Proof According to Lemma 2.4, we know that the length of any quadricell uv+

or uv− under the action of g∗ is [lg(u), lg(v)]. Since g∗ is an automorphism of map,

therefore, g∗ is semi-regular. Whence, we get that

[lg(u), lg(v)] = [lg(x), lg(y)] = constant. ♮

Now we consider conditions for an induced automorphism of a map by an

automorphism of graph to be a cyclic order-reversing automorphism of surfaces.

Lemma 2.6 If ξα is an automorphism of a map, then ξα = αξ.

Proof Since ξα is an automorphism of a map, we know that

(ξα)α = α(ξα).

That is, ξα = αξ. ♮

Lemma 2.7 If ξ is an automorphism of M = (Xα,β,P), then ξα is semi-regular on

Xα,β with order o(ξ) if o(ξ) ≡ 0(mod2) or 2o(ξ) if o(ξ) ≡ 1(mod2).
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Proof Since ξ is an automorphism of map by Lemma 2.6, we know that the

cycle decomposition of ξ can be represented by

ξ =
∏

k

(x1, x2, · · · , xk)(αx1, αx2, · · · , αxk),

where,
∏

k denotes the product of disjoint cycles with length k = o(ξ).

Therefore, if k ≡ 0(mod2), we get that

ξα =
∏

k

(x1, αx2, x3, · · · , αxk)

and if k ≡ 1(mod2), we get that

ξα =
∏

2k

(x1, αx2, x3, · · · , xk, αx1, x2, αx3, · · · , αxk).

Whence, ξ is semi-regular acting on Xα,β. ♮

Now we can prove the following result for cyclic order-reversing automorphisms

of maps.

Lemma 2.8 For a connected graph Γ, let K be all automorphisms in AutΓ whose

extending action on Xα,β, X = E(Γ), are automorphisms of maps underlying the

graph Γ. Then for ∀ξ ∈ K, o(ξ∗) ≥ 2, ξ∗α ∈ K if and only if o(ξ∗) ≡ 0(mod2).

Proof Notice that by Lemma 2.7, if ξ∗ is an automorphism of a map underlying

Γ, then ξ∗α is semi-regular acting on Xα,β.

Assume ξ∗ is an automorphism of the map M = (Xα,β,P). Without loss of

generality, we assume that

P = C1C2 · · ·Ck,

where,Ci = (xi1, xi2, · · · , xiji
) is a cycle in the decomposition of ξ|V (Γ) and xit =

{(ei1, ei2, · · · , eiti)(αei1, αeiti , · · · , αei2)},

ξ|E(Γ) = (e11, e12, · · · , es1)(e21, e22, · · · , e2s2) · · · (el1, el2, · · · , elsl
),

and

ξ∗ = C(αC−1α),
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where, C = (e11, e12, · · · , es1)(e21, e22, · · · , e2s2) · · · (el1, el2, · · · , elsl
). Now since ξ∗ is

an automorphism of a map, we get that s1 = s2 = · · · = sl = o(ξ∗) = s.

If o(ξ∗) ≡ 0(mod2), define a map M∗ = (Xα,β,P∗) with

P∗ = C∗
1C

∗
2 · · ·C

∗
k ,

where, C∗
i = (x∗

i1, x
∗
i2, · · · , x

∗
iji

), x∗
it = {(e∗i1, e

∗
i2, · · · , e

∗
iti

)(αe∗i1, αe∗iti , · · · , e
∗
i2)} and

e∗ij = epq. Take e∗ij = epq if q ≡ 1(mod2) and e∗ij = αepq if q ≡ 0(mod2). Then

we get that M ξα = M .

Now if o(ξ∗) ≡ 1(mod2), by Lemma 2.7, o(ξ∗α) = 2o(ξ∗). Therefore, for a

chosen quadricell in (ei1, ei2, · · · , eiti) adjacent to the vertex xi1 for i = 1, 2, · · · , n,

where, n = the order of the graph Γ, the resultant map M is unstable under the

action of ξα. Whence, ξα is not an automorphism of a map underlying Γ. ♮

3. Determine automorphisms of complete maps

Now we determine all automorphisms of complete maps in this section by applying

the results gotten in Section 2.

Let Kn be a complete graph of order n. Label its vertices by integers 1, 2, ..., n.

Then its edge set is {ij|1 ≤ i, j ≤ n, i 6= j and ij = ji}. For convenience, we use

ij denoting an edge ij of the complete graph Kn and ij = ji, 1 ≤ i, j ≤ n, i 6= j.

Then its quadricells of this edge can be represented by {ij+, ij−, ji+, ji−} and

Xα,β(Kn) = {ij+ : 1 ≤ i, j ≤ n, i 6= j}
⋃
{ij− : 1 ≤ i, j ≤ n, i 6= j},

α =
∏

1≤i,j≤n,i6=j

(ij+, ij−),

β =
∏

1≤i,j≤n,i6=j

(ij+, ij+)(ij−, ij−).

Recall that the automorphism group of Kn is just the symmetry group of de-

gree n, i.e., AutKn = Sn. The above representation enables us to determine all

automorphisms of complete maps of order n on surfaces.

Theorem 3.1 All cyclic order-preserving automorphisms of non-orientable complete

maps of order≥ 4 are extended actions of elements in
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E
[s

n
s ]

, E
[1,s

n−1
s ]

,

and all cyclic order-reversing automorphisms of non-orientable complete maps of

order≥ 4 are extended actions of elements in

αE
[(2s)

n
2s ]

, αE
[(2s)

4
2s ]

, αE[1,1,2],

where, Eθ denotes the conjugate class containing element θ in the symmetry group

Sn

Proof Firstly, we prove that the induced permutation ξ∗ on complete map

of order n by an element ξ ∈ Sn is an cyclic order-preserving automorphism of a

non-orientable map, if, and only if,

ξ ∈ E
s

n
s

⋃
E

[1,s
n−1

s ]

Assume the cycle index of ξ is [1k1 , 2k2, ..., nkn]. If there exist two integers

ki, kj 6= 0, and i, j ≥ 2, i 6= j, then in the cycle decomposition of ξ , there are two

cycles

(u1, u2, ..., ui) and (v1, v2, ..., vj).

Since

[lξ(u1), l
ξ(u2)] = i and [lξ(v1), l

ξ(v2)] = j

and i 6= j, we know that ξ∗ is not an automorphism of embedding by Lemma

2.5. Whence, the cycle index of ξ must be the form of [1k, sl].

Now if k ≥ 2, let (u), (v) be two cycles of length 1 in the cycle decomposition

of ξ. By Lemma 2.5, we know that

[lξ(u), lξ(v)] = 1.

If there is a cycle (w, ...) in the cycle decomposition of ξ whose length greater

or equal to two, we get that

[lξ(u), lξ(w)] = [1, lξ(w)] = lξ(w).
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According to Lemma 2.5, we get that lξ(w) = 1, a contradiction. Therefore,

the cycle index of ξ must be the forms of [sl] or [1, sl]. Whence, sl = n or sl+1 = n.

Calculation shows that l = n
s

or l = n−1
s

. That is, the cycle index of ξ is one of the

following three types [1n], [1, s
n−1

s ] and [s
n
s ] for some integer s .

Now we only need to prove that for each element ξ in E
[1,s

n−1
s ]

and E
[s

n
s ]

, there

exists an non-orientable complete map M of order n with an induced permutation

ξ∗ being its cyclic order-preserving automorphism of surface. The discussion are

divided into two cases.

Case 1 ξ ∈ E
[s

n
s ]

Assume the cycle decomposition of ξ being ξ = (a, b, · · · , c) · · · (x, y, · · · , z) · · · (u, v,

· · · , w), where, the length of each cycle is k, and 1 ≤ a, b, · · · , c, x, y, · · · , z, u, v, · · · , w ≤

n . In this case, we can construct a non-orientable complete map M1 = (X 1
α,β,P1)

as follows.

X 1
α,β = {ij+ : 1 ≤ i, j ≤ n, i(j}

⋃
{ij− : 1 ≤ i, j ≤ n, i 6= j},

P1 =
∏

x∈{a,b,···,c,···,x,y,···,z,u,v,···,w}

(C(x))(αC(x)−1α),

where,

C(x) = (xa+, · · · , xx∗, · · · , xu+, xb+, xy+, · · · , · · · , xv+, xc+, · · · , xz+, · · · , xw+),

xx∗ denotes an empty position and

αC(x)−1α = (xa−, xw−, · · · , xz−, · · · , xc−, xv−, · · · , xb−, xu−, · · · , xy−, · · ·).

It is clear that M ξ∗

1 = M1. Therefore, ξ∗ is an cyclic order-preserving automor-

phism of the map M1.

Case 2 ξ ∈ E
[1,s

n−1
s ]

We assume the cycle decomposition of ξ being

ξ = (a, b, ..., c)...(x, y, ..., z)...(u, v, ..., w)(t),
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where, the length of each cycle is k beside the final cycle, and 1 ≤ a, b...c, x, y..., z,

u, v, ..., w, t ≤ n . In this case, we construct a non-orientable complete map M2 =

(X 2
α,β ,P2) as follows.

X 2
α,β = {ij+ : 1 ≤ i, j ≤ n, i 6= j}

⋃
{ij− : 1 ≤ i, j ≤ n, i 6= j},

P2 = (A)(αA−1)
∏

x∈{a,b,...,c,...,x,y,...z,u,v,...,w}

(C(x))(αC(x)−1α),

where,

A = (ta+, tx+, ...tu+, tb+, ty+, ..., tv+, ..., tc+, tz+, ..., tw+),

αA−1α = (ta−, tw−, ...tz−, tc−, tv−, ..., ty−, ..., tb−, tu−, ..., tx−),

C(x) = (xa+, ..., xx∗, ..., xu+, xb+, ..., xy+, ..., xv+, ..., xc+, ..., xz+, ..., xw+)

and

αC(x)−1α = (xa−, xw−, .., xz−, ..., xc−, ..., xv−, ..., xy−, ..., xb−, xu−, ...).

It is also clear that M ξ∗

2 = M2. Therefore, ξ∗ is an automorphism of the map

M2 .

Now we consider the case of cyclic order-reversing automorphisms of a complete

map. According to Lemma 2.8, we know that an element ξα, where, ξ ∈ Sn, is an

cyclic order-reversing automorphism of a complete map only if,

ξ ∈ E
[k

n1
k ,(2k)

n−n1
2k ]

.

Our discussion is divided into two parts.

Case 3 n1 = n

Without loss of generality, we can assume the cycle decomposition of ξ has the

following form in this case.
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ξ = (1, 2, · · · , k)(k + 1, k + 2, · · · , 2k) · · · (n − k + 1, n − k + 2, · · · , n).

Subcase 3.1 k ≡ 1(mod2) and k > 1

According to Lemma 2.8, we know that ξ∗α is not an automorphism of maps

since o(ξ∗) = k ≡ 1(mod2).

Subcase 3.2 k ≡ 0(mod2)

Construct a non-orientable map M3 = (X 3
α,β,P3), where X3 = E(Kn) and

P3 =
∏

i∈{1,2,···,n}

(C(i))(αC(i)−1α),

where, if i ≡ 1(mod2), then

C(i) = (i1+, ik+1+, · · · , in−k+1+, i2+, · · · , in−k+2+, · · · , ii∗, · · · , ik+, i2k+, · · · , in+),

αC(i)−1α = (i1−, in−, · · · , i2k−, ik−, · · · , ik+1−)

and if i ≡ 0(mod2), then

C(i) = (i1−, ik+1−, · · · , in−k+1−, i2−, · · · , in−k+2−, · · · , ii∗, · · · , ik−, i2k−, · · · , in−),

αC(i)−1α = (i1+, in+, · · · , i2k+, ik+, · · · , ik+1+).

Where, ii∗ denotes the empty position, for example, (21, 22∗, 23, 24, 25) = (21, 23, 24, 25).

It is clear that Pξα
3 = P3, that is, ξα is an automorphism of map M3.

Case 4 n1 6= n

Without loss of generality, we can assume that

ξ = (1, 2, · · · , k)(k + 1, k + 2, · · · , n1) · · · (n1 − k + 1, n1 − k + 2, · · · , n1)

× (n1 + 1, n1 + 2, · · · , n1 + 2k)(n1 + 2k + 1, · · · , n1 + 4k) · · · (n − 2k + 1, · · · , n)
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Subcase 4.1 k ≡ 0(mod2)

Consider the orbits of 12+ and n1 + 2k + 11+ under the action of < ξα >, we

get that

|orb((12+)<ξα>)| = k

and

|orb(((n1 + 2k + 1)1+)<ξα>)| = 2k.

Contradicts to Lemma 2.5.

Subcase 4.2 k ≡ 1(mod2)

In this case, if k 6= 1, then k ≥ 3. Similar to the discussion of Subcase 3.1, we

know that ξα is not an automorphism of complete map. Whence, k = 1 and

ξ ∈ E[1n1 ,2n2 ].

Without loss of generality, assume that

ξ = (1)(2) · · · (n1)(n1 + 1, n1 + 2)(n1 + 3, n1 + 4) · · · (n1 + n2 − 1, n1 + n2).

If n2 ≥ 2, and there exists a map M = (Xα,β,P), assume the vertex v1 in M

being

v1 = (1l12+, 1l13+, · · · , 1l1n+)(1l12−, 1l1n−, · · · , 1l13−)

where, l1i ∈ {+2,−2, +3,−3, · · · , +n,−n} and l1i 6= l1j if i 6= j.

Then we get that

(v1)
ξα = (1l12−, 1l13−, · · · , 1l1n−)(1l12+, 1l1n+, · · · , 1l13+) 6= v1.

Whence, ξα is not an automorphism of map M , a contradiction.

Therefore, n2 = 1. Similarly, we can also get that n1 = 2. Whence, ξ =

(1)(2)(34) and n = 4. We construct a stable non-orientable map M4 under the

action of ξα as follows.
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M4 = (X 4
α,β,P4),

where,

P4 = (12+, 13+, 14+)(21+, 23+, 24+)(31+, 32+, 34+)(41+, 42+, 43+)

× (12−, 14−, 13−)(21−, 24−, 23−)(31−, 34−, 32−)(41−, 43−, 42−).

Therefore, all cyclic order-preserving automorphisms of non-orientable complete

maps are extended actions of elements in

E
[s

n
s ]

, E
[1,s

n−1
s ]

and all cyclic order-reversing automorphisms of non-orientable complete maps are

extended actions of elements in

αE
[(2s)

n
2s ]

, αE
[(2s)

4
2s ]

αE[1,1,2].

This completes the proof. ♮

According to the Rotation Embedding Scheme for orientable embedding of a

graph formalized by Edmonds in [5], each orientable complete map is just the case

of eliminating the signs�+, -�in our representation for complete maps. Whence,we

also get the following result for automorphisms of orientable complete maps, which

is similar to Theorem 3.1.

Theorem 3.2 All cyclic order-preserving automorphisms of orientable complete

maps of order≥ 4 are extended actions of elements in

E
[s

n
s ]

, E
[1,s

n−1
s ]

and all cyclic order-reversing automorphisms of orientable complete maps of order≥

4 are extended actions of elements in

αE
[(2s)

n
2s ]

, αE
[(2s)

4
2s ]

, αE[1,1,2],

where,Eθ denotes the conjugate class containing θ in Sn.
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Proof The proof is similar to that of Theorem 3.1. For completion, we only

need to construct orientable maps MO
i , i = 1, 2, 3, 4 to replace these non-orientable

maps M1, i = 1, 2, 3, 4 in the proof of Theorem 3.1.

In fact, for cyclic order-preserving case, we only need to take MO
1 , MO

2 to be

the resultant maps eliminating the signs + - in M1, M2 constructed in the proof of

Theorem 3.1.

For the cyclic order-reversing case, we take MO
3 = (E(Kn)α,β,PO

3 ) with

P3 =
∏

i∈{1,2,···,n}

(C(i)),

where, if i ≡ 1(mod2), then

C(i) = (i1, ik+1, · · · , in−k+1, i2, · · · , in−k+2, · · · , ii∗, · · · , ik, i2k, · · · , in),

and if i ≡ 0(mod2), then

C(i) = (i1, ik+1, · · · , in−k+1, i2, · · · , in−k+2, · · · , ii∗, · · · , ik, i2k, · · · , in)−1,

where ii∗ denotes the empty position and MO
4 = (E(K4)α,β,P4) with

P4 = (12, 13, 14)(21, 23, 24)(31, 34, 32)(41, 42, 43).

It can be shown that (MO
i )g∗ = MO

i , i = 1, 2 and (MO
i )ξα = MO

i for i = 3, 4. ♮

All results in this section are useful for the enumeration of complete maps in

the next section.

4. The Enumeration of complete maps on surfaces

We firstly consider the permutation and its stabilizer . The permutation with the

following form (x1, x2, ..., xn)(αxn, αx2, ..., αx1) is called a pair permutation. The

following result is obvious.

Lemma 4.1 Let g be a permutation on the set Ω = {x1, x2, ..., xn} such that gα =

αg. If



The Number of Complete Maps on Surfaces 139

g(x1, x2, ..., xn)(αxn, αxn−1, ..., αx1)g
−1 = (x1, x2, ..., xn)(αxn, αxn−1, ..., αx1),

then

g = (x1, x2, ..., xn)k

and if

gα(x1, x2, ..., xn)(αxn, αxn−1, ..., αx1)(gα)−1 = (x1, x2, ..., xn)(αxn, αxn−1, ..., αx1),

then

gα = (αxn, αxn−1, ..., αx1)
k

for some integer k, 1 ≤ k ≤ n.

Lemma 4.2 For each permutation g, g ∈ E
[k

n
k ]

satisfying gα = αg on the set Ω =

{x1, x2, ..., xn}, the number of stable pair permutations in Ω under the action of g

or gα is

2φ(k)(n − 1)!

|E
[k

n
k ]
|

,

where φ(k) denotes the Euler function.

Proof Denote the number of stable pair permutations under the action of g

or gα by n(g) and C the set of pair permutations. Define the set A = {(g, C)|g ∈

E
[k

n
k ]

, C ∈ C and Cg = C or Cgα = C}. Clearly, for ∀g1, g2 ∈ E
[k

n
k ]

, we have

n(g1) = n(g2). Whence, we get that

|A| = |E
[k

n
k ]
|n(g). (4.1)

On the other hand, by Lemma 4.1, for any pair permutation C = (x1, x2, ..., xn)

(αxn, αxn−1, ..., αx1), since C is stable under the action of g, there must be g =

(x1, x2, ..., xn)l or gα = (αxn, αxn−1, ..., αx1)
l, where l = sn

k
, 1 ≤ s ≤ k and (s, k) =

1. Therefore, there are 2φ(k) permutations in E
[k

n
k ]

acting on it stable. Whence, we

also have
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|A| = 2φ(k)|C|. (4.2)

Combining (4.1) with (4.2), we get that

n(g) =
2φ(k)|C|

|E
[k

n
k ]
|

=
2φ(k)(n − 1)!

|E
[k

n
k ]
|

. ♮

Now we can enumerate the unrooted complete maps on surfaces.

Theorem 4.1 The number nL(Kn) of complete maps of order n ≥ 5 on surfaces is

nL(Kn) =
1

2
(
∑

k|n

+
∑

k|n,k≡0(mod2)

)
2α(n,k)(n − 2)!

n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

φ(k)2β(n,k)(n − 2)!
n−1

k

n − 1
,

where,

α(n, k) =





n(n−3)
2k

, if k ≡ 1(mod2);
n(n−2)

2k
, if k ≡ 0(mod2),

and

β(n, k) =





(n−1)(n−2)
2k

, if k ≡ 1(mod2);
(n−1)(n−3)

2k
, if k ≡ 0(mod2).

and nL(K4) = 11.

Proof According to (2.3) in Corollary 2.1 and Theorem 3.1 for n ≥ 5, we know

that

nL(Kn) =
1

2|AutKn|
× (

∑

g1∈E
[k

n
k ]

|Φ(g1)| +
∑

g2∈E
[(2s)

n
2s ]

|Φ(g2α)|

+
∑

h∈E
[1,k

n−1
k ]

|Φ(h)|)

=
1

2n!
× (

∑

k|n

|E
[k

n
k ]
||Φ(g1)| +

∑

l|n,l≡0(mod2)

|E
[l

n
l ]
||Φ(g2α)|

+
∑

l|(n−1)

|E
[1,l

n−1
l ]

||Φ(h)|),
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where, g1 ∈ E
[k

n
k ]

, g2 ∈ E
[l

n
l ]

and h ∈ E
[1,k

n−1
k ]

are three chosen elements.

Without loss of generality, we assume that an element g, g ∈ E
[k

n
k ]

has the

following cycle decomposition.

g = (1, 2, ..., k)(k + 1, k + 2, ..., 2k)...((
n

k
− 1)k + 1, (

n

k
− 1)k + 2, ..., n)

and

P =
∏

1
×

∏
2
,

where,

∏
1

= (1i21 , 1i31, ..., 1in1)(2i12 , 2i32 , ..., 2in2)...(ni1n , ni2n , ..., ni(n−1)n),

and

∏
2

= α(
∏

1

−1
)α−1

being a complete map which is stable under the action of g, where sij ∈ {k+, k−|k =

1, 2, ...n}.

Notice that the quadricells adjacent to the vertex ”1” can make 2n−2(n − 2)!

different pair permutations and for each chosen pair permutation, the pair permu-

tations adjacent to the vertices 2, 3, ..., k are uniquely determined since P is stable

under the action of g.

Similarly, for each given pair permutation adjacent to the vertex k + 1, 2k +

1, ..., (n
k
− 1)k + 1, the pair permutations adjacent to k + 2, k + 3, ..., 2k and 2k +

2, 2k+3, ..., 3k and,...,and (n
k
−1)k+2, (n

k
−1)k+3, ...n are also uniquely determined

because P is stable under the action of g.

Now for an orientable embedding M1 of Kn, all the induced embeddings by

exchanging two sides of some edges and retaining the others unchanged in M1 are

the same as M1 by the definition of maps. Whence, the number of different stable

embeddings under the action of g gotten by exchanging x and αx in M1 for x ∈

U, U ⊂ Xβ, where Xβ =
⋃

x∈E(Kn)
{x, βx} , is 2g(ε)−n

k , where g(ε) is the number of

orbits of E(Kn) under the action of g and we substract n
k

because we can chosen

12+, k + 11+, 2k + 11+, · · · , n − k + 11+ first in our enumeration.
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Notice that the length of each orbit under the action of g is k for ∀x ∈ E(Kn)

if k is odd and is k
2

for x = ii+
k
2 , i = 1, k + 1, · · · , n − k + 1, or k for all other edges

if k is even. Therefore, we get that

g(ε) =





ε(Kn)
k

, if k ≡ 1(mod2);
ε(Kn)−n

2

k
, if k ≡ 0(mod2).

Whence, we have that

α(n, k) = g(ε) −
n

k
=





n(n−3)
2k

, if k ≡ 1(mod2);
n(n−2)

2k
, if k ≡ 0(mod2),

and

|Φ(g)| = 2α(n,k)(n − 2)!
n
k , (4.3)

Similarly, if k ≡ 0(mod2), we get also that

|Φ(gα)| = 2α(n,k)(n − 2)!
n
k (4.4)

for an chosen element g, g ∈ E
[k

n
k ]

.

Now for ∀h ∈ E
[1,k

n−1
k ]

, without loss of generality, we assume that h = (1, 2, ..., k)(k+

1, k+2, ..., 2k)...((n−1
k

−1)k+1, (n−1
k

−1)k+2, ..., (n−1))(n). Then the above state-

ment is also true for the complete graph Kn−1 with the vertices 1, 2, · · · , n−1. Notice

that the quadricells n1+, n2+, · · · , nn−1+ can be chosen first in our enumeration and

they are not belong to the graph Kn−1. According to Lemma 4.2, we get that

|Φ(h)| = 2β(n,k)(n − 2)!
n−1

k ×
2φ(k)(n − 2)!

|E
[1,k

n−1
k ]

|
, (4.5)

Where

β(n, k) = h(ε) =





ε(Kn−1)
k

− n−1
k

= (n−1)(n−4)
2k

, if k ≡ 1(mod2);
ε(Kn−1)

k
− n−1

k
= (n−1)(n−3)

2k
, if k ≡ 0(mod2).

Combining (4.3) − (4.5), we get that

nL(Kn) =
1

2n!
× (

∑

k|n

|E
[k

n
k ]
||Φ(g0)| +

∑

l|n,l≡0(mod2)

|E
[l

n
l ]
||Φ(g1α)|
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+
∑

l|(n−1)

|E
[1,l

n−1
l ]

||Φ(h)|)

=
1

2n!
× (

∑

k|n

n!2α(n,k)(n − 2)!
n
k

k
n
k (n

k
)!

+
∑

k|n,k≡0(mod2)

n!2α(n,k)(n − 2)!
n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

n!

k
n−1

k (n−1
k

)!
×

2φ(k)(n − 2)!2β(n,k)(n − 2)!
n−1

k

(n−1)!

k
n−1

k (n−1
k

)!

)

=
1

2
(
∑

k|n

+
∑

k|n,k≡0(mod2)

)
2α(n,k)(n − 2)!

n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

φ(k)2β(n,k)(n − 2)!
n−1

k

n − 1
.

For n = 4, similar calculation shows that nL(K4) = 11 by consider the fixing

set of permutations in E
[s

4
s ]

,E
[1,s

3
s ]

, E
[(2s)

4
2s ]

,αE
[(2s)

4
2s ]

and αE[1,1,2]. ♮

For orientable complete maps, we get the number nO(Kn) of orientable complete

maps of order n as follows.

Theorem 4.2 The number nO((Kn) of complete maps of order n ≥ 5 on orientable

surfaces is

nO(Kn) =
1

2
(
∑

k|n

+
∑

k|n,k≡0(mod2)

)
(n − 2)!

n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

φ(k)(n − 2)!
n−1

k

n − 1
.

and n(K4) = 3.

Proof According to the Tutte’s algebraic representation of maps, a map M =

(Xα,β ,P) is orientable if and only if for ∀x ∈ Xα,β, x and αβx are in a same orbit of

Xα,β under the action of the group ΨI = 〈αβ,P〉. Now applying (2.1) in Corollary

2.1 and Theorem 3.1, similar to the proof of Theorem 4.1, we get the number nO(Kn)

for n ≥ 5 as follows

nO(Kn) =
1

2
(
∑

k|n

+
∑

k|n,k≡0(mod2)

)
(n − 2)!

n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

φ(k)(n − 2)!
n−1

k

n − 1
.

and for the complete graph K4, calculation shows that n(K4) = 3. ♮

Notice that nO(Kn)+nN (Kn) = nL(Kn). Therefore, we can also get the number

nN (Kn) of unrooted complete maps of order n on non-orientable surfaces by Theorem

4.1 and Theorem 4.2.
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Theorem 4.3 The number nN(Kn) of unrooted complete maps of order n, n ≥ 5 on

non-orientable surfaces is

nN (Kn) =
1

2
(
∑

k|n

+
∑

k|n,k≡0(mod2)

)
(2α(n,k) − 1)(n − 2)!

n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

φ(k)(2β(n,k) − 1)(n − 2)!
n−1

k

n − 1
,

and nN (K4) = 8. Where, α(n, k) and β(n, k) are same as in Theorem 4.1.

For n = 5, calculation shows that nL(K5) = 1080 and nO(K5) = 45 based

on Theorem 4.1 and 4.2. For n = 4, there are 3 unrooted orientable maps and 8

non-orientable maps shown in the Fig.2.

Fig.2
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All the 11 maps of K4 on surfaces are non-isomorphic.

Noticing that for an orientable map M , its cyclic order-preserving automor-

phisms are just the orientation-preserving automorphisms of map M by definition.

Now consider the action of cyclic order-preserving automorphisms of complete maps,

determined in Theorem 3.2 on all orientable embeddings of a complete graph of or-

der n. Similar to the proof of Theorem 4.2, we can get the number of non-equivalent

embeddings of complete graph of order n, which is same as the result of Mull et al.

in [15].
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Abstract: A map is a connected topological graph Γ cellularly embedded

in a surface. In this paper, applying Tutte’s algebraic representation of map,

new ideas for enumerating non-equivalent orientable or non-orientable maps

of graph are presented. By determining automorphisms of maps of Cayley

graph Γ = Cay(G : S) with AutΓ ∼= G × H on locally orientable, orientable

and non-orientable surfaces, formulae for the number of non-equivalent maps

of Γ on surfaces (orientable, non-orientable or locally orientable) are obtained

. Meanwhile, using reseults on GRR graph for finite groups, we enumerate the

non-equivalent maps of GRR graph of symmetric groups, groups generated by
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1. Introduction

Maps originate from the decomposition of surfaces. A typical example in this field

is the Heawood map coloring theorem. Combinatorially, a map is a connected topo-

logical graph Γ cellularly embedded in a surface. Motivated by the four color prob-

lem, the enumeration of maps on surfaces, especially, the planar rooted maps, has

been intensively investigated by many researchers after the Tutte’s pioneer work

in 1962 (see [10]). By using the automorphisms of the sphere, Liskovets gives an

enumerative scheme for unrooted planar maps[8]. Liskovets, Walsh and Liskovets

got many enumeration results for general planar maps, regular planar maps, Eu-

lerian planar maps, self-dual planar maps and 2-connected planar maps, etc [7]−[9].

Applying the well-known Burnside Lemma in permutation groups and the Edmonds

embedding scheme[2], Biggs and White presented a formula for enumerating the non-

equivalent maps (also a kind of unrooted maps) of a graph on orientable surfaces(see

[1],[14],[19]), which has been successfully used for the complete graphs, wheels and

complete bipartite graphs by determining the fix set Fv(α) for each vertex v and

automorphism α of a graph[14]−[15],[19].

Notice that Biggs and White’s formula can be only used for orientable surfaces.

For counting non-orientable maps of graphs, new mechanism should be devised.

In 1973,Tutte presented an algebraic representation for maps on locally orientable

surface([10],[17]−[18]). Applying the Tutte’s map representation, a general scheme for

enumerating the non-equivalent maps of a graph on surfaces can be established

(Lemma 3.1 in section 3), which can be used for orientable or non-orientable sur-

faces. This enumeration scheme has been used to enumerate complete maps on sur-

faces (orientable,non-orientable or locally orientable) by determining all orientation-

preserving automorphisms of maps of a complete graph[13]. In orientable case, re-

sult is the same as in [14]. The approach of counting orbits under the action of a
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permutation group is also used to enumerate the rooted maps and non-congruent

embeddings of a graph[6],[11],[16]. Notice that an algebraic approach for construction

non-hamiltonian cubic maps on every surface is presented in [12]. The main purpose

of this paper is to enumerate the non-equivalent maps of Cayley graph Γ of a finite

group G satisfying AutΓ = R(G) ×H ∼= G ×H on orientable, non-orientable or lo-

cally orientable surfaces, where H is a subgroup of AutΓ. For this objective, we get

all orientation-preserving automorphisms of maps of Γ in the Section 2. The scheme

for enumerating non-equivalent maps of a graph is re-established in Section 3. Us-

ing this scheme, results for non-equivalent maps of Cayley graphs are obtained. For

concrete examples, in Section 4, we calculate the numbers of non-equivalent maps of

GRR graphs for symmetric groups, groups generated by 3 involutions and abelian

groups. Terminologies and notations used in this paper are standard. Some of them

are mentioned in the following.

All surfaces are 2-dimensional compact closed manifolds without boundary,

graphs are connected and groups are finite in the context.

For a finite group G, choose a subset S ⊂ G such that S−1 = S and 1G 6∈ S,

the Cayley graph Γ = Cay(G : S) of G with respect to S is defined as follows:

V (Γ) = G;

E(Γ) = {(g, sg)|g ∈ G, s ∈ S}.

It has been shown that Γ is transitive, the right regular representation R(G) is a

subgroup of AutΓ and it is connected if and only if G = 〈S〉. If there exists a Cayley

set S such that Aut(Cay(G : S)) = R(G) ∼= G, then G is called to have a graphical

regular representation, abbreviated to GRR and say Cay(G : S) is the GRR graph of

the finite group G. Notice that which groups have GRR are completely determined

(see [4] − [5] and [21] for details).

A map M = (Xα,β,P) is defined ] to be a permutation P acting on Xα,β of a

disjoint union of quadricells Kx of x ∈ X , where K = {1, α, β, αβ} is the Klein

group, satisfying the following conditions:

(i) for ∀x ∈ Xα,β , there does not exist an integer k such that Pkx = αx;

(ii) αP = P−1α;

(iii) the group ΨJ = 〈α, β,P〉 is transitive on Xα,β.

According to the condition (ii), the vertices of a map are defined to be the

pairs of conjugate of P action on Xα,β and edges the orbits of K on Xα,β. For
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example, {x, αx, βx, αβx} is an edge for ∀x ∈ Xα,β of M. Geometrically, any map

M is an embedding of a graph Γ on a surface ( see also [10], [17]− [18] ), denoted by

M = M(Γ) and Γ = Γ(M). The graph Γ is called the underlying graph. If r ∈ Xα,β

is marked beforehand, then M is called a rooted map, denoted by M r.

For example, the graph K4 on the tours with one face length 4 and another 8

shown in Fig. 1,

Fig.1

can be algebraically represented as follows:

A map (Xα,β,P) with Xα,β = {x, y, z, u, v, w, αx, αy, αz, αu, αv, αw, βx, βy, βz,

βu, βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} and

P = (x, y, z)(αβx, u, w)(αβz, αβu, v)(αβy, αβv, αβw)

× (αx, αz, αy)(βx, αw, αu)(βz, αv, βu)(βy, βw, βv)

The four vertices of this map are {(x, y, z), (αx, αz, αy)}, {(αβx, u, w), (βx, αw, αu)},

{(αβz, αβu, v), (βz, αv, βu)} and {(αβy, αβv, αβw), (βy, βw, βv)} and six edges are

{e, αe, βe, αβe} for ∀e ∈ {x, y, z, u, v, w}.

Two maps M1 = (X 1
α,β,P1) and M2 = (X 2

α,β,P2) are called to be isomorphic if

there exists a bijection τ : X 1
α,β −→ X 2

α,β such that for ∀x ∈ X 1
α,β,τα(x) = ατ(x),

τβ(x) = βτ(x) and τP1(x) = P2τ(x) and τ is called an isomorphism between

them. Similarly, two maps M1, M2 are called to be equivalent if there exists an

isomorphism ξ between M1 and M2 such that for ∀x ∈ X 1
α,β, τP1(x) 6= P−1

2 τ(x).
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Call ξ an equivalence between M1 and M2. If M1 = M2 = M , then an isomorphism

or an equivalence between M1 and M2 is called an automorphism or an orientation-

preserving automorphism of M . Certainly, an orientation-preserving automorphism

of a map is an automorphism of map preserving the orientation on this map.

All automorphisms or orientation-preserving automorphisms of a map M form

groups, called automorphism group or orientation-preserving automorphism group

of M and denoted by AutM or AutOM, respectively. Similarly, two rooted maps

M r
1 and M r

2 are said to be isomorphic if there is an isomorphism θ between them

such that θ(r1) = r2, where r1, r2 are the roots of M r
1 and M r

2 , respectively and

denote the automorphism group of M r by AutMr. It has been known that AutMr

is the trivial group.

Now let Γ be a connected graph. The notations EO(Γ), EN(Γ) and EL(Γ) de-

note the embeddings of Γ on the orientable surfaces, non-orientable surfaces and

locally orientable surfaces, M(Γ) and AutΓ denote the set of non-isomorphic maps

underlying a graph Γ and its automorphism group, respectively.

Terminologies and notations not defined here can be seen in [10] for maps and

graphs and in [1] and [20] for groups.

Notice that the equivalence and isomorphism for maps are two different con-

cepts, for example, map M = (Xα,β,P) is always isomorphic to its mirror map

M−1 = (Xα,β,P−1), but M1 must not be equivalent to its mirror M−1. We establish

an approach for calculating non-equivalent maps underlying a graph and concrete

results in the sequel sections.

2. Determining orientation-preserving automorphisms of maps of Cayley

graphs

For C = {(x1, x2, · · · , xl), (αxl, αxl−1, · · · , αx1)}, the permutation Θ = (x1, x2, · · · ,

xl)(αxl, αxl−1, · · · , αx1) is called a pair permutation. Denote by {C} the set {x1, x2, · · · ,

xl, αx1, αx2, · · · , αxl} and g |Ω1 the constraint of permutation g action on Ω1 for

Ω1 ⊂ Ω. Then we get the following result.

Lemma 2.1 Let Γ be a connected graph. Then

(i) For any map M ∈ M(Γ), if τ ∈ AutM, then τ |V (Γ)∈ AutΓ;

(ii) For any two maps M1, M2 underlying the graph Γ, if θ is an isomorphism
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mapping M1 to M2, then θ |V (Γ)∈ AutΓ.

Proof According to the Tutte’s algebraic representation for maps, we can as-

sume that M = (Xα,β,P) with X = E(Γ). For ∀x, y ∈ V (M), we know that

x = {(e1, e2, · · · , es), (αes, αes−1, · · · , αe1)};

y = {(e1, e2, · · · , et), (αet, αet−1, · · · , αe1)}.

Now if e = xy ∈ E(G), there must be two integers i, j, such that ei = βej = e

or βei = ej = e. Whence, we get that

(i) if τ ∈ AutM, then V (Γ) = V (M) = V τ (M) = V τ (Γ) and

xτ = {(τ(e1), τ(e2), · · · , τ(es)), (ατ(es), ατ(es−1), · · · , ατ(e1))};

yτ = {(τ(e1), τ(e2), · · · , τ(et)), (ατ(et), ατ(et−1), · · · , ατ(e1))}.

Therefore,

eτ ∈ {xτ} ∩ β{yτ} or eτ ∈ β{xτ} ∩ {yτ}.

Whence, xτyτ ∈ E(Γ) and τ |V (Γ)∈ AutΓ.

(ii) Similarly, if θ : M1 −→ M2 is an isomorphism, then θ : V (Γ) = V (M1) −→

V (M2) = V (Γ) and

eθ ∈ {xθ} ∩ β{yθ} or eθ ∈ β{xθ} ∩ {yθ}

Whence we get that

eθ = xθyθ ∈ E(Γ) and θ |V (Γ)∈ AutΓ. ♮

Lemma 2.2 For ∀g ∈ AutM, ∀x ∈ Xα,β of a map M ,

(i) |xAutM| = |AutM| ;

(ii) |x≺g≻| = o(g),

where, o(g) denotes the order of g.
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Proof For any subgroup H ≺ AutM, we know that |H| = |xH ||Hx|. Since

Hx ≺ AutMx by definition, where Mx is the rooted map with root x, and AutMx is

trivial, we know that |Hx| = 1. Whence, |xH | = |H|. Now take H = AutM or 〈g〉,

we get the assertions (i) and (ii). ♮

For ∀g ∈ AutΓ, M = (Xα,β ,P) ∈ M(Γ), define an extending action of g on M

by

g∗ = g |Xα,β : Xα,β −→ Xα,β,

such that Mg∗ = gMg−1 and gα = αg, gβ = βg. A permutation p on set Ω is called

semi-regular if all of its orbits have the same length. Whence, an automorphism of

a map is semi-regular. The next result is followed by Lemma 2.1 and the definition

of extending action of elements in AutΓ gives a necessary and sufficient condition

for an automorphism of a map to be an orientation-preserving automorphism of this

map.

Theorem 2.1 For a connected graph Γ, an automorphism ξ∗ of map M is an

orientation-preserving automorphism of map underlying Γ if and only if there exists

an element ξ ∈ AutΓ such that ξ∗ = ξ |Xα,β .

Now for a finite group G, let Γ = Cay(G : S) be a connected Cayley graph

respect to S. Then its edge set is {(g, sg)|∀g ∈ G, ∀s ∈ S}. For convenience, we use

gsg denoting an edge (g, sg) in the Cayley graph Cay(G : S). Then its quadricell of

this edge can be represented by {gsg+, gsg−, (sg)g+, (sg)g−} and

Xα,β(Γ) = {gsg+|∀g ∈ G, ∀s ∈ S} ∪ {gsg−|∀g ∈ G, ∀s ∈ S};

α =
∏

g∈G,s∈S

(gsg+, gsg−);

β =
∏

g∈G,s∈S

(gsg+, (sg)g+)(gsg−, (sg)g−).

The main result of this section is the following.

Theorem 2.2 Let Γ = Cay(G : S) be a connected Cayley graph with AutΓ =

R(G) × H. Then for ∀θ ∈ AutΓ, the extending action θ |Xα,β is an orientation-

preserving automorphism of a map in E(Γ) on surfaces.
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Proof The proof is divided into two parts. First, we prove each automorphism

of the graph Γ is semi-regular and second, construct a stable embedding of Γ for

∀θ ∈ AutΓ.

(i) For ∀g ∈ AutΓ, since AutΓ = R(G) ×H , there must exist γ ∈ R(G), δ ∈ H

such that g = γδ = δγ. Now for ∀x ∈ G, the action of elements in 〈g〉 on x are as

follows.

xg = (xδ)γ = xδγ;

xg2
= (xδ2

)γ2
= xδ2

γ2;

· · · · · · · · · · · · · · · · · · · · · · · · ;

xgn

= (xδn

)γn

= xδn

γn;

· · · · · · · · · · · · · · · · · · · · · · · · .

Therefore, the orbit of 〈g〉 acting on x is

x〈g〉 = (x, xδγ, xδ2

γ2, · · · , xδn

γn, · · ·).

That is, for ∀x ∈ G, |x〈g〉| = [o(δ), o(γ)]. Whence, g is semi-regular.

(ii) Assume that the automorphism θ of Γ is

θ = (a, b, · · · , c) · · · (g, h, · · · , k) · · · (x, y, · · · , z),

where the length of each cycle is κ = o(g), G = {a, b, · · · , c, · · · , g, h, · · · , k, · · · , x, y,

· · · , z} and S = {s1, s2, · · · , st} ⊂ G. Denote by T = {a, · · · , g, · · · , x} the repre-

sentation set of each cycle in θ. We construct a map M = (Xα,β,P) underlying Γ

with

Xα,β(Γ) = {gsg+|∀g ∈ G, ∀s ∈ S} ∪ {gsg−|∀g ∈ G, ∀s ∈ S};

P =
∏

g∈T

∏

x∈C(g)

(Cx)(αC−1
x α−1),

where C(g) denotes the cycle containing g and let x = θf (g), then

Cx = (θf(g)θf (s1g+), θf(g)θf (s2g+), · · · , θf(g)θf (stg+))

and
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αC−1
x α−1 = (αθf(g)θf (stg−), αθf(g)θf (st−1g−), · · · , αθf(g)θf (s1g−)).

It is clear that M = θMθ−1. According to Theorem 2.1, we know that θ |Xα,β

is an orientation-preserving automorphism of map M .

Combining (i) with (ii), the proof is complete. ♮

According to the Rotation Embedding Scheme for orientable embeddings of a

graph formalized by Edmonds in [2], each orientable complete map is just the case

of eliminating the signs�+, -�in our representation of maps. Whence,we get the

following result for orientable maps underlying a Cayley graph of a finite group.

Theorem 2.3 Let Γ = Cay(G : S) be a connected Cayley graph with AutΓ =

R(G) × H. Then for ∀θ ∈ AutΓ, the extending action θ |Xα,β is an orientation-

preserving automorphism of a map in M(Γ) on orientable surfaces.

Notices that a GRR graph Γ of a finite group G satisfies AutΓ = R(G). Since

R(G) ∼= R(G)×{1AutΓ}, by Theorems 2.2 and 2.3, we get all orientation-preserving

automorphisms of maps of GRR graphs of a finite group as follows.

Corollary 2.1 Let Γ = Cay(G : S) be a connected GRR graph of a finite group

G. Then for ∀θ ∈ AutΓ, the extending action θ |Xα,β is an orientation-preserving

automorphism of a map in M(Γ) on locally orientable surfaces.

Corollary 2.2 Let Γ = Cay(G : S) be a connected GRR of a finite group G. Then

for ∀θ ∈ AutΓ, the extending action θ |Xα,β is an orientation-preserving automor-

phism of a map in M(Γ) on orientable surfaces.

3. The enumeration of non-equivalent maps of Cayley graphs

According to Theorem 2.1, we can get a general scheme for enumerating the non-

equivalent maps of a graph Γ on surfaces.

Lemma 3.1 For any connected graph Γ, let E ⊂ EL(Γ), then the number n(E ,M)

of non-equivalent maps in E is

n(E ,M) =
1

|AutΓ|

∑

g∈AutΓ

|Φ(g)|,
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where, Φ(g) = {P|P ∈ E and Pg = P}.

Proof According to Theorem 2.1, two maps M1, M2 ∈ E are equivalent if and

only if there exists an automorphism g ∈ AutΓ such that Mg∗

1 = M2, where,g∗ =

g |Xα,β . Whence, all non-equivalent maps in E are just the representations of the

orbits in E under the action of AutΓ. By the Burnside Lemma, the number of

non-equivalent maps in E is

n(E ,M) =
1

|AutΓ|

∑

g∈AutΓ

|Φ(g)|. ♮

Corollary 3.1 The numbers of non-equivalent maps in EO(Γ), EN(Γ) and EL(Γ) are

n(EO(Γ),M) =
1

|AutΓ|

∑

g∈AutΓ

|ΦO(g)|; (3.1)

n(EN(Γ),M) =
1

|AutΓ|

∑

g∈AutΓ

|ΦN(g)|; (3.2)

n(EL(Γ),M) =
1

|AutΓ|

∑

g∈AutΓ

|ΦL(g)|, (3.3)

where, ΦO(g) = {P|P ∈ EO(Γ) and Pg = P}, ΦN (g) = {P|P ∈ EN(Γ) and Pg =

P}, ΦL(g) = {P|P ∈ EL(Γ) and Pg = P}.

Corollary 3.2 In formula (3.1)-(3.3), |Φ(g)| 6= 0 if, and only if g is an orientation-

preserving automorphism of map of graph Γ on an orientable, non-orientable or

locally orientable surface.

The formula (3.1) is obtained by Biggs and White in [1]. Applying Theorems

2.2− 2.3 and the formulae (3.1)− (3.3), we can enumerate the non-equivalent maps

underlying a Cayley graph Γ of a finite group G satisfying AutΓ = R(G) × H on

orientable surfaces, non-orientable surfaces and locally orientable surfaces.

Theorem 3.1 Let Γ = Cay(G : S) be a connected Cayley graph with AutΓ =

R(G) × H. Then the number nT
M(G : S) of non-equivalent maps underlying Γ on

locally orientable surfaces is

nL
M(G : S) =

1

|G||H|

∑

ξ∈OG

|Eξ|2
α(S,ξ)(|S| − 1)!

|G|
o(ξ) ,
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where OG denotes the representation set of conjugate class of AutΓ , Eξ the conjugate

class in AutΓ containing ξ and

α(S, ξ) =





|G||S|−2|G|
2o(ξ)

, if ξ ∈ Θ
|G||S|+2l−2|G|

2o(ξ)
, if ξ ∈ ∆.

where, Θ = {ξ|o(ξ) ≡ 1(mod2) ∨ o(ξ) ≡ 0(mod2), 6 ∃s ∈ S, t ∈ G such that s =

tξ
o(ξ)
2 }, ∆ = {ξ|o(ξ) ≡ 0(mod2)∧∃si ∈ S, ti ∈ G, 1 ≤ i ≤ l(ξ), l(ξ) ≡ 0(mod o(ξ)

2
) such

that si = tξ
o(ξ)
2

i }.

Proof Notice that ΦL(ξ) is a class function on AutΓ. According to Theorem

2.2 and Corollary 3.1, we know that

nL
M(G : S) =

1

|AutΓ|
×

∑

ξ∈AutΓ

|ΦL(ξ)|

=
1

|G||H|

∑

ξ∈R(G)×H

|ΦL(g)|. (3.4)

Since for ∀ξ = (µ, ν) ∈ AutΓ, ξ is semi-regular, without loss of generality, we

can assume that

ξ = (a, b, · · · , c) · · · (g, h, · · · , k) · · · (x, y, · · · , z),

where the length of each cycle is o(ξ) = [o(µ), o(ν)],

P =
∏

g∈T

∏

x∈C(g)

(Cx)(αC−1
x ),

being a map underlying the graph Γ and stable under the action of ξ, C(g) denotes

the cycle containing g and T is the representation set of cycles in ξ. Let S =

{s1, s2, · · · , sk} and x = ξf(g), then

Cx = (ξf(g)ξf(s1gν1), ξf(g)ξf (s2gν2), · · · , ξf(g)ξf (stgνk)), (3.5)

with νi ∈ {+,−}, 1 ≤ i ≤ k.

Notice that the quadricell adjacent to the vertex a can make 2|S|−1(|S|−1)! pair

permutations, and for each chosen pair permutation, the pair permutations adjacent
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to the vertex x, x ∈ C(a) are uniquely determined by (3.5) since P is stable under

the action of ξ.

Similarly, for each given pair permutation adjacent to a vertex u ∈ T , the pair

permutations adjacent to the vertices v, v ∈ C(u) are also uniquely determined by

(3.5) since P is stable under the action of ξ.

Notice that any non-orientable embedding can be obtained by exchanging some

x with αx, x ∈ Xα,β(M) in an orientable embedding M underlying Γ. Now for an

orientable embedding M1 of Γ, all the induced embeddings by exchanging some

edge’s two sides and retaining the others unchanged in M1 are the same as M1 by

the definition of embedding. Therefore, the number of different stable maps under

the action of ξ gotten by exchanging x and αx in M1 for x ∈ U, U ⊂ Xβ, where

Xβ =
⋃

x∈E(Γ)
{x, βx} , is 2

ξ(ε)−
|G|
o(ξ) , where ξ(ε) is the number of orbits of E(Γ) under

the action of ξ, and we subtract |G|
o(ξ)

because we can choose ab+, · · · , ga+, · · · , xa+

first in our enumeration.

Since the length of each orbit under the action of ξ is o(ξ) for ∀e ∈ E(Γ)

if o(ξ) ≡ 1(mod2) or o(ξ) ≡ 0(mod2) but there are not s ∈ S, t ∈ G such that

s = tξ
o(ξ)
2 and is o(ξ)

2
for each edge tsiti

i , 1 ≤ i ≤ l(ξ), if o(ξ) ≡ 0(mod2) and there

are si ∈ S, ti ∈ G, 1 ≤ i ≤ l(ξ), such that si = tξ
o(ξ)
2

i (Notice that there must be

l ≡ 0(mod o(ξ)
2

) because ξ is an automorphism of the graph Γ) or o(ξ) for all other

edges. Whence, we get that

ξ(ε) =





ε(Γ)
o(ξ)

, if ξ ∈ Θ
ε(Γ)−l(ξ)

o(ξ)
+ 2l(ξ)

o(ξ)
, if ξ ∈ ∆.

Now for ∀π ∈ AutΓ, since θ = πξπ−1 ∈ AutΓ, we know that θ(ε) = ξ(ε).

Therefore, we get that

α(S, ξ) =





|G||S|−2|G|
2o(ξ)

, if ξ ∈ Θ
|G||S|+2l(ξ)−2|G|

2o(ξ)
, if ξ ∈ ∆.

and

|ΦT (ξ)| = 2α(S,ξ)(|S| − 1)!
|G|
o(ξ) . (3.6)

Combining (3.4) with (3.6), we get that
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nT
M(G : S) =

1

|G||H|

∑

ξ∈OG

|Eξ|2
α(S,ξ)(|S| − 1)!

|G|
o(ξ) ,

and the proof is complete. ♮

According to the formula (3.1) and Theorem 2.3, we also get the number nO
M(G :

S) of non-equivalent maps of a Cayley graph Cay(G : S) on orientable surfaces.

Theorem 3.2 Let Γ = Cay(G : S) be a Cayley graph with AutΓ = R(G)×H. Then

the number nO
M(G : S) of non-equivalent maps underlying Γ on orientable surfaces

is

nO
M(G : S) =

1

|G||H|

∑

ξ∈OG

|Eξ|(|S| − 1)!
|G|
o(ξ) ,

where,the means of notations Eξ, OG are the same as in Theorem 3.1.

Proof By Corollary 3.1, we know that

nO
M(G : S) =

1

|G||H|
×

∑

ξ∈R(G)×H

|ΦO(ξ)|.

Similar to the proof of Theorem 3.1 by applying Theorem 2.3 and Corollary 3.1, we

get that for ∀ξ ∈ R(G) × H ,

|ΦO(ξ)| = (|S| − 1)!
|G|
o(ξ) .

Therefore,

nO
M(G : S) =

1

|G||H|

∑

ξ∈OG

|Eξ|(|S| − 1)!
|G|
o(ξ) . ♮

Notice that for a given Cayley graph Cay(G : S) of a finite group G, nO
M(G : S)+

nN
M(G : S) = nL

M(G : S). Whence, we get the number of non-equivalent maps

underlying a graph Cay(G : S) on non-orientable surfaces.

Theorem 3.3 Let Γ = Cay(G : S) be a Cayley graph with AutΓ = R(G) × H.

Then the number nN
M(G : S) of non-equivalent maps underlying Γ on non-orientable

surfaces is

nN
M(G : S) =

1

|G||H|

∑

ξ∈OG

|Eξ|(2
α(S,ξ) − 1)(|S| − 1)!

|G|
o(ξ) ,
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where OG denotes the representation set of conjugate class of AutΓ, Eξ the conjugate

class in AutΓ containing ξ and α(S, ξ) is the same as in Theorem 3.1.

Since R(G) ∼= R(G)×{1AutΓ} and the condition s ∈ S, t ∈ G such that s = tξ
o(ξ)
2

turns to s = tξ
o(ξ)
2 t−1 when AutΓ = R(G), we get the number of non-equivalent maps

underlying a GRR graph of a finite group by Theorems 3.1 − 3.3 as follows.

Corollary 3.3 Let G be a finite group with a GRR graph Γ = Cay(G : S). Then the

numbers of non-equivalent maps underlying Γ on locally orientable, orientable and

non-orientable surfaces are respective

nL
M(G : S) =

1

|G|

∑

g∈OG

|Eg|2
α1(S,g)(|S| − 1)!

|G|
o(g) ,

nO
M(G : S) =

1

|G|

∑

g∈OG

|Eg|(|S| − 1)!
|G|
o(g)

and

nN
M(G : S) =

1

|G|

∑

g∈OG

|Eg|(2
α1(S,g) − 1)(|S| − 1)!

|G|
o(g) ,

where OG denotes the representation set of conjugate class of G, Eg the conjugate

class in G containing g and

α1(S, g) =





|G||S|−2|G|
2o(g)

, if g ∈ Θ′

|G||S|+2l(g)−2|G|
2o(g)

, if g ∈ ∆′.

where, Θ′ = {g|o(g) ≡ 1(mod2) ∨ o(g) ≡ 0(mod2), ∀s ∈ S, s 6∈ E
g

o(g)
2
} and ∆′ =

{g|o(g) ≡ 0(mod2), ∃ti ∈ G, 1 ≤ i ≤ l(g), l(g) ≡ 0(mod o(g)
2

) such that tig
o(g)
2 t−1

i

∈ S}.

Corollary 3.4 Let G be a finite group of odd order with a GRR graph Γ = Cay(G :

S). Then the number nL
M(G : S) of non-equivalent maps of graph Γ on surfaces is

nL
M(G : S) =

1

|G|

∑

g∈OG

|Eg|2
|G||S|−2|G|

2o(g) (|S| − 1)!
|G|
o(g) .

4. Examples and calculation for GRR graphs

Hetze and Godsil investigated GRR for solvable, non-solvable finite groups, respec-

tively. They proved[4],[21] that every group has GRR unless it belongs to one of the

following groups:
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(a) abelian groups of exponent greater than 2;

(b) generalized dicyclic groups;

(c) thirteen ”exceptional” groups:

(1) Z2
2 , Z

3
2 , Z

4
2 ;

(2) D6, D8, D10;

(3) A4;

(4) 〈a, b, c|a2 = b2 = c2 = 1, abc = bca = cab〉;

(5) 〈a, b|a8 = b2 = 1, bab = b5〉;

(6) 〈a, b, c|a3 = c3 = b2 = 1, ac = ca, (ab)2 = (cb)2 = 1〉;

(7) 〈a, b, c|a3 = b3 = c3 = 1, ac = ca, bc = cb, c = a−1b−1ab〉;

(8) Q8 × Z3, Q8 × Z4.

Based on results in previous section, the constructions given in [4] − [5] and

Corollary 3.2, we give some calculations for the numbers of non-equivalent maps

underlying a GRR graph on surfaces for some special groups.

Calculation 4.1 Symmetric group Σn

Using the notation (k̄) denotes a partition of the integer n: (k̄) = k1, k2, · · · , kn)

such that 1k1+2k2+· · ·+nkn = n and lcm(k̄) the least common multiple of the inte-

gers 1(k1 times), 2(k2 times), · · ·, n(kn times), i.e, lcm(k̄) = [1(k1times), 2(k2times),

· · · , n(kntimes)] . Godsil proved that[5] every symmetric group Σn with n ≥ 19 has

a cubic GRR with S = {x, y, y−1}, where x2 = y3 = e. Since |Σn| = n!, we get that

the numbers of non-equivalent maps underlying a cubic GRR graph of Σn are

nL
M(Σn : S) =

1

n!
×

∑

g∈Σn

2α1(S,g) × 2!
|Σn|
o(g) =

1

n!
×

∑

g∈Σn

2
α(S,g)+ n!

o(g)

and

nO
M(Σn : S) =

1

n!
×

∑

g∈Σn

2!
|Σn|
o(g)

=
1

n!
×

∑

(k̄)

n!
n∏

i=1
ikiki!

× 2
n!

lcm(k̄) =
∑

(k̄)

2
n!

lcm(k̄)

n∏
i=1

ikiki!
,

and
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nN
M(Σn : S) =

1

n!
×

∑

g∈Σn

2
n!

o(g) (2α1(S,g) − 1)

For the case n = 6m + 1, we know that[5] x = b1 if m ≡ 1(mod2) and x = b2 if

m ≡ 0(mod2), where

b1 = (1, 4)(2, n)(3, n− 1)(n − 6, n − 3)(n − 5, n − 2)

×
m−2∏

r=1

(6r, 6r + 3)(6r + 1, 6r + 4)(6r + 2, 6r + 5)

and

b2 = b1(n − 12, n − 9).

Notice that b1 ∈ E[1323m−1] and b2 ∈ E[1523m−2]. We define the sets A1, B1, A2 and

B2 as follows.

A1 = {g|g ∈ Σn, o(g) ≡ 1(mod2) or o(g) ≡ 0(mod2) but g
o(g)
2 6∈ E[1323m−1]},

B1 = {g|g ∈ Σn, o(g) ≡ 0(mod2) but g
o(g)
2 6∈ E[1323m−1]}

and

A2 = {g|g ∈ Σn, o(g) ≡ 1(mod2) or o(g) ≡ 0(mod2) but g
o(g)
2 6∈ E[1523m−2]},

B2 = {g|g ∈ Σn, o(g) ≡ 0(mod2) but g
o(g)
2 6∈ E[1523m−2]}.

For ∀θ ∈ Σn, if ζ ∈ Ai or Bi, i = 1 or 2, it is clear that θζθ−1 ∈ Ai or Bi.

Whence, Eζ ⊂ Ai or Bi. Now calculation shows that

l(g) =





3!(n − 3)!!, if g ∈ E[1323m−1]

5!(n − 2)!!, if g ∈ E[1523m−2]

0, otherwise.

Therefore, we have that
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nL
M(Σn : S)|m≡1(mod2) =

∑
g∈Σn

2α1(S,g)+ n!
o(g)

n!

=
1

n!
×

∑

(k̄)

n!
n∏

i=1
ikiki!

× 2
α1(S,(k̄))+ n!

lcm(k̄)

=
∑

(k̄)

2
α1(S,(k̄))+ n!

lcm(k̄)

n∏
i=1

ikiki!
,

where,

α1(S, (k̄)) =





n!
2·lcm(k̄)

, if E(k̄) ⊂ A1

n!+12(n−3)!!
2·lcm(k̄)

, if E(k̄) ⊂ B1

and

nL
M(Σn : S)|m≡0(mod2) =

∑
g∈Σn

2
α′

1(S,g)+ n!
o(g)

n!

=
∑

(k̄)

2
α′

1(S,(k̄))+ n!
lcm(k̄)

n∏
i=1

ikiki!
,

where

α′
1(S, (k̄)) =





n!
2·lcm(k̄)

, if E(k̄) ⊂ A2

n!+240(n−5)!!
2·lcm(k̄)

, if E(k̄) ⊂ B2.

Calculation 4.2 Group generated by 3 involutions

Let G = 〈a, b, c|a2 = b2 = c2 = e〉 be a finite group of order n. In [5], Godsil

proved that if (AutG)S = e, where S = {a, b, c}, then G has a GRR Cay(G : S).

Since any element of order 2 must has the form txt−1, t ∈ G and x = a, b or c. We

assume that for ∀t ∈ G, tx 6= xt, for x = a, b, c. Then for ∀g ∈ G,

l(g) =





n, if o(g) ≡ 0(mod2)

0, if o(g) ≡ 1(mod2).

Therefore, we get that
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α1(S, g) =





n
2o(g)

, if o(g) ≡ 1(mod2)
3n

2o(g)
, if o(g) ≡ 0(mod2),

nL
M(G : S) =

∑
o(g)≡1(mod2)

2
3n

2o(g) +
∑

o(g)≡0(mod2)
2

5n
2o(g)

n
,

nO
M(G : S) =

∑
g∈G

2
n

o(g)

n

and

nN
M(G : S) =

∑
o(g)≡1(mod2)

2
n

o(g) (2
n

2o(g) − 1) +
∑

o(g)≡0(mod2)
2

n
o(g) (2

3n
2o(g) − 1)

n

Calculation 4.3 Abelian group

Let k = |S|. It has been proved that an abelian group G has GRR if and

only if G = (Z2)
n for n = 1 or n ≥ 5. Now for the abelian group G = (Z2)

n =

〈a〉 × 〈b〉 × · · · × 〈c〉, every element in G has order 2. Calculation shows that

l(g) =





2n, if g ∈ S

0, if g 6∈ S.

Whence, we get that

α1(S, g) =





(k − 2)2n−2, if g 6∈ S

k2n−2, if g ∈ S.

Therefore, the numbers of non-equivalent maps underlying a GRR graph of (Z2)
n

on locally orienatble or orientable surfaces are

nL
M((Z2)

n : S) =
1

|G|
×

∑

g∈(Z2)n

2α1(S,g)(k − 1)!
|G|
o(g)

=
1

2n
× (

∑

g∈S

2k2n−2

(k − 1)!2
n−1

+
∑

g 6∈S,g 6=e

2(k−2)2n−2

(k − 1)!2
n−1

)

=
2k2n−2

k(k − 1)!2
n−1

+ (2n − k − 1)2(k−2)2n−2
(k − 1)!2

n−1

2n

+
2(k−2)2n−2

(k − 1)!2
n

2n
,
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and

nO
M((Z2)

n : S) =
1

2n
×

∑

g∈(Z2)n

(k − 1)!
2n

o(g)

=
(k − 1)!2

n

+ (2n − 1)(k − 1)!2
n−1

2n
.
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Riemann�{!Hurwitz�k��>G3 ∗gGs x�0�}J�HJv�f}JPl��We�100080��z�℄m Riemann ��7�℄m�7,���as�ohokTb`f"�'U�Tw'���hHw7d{d Riemann ���'SOH\�|r Riemann ��'Hw
�f1'T�o Hurwitz � 19 4;&#�2�℄m�l g ≥ 2 ' Riemann �� S�h�'=,Hw
 |Aut+S| ≤ 84(g − 1)���om Fuchsian 
'TL�r�m4; 60R�lB�T�_>�BC�*'l��)\�i)Py#�T�'0��[�'9ZJ'��r�m,j0B Riemann ��Hw_>N����&#j'HwG
{,jHw
'�Y^Z`HÆ,jHw
'[?0S'W�f�C�o��al� Hurwitz 7a0��'℄2l��)\�N��℄2Bj'OkT,�
A Combinatorial Refinement of Hurwitz Theorem

on Riemann surfaces

Abstract: A Riemann surface is an orientable surface endowed with an

analytic structure. Its automorphisms are defined to be conformal mappings

on this surface. For the automorphism group of a Riemann surface S, a well-

known result is obtained by Hurwitz in 19th century, i.e., |Aut+S| ≤ 84(g− 1)

for a Riemann surface S with g ≥ 2.Since then, many refinements for this

result are got by applying Fuchsian group. Such works can be also found on

journals today.

1�t-FY.�{G~g2�qTtMtG{GA/W�DM, 2004 � 12 j�9^�
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The purpose of this paper is to find a combinatorial description for Rie-

mann surfaces by applying combinatorial maps, get a necessary and sufficient

condition for an automorphism subgroup of a graph G to be an automorphism

group of a map underlying G and the bounds for the order of automorphism

groups of maps. These results enables us to deduce easily the Hurwitz the-

orem and some other results. Further considerations for automorphisms of

Klein surfaces are presented in the final section..V	�Riemann ���,j�j's��=,Hw�Hw�
Sm�#i8 AMS(2000)�05C10,05C25�30F10�30F35�30F99

1. ~w�/7bn\=avy%R[Cav�	y%;�=5.	�%&Riemann ��R0%%&;�= Hausdorff �1 S�>rL%&dL�� {Ui, Φi} e\KEv4
[5][16]�

(C1) l& Ui 1 S �=~��PV ⋃
Ui = M ;

(C2) =	 Φi : Ui → C1 1 Ui 8Æ4v C1 �=�&=	�
(C3) d ∀i, j, Æ_=	

Φi ◦ Φ−1
j : Φj(Ui

⋂
Uj) → Φi(Ui

⋂
Uj)1PA=�-#�PATI12G=	�Riemann av�=HwR0%>� 1−1=2G=	�%P3h'ÆTI=%;I��q�Riemann av1℄+I�7}h�$�w+I�℄� ��℄,�TI\>7=5.0!�=�=-r�>��uI�,�>d:C
�7rL!�=�=D+�"�5%��}hV�IZ=I�(�u�%IZL=�=1Q�Schwartz =L!{B Riemann av�=W�31LS= [5]��%o�C7pod[%X[(R%& Riemann av�>�rs=W�3&I�Hurwitz ;8B>wK�Q [5]�o7℄m�l g(S) ≥ 2 ' Riemann �� S�h�'=,Hw
 |Aut+S| ≤

84(g(S) − 1).

Accola P 1968 �;8B [1]Riemann av S �W�3&I=KQ |Aut+S| ≥

8(g(S) + 1). Harvey[7] [ Maclachlan[11] dP Riemann av��yW�3k[E{



Riemann �A� Hurwitz 8Æ(O�m� 169W�3k=L(B6Q�>�Q�N% 2(2g(S) + 1) [ 12(g(S) − 1)�/Q [13]7(BL ≥ 3g(S) i ≤ 4g(S) + 2 =W�3d:= Riemann av S �W�3=rsMPr)��/=E��=�uP^CD	=zq�j Riemann av�W�3=__o��[i^CD	=__aI�s Riemannav=W�3o��;8>L=*#Q�^C= Riemann av�D	�1{k7=DXV�W��N:/Q [5][16]�[9][10][ [2]�
2. Riemannian �z��=�C~kD	1av�=%;t���;t�';>l&vy�&P 2 &b! {(x, y)|x2 +

y2 < 1}�D	=R0L}h;��:	\7%'^C	=avPxR0D	�TutteP 1973 �(BD	=+IR0wK [9][10][15]:%&,j M = (Xα,β,P)�R0%u	��_ X = 4 ^.Q Kx, x ∈ X, =502^=P� Xα,β �=%&	�1{ P�Ve\Kv=0/ 1 [0/ 2��1
K = {1.α, β, αβ} % Klein 4- ^k�b, P %	�1{��V"u��I k, ';
Pkx = αx�+j 1�αP = P−1α;+j 2�k ΨJ = 〈α, β,P〉 u Xα,β ��G�&p0/ 1�D	7=QHR0%CP Xα,β �=1{ P �y�P7=2md {C, αCα−1}�E}R0% Klein 4- ^ku Xα,β �=CG9�5w�∀x ∈ Xα,β,

{x, αx, βx, αβx} 1D	 M =%yE���℄&>�B�q℄D	 M y%%&	
G uav�=Px�a:/Q [9],[10]��"% M = M(G) [ G = G(M)�	 G ~%D	 M =	�	�zuD	 M 7d^ r ∈ Xα,β LR�}~ M %bp,j�"%
M r�zk ΨI =< αβ,P > u�_ Xα,β �=C1�G=�}~ M = (Xα,β,P) 1VR[=��}�R[=�5w�	 1 7(B 4 L�h	 K4 uyv�=%;Px�>%&vt% 4 iJ%&vt% 8�
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C 1,+IM*wK:D	 (Xα,β,P)��1 Xα,β = {x, y, z, u, v, w, αx, αy, αz, αu, αv, αw, βx, βy, βz, βu,

βv, βw, αβx, αβy, αβz, αβu, αβv, αβw}�i
P = (x, y, z)(αβx, u, w)(αβz, αβu, v)(αβy, αβv, αβw)

× (αx, αz, αy)(βx, αw, αu)(βz, αv, βu)(βy, βw, βv)D	= 4 &QH% {(x, y, z), (αx, αz, αy)}, {(αβx, u, w), (βx, αw, αu)}, {(αβz,

αβu, v), (βz, αv, βu)}[ {(αβy, αβv, αβw), (βy, βw, βv)}�6yE% {e, αe, βe, αβe},�1�e ∈ {x, y, z, u, v, w}.?&D	 M1 = (X 1
α,β,P1) [ M2 = (X 2

α,β,P2) ~%w'�z"u%& 1 − 1=	 τ : X 1
α,β −→ X 2

α,β�'; ∀x ∈ X 1
α,β ,τα(x) = ατ(x), τβ(x) = βτ(x) V τP1(x) =

P2τ(x)�~ τ %�?&D	1=%&w�z M1 = M2 = M , } M1 V M2 1=�3~%D	 M =Hw�D	 M =bLW�3�uÆ_p[K3�%&k�~%D	 M =W�3k�"% AutM�+UD�?&L)D	 M r
1 �M r

2 ~%�3�zeo$1"u%&D	�3 θ�'; θ(r1) = r2��1�r1 , r2 �NM*D	 M r
1�M r

2=)�"L)D	 M r =W�3k% AutM r�2o*#9�k AutM r %4tk�
Riemann av�D	=W�3V�av�=}G9�=W�3k$1L%&C#=<I�&p Jones [ Singerman (=R[av�=D	/\[ Tucker dav�kC=�j�2o,#9 Riemann av�=W�3VD	W�3$1=KE<I�F�7B�j Riemann av=__zq�



Riemann �A� Hurwitz 8Æ(O�m� 171�j 2.1[8][14] � G { Riemann �� S �'℄mHw
�
 S ���℄m,j
M�.& G {,j M 'Hw
�[e,��� S ���℄m(	j{ Cayleyj',j M∗�. G &7 M∗ 'Hw
�Fu 2.1 �� S ����℄m,j M�
 AutS � AutM .Fu 2.2 �� S �',j M 'S����W�2 |AutM | ≤ C��� C u,j
M �|'℄mzF�
 |AutS| ≤ C.

3. C��>,�E
	 4 �t� � ��, Γ = (V, E) %%&;�=5.	�>W�3k"% AutΓ�b	�� X =

E(Γ)�}> 4 ^.Q Xα,β R0%�
Xα,β =

⋃

x∈X

{x, αx, βx, βαβx},�1�K = {1, α, β, αβ} % Klein 4 ^k�dq/^ ∀g ∈ AutΓ, R0 g u Xα,β �=C!
 g|Xα,β wK��1 X =

E(G)�By ∀x ∈ Xα,β, � xg = y, 7d (αx)g = αy, (βx)g = βy 0 (αβx)g = αβy.�D	M = (Xα,β,P)�dW�3 g ∈ AutM [q/QH ∀u, v ∈ V (M), g|V (M) :

u → v, z ug = v�}~ g %>[W�3�z ug = v−1�}~ g %u[W�3�dq/ g ∈ AutM�-#g '{=,'�'{Q,'�wQ,Hwu=,Hw'~*{Q,Hw�D=,Hwu=,Hw�Q,HwuQ,Hw'~*v{=,Hw�G � AutM�R0 G+ � G % G 7=>[W�3Vk�}G+ { G /''F{ 2 'G
��QH v =M*% v = (x1, x2, · · · , xρ(v))(αxρ(v), · · · , αx2, αx1),"F v ��=�yk% 〈v〉�}dD	=W�3k�LKEv4�~j 3.1 � G � AutM {,j M 'HwG
, 
B ∀v ∈ V (M),

(i) � ∀g ∈ G,g {=,Hw�
 Gv � 〈v〉, {K�
�
(ii) Gv � < v > ×〈α〉��C (i) �D	 M = (Xα,β,P)�FPq/ ∀g ∈ G %>[W�3�9d

∀v ∈ V (M), h ∈ Gv, L vh = v�*RQH
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v = (x1, x2, · · · , xρ(v))(αxρ(v), αxρ(v)−1, · · · , αx1).}L

[(x1, x2, · · · , xρ(v))(αxρ(v), · · · , αx2, αx1)]
h = (x1, x2, · · · , xρ(v))(αxρ(v), · · · , αx2, αx1).��%$�z h(x1) = xk+1, 1 ≤ k ≤ ρ(v)�}L

h = [(x1, x2, · · · , xρ(v))(αxρ(v), αxρ(v)−1, · · · , αx1)]
k = vk.z h(x1) = αxρ(v)−k+1, 1 ≤ k ≤ ρ(v)�}L

h = [(x1, x2, · · · , xρ(v))(αxρ(v), αxρ(v)−1, · · · , αx1)]
kα = vkα.0z h = vkα�-# vh = vα = v−1, ��# h V1>[W�3�9L h =

vk, 1 ≤ k ≤ ρ(v)�� Gv 7=^y% v =zr�� ξ % Gv 7^=`_r)I�}
Gv =

〈
vξ

〉
� 〈v〉 %F vξ ��=�yk�

(ii) d ∀g ∈ Gv�L vg = v��
[(x1, x2, · · · , xρ)(αxρ, αxρ−1, · · · , αx1)]

g = (x1, x2, · · · , xρ)(αxρ, αxρ−1, · · · , αx1).+UP (i) =!{�#"u�I s, 1 ≤ s ≤ ρ�'; g = vs � g = vsα�9L
g ∈ 〈v〉 � g ∈ 〈v〉α��

Gv � 〈v〉 × 〈α〉 . ♮~j 3.2 � Γ {℄m�bj�� G � AutΓ�w ∀v ∈ V (Γ),Gv � 〈v〉 × 〈α〉�
 G� Xα,β �'Sm7O�
'��C qb%& 4 ^.Q x ∈ Xα,β�2o!{ Gx = {1G}�%$��� g ∈ Gx,}L xg = x�oND�><:=QH u u g CKVW��L ug = u��
u = (x, y1, · · · , yρ(u)−1)(αx, αyρ(u)−1, · · · , αy1),}FP Gu � 〈u〉 × 〈α〉�9
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xg = x, yg
1 = y1, · · · , y

g
ρ(u)−1 = yρ(u)−1[

(αx)g = αx, (αy1)
g = αy1, · · · , (αyρ(u)−1)

g = αyρ(u)−1�dq%&<:PQH u = 4 ^.Q eu, e
g
u = eu�&pW�3k AutΓ u Xα,β�C=R0�#

(βx)g = βx, (βy1)
g = βy1, · · · , (βyρ(u)−1)

g = βyρ(u)−1V
(αβx)g = αβx, (αβy1)

g = αβy1, · · · , (αβyρ(u)−1)
g = αβyρ(u)−1���qb%&^ y ∈ Xα,β�� y <:=QH% w, }F	=;�v�# Γ 7"u%y;K u [ w =9R P (u, w) = uv1v2 · · · vsw�V�;Jv�� βyk <:PQH v1, }F (βyk)

g = βyk � Gv1 � 〈v1〉 × 〈α〉�#q%&<:PQH v1 = 4 ^.Q ev1 , e
g
v1

= ev1�+UD, zq℄%&<:PQH vi = 4 ^.Q evi
u g CKVW�� (evi

)g =

evi
, },!{q℄%&<:PQH vi+1 = 4 ^.Q evi+1

u g CKVW. &�+Æ�;8q℄%&<:PQH w = 4 ^.Q ew u g CKVW, oND�L
yg = y.9# g = 1G��iL Gx = {1G}� ♮Pu�2o!{	=W�3k%D	W�3k=
�y<��j 3.1 � Γ {℄m�bj�� G � AutΓ�
 G 7a Γ {(	j',jHw
'�Z`H7B ∀v ∈ V (Γ), �7G
 Gv � 〈v〉 × 〈α〉��C &p7/ 3.1(ii) #y<1D�=�P!{y<=
�v�F7/ 3.2 # G u Xα,β �=C1,�}=��d ∀x ∈ Xα,β�L |Gx| = 1�9^ x u G CK=G9t^ |xG| = |Gx||x

G| = |G|�� ∀x ∈ Xα,β u G CK=G9t^y% |G|�� G u V (Γ) �C2L s yG9 O1, O2, · · · , Os��1 O1 = {u1, u2, · · · , uk},

O2 = {v1, v2, · · · , vl},· · ·,Os = {w1, w2, · · · , wt}�2o3z Γ 7'QH=��;8u G CKVW=1{ P�



174 8!O: H'^5<GI1�/J/�d ∀u ∈ V (Γ)�F |G| = |Gu||u
G|�# [k, l, · · · , t]| |G|��1 [k, l, · · · , t] M* k, l, · · · , t =`_0<I�2o=LjRG9 O1 7'QH=��qbQH u1 ∈ O1��0RVk Gu1=M*% {1G, g1, g2g1, · · · ,

m−1∏
i=1

gm−i}��1 m = |Gu1| �	 Γ 7<:PQH u1= 4 ^.Q�_% ˜N(u1)�=L^C,Kzqd ˜N(u1) =^[s ��b 4 ^.Q ua
1 ∈ ˜N(u1)�C Gu1 u ua

1 [ αua
1 ��NC�;8 4 ^.QV� A1 =

{ua
1, g1(u

a
1), · · · ,

m−1∏
i=1

gm−i(u
a
1)} [ αA1 = {αua

1, αg1(u
a
1), · · · , α

m−1∏
i=1

gm−i(u
a
1)}�J/F	=W�3ku 4 ^.Q�=CR0�# A1

⋂
αA1 = ∅�� A1 7=^ �%

−→
A1 = ua

1, g1(u
a
1), · · · ,

m−1∏
i=1

gm−i(u
a
1)�z ˜N(u1) \ (A1

⋃
αA1) = ∅�} ˜N(u1) 7=^= �OKl1 −→

A1. z ˜N(u1) \

(A1
⋃

αA1) 6= ∅�b 4^.Q ub
1 ∈

˜N(u1)\(A1
⋃

αA1)���^C Gu1 CP ub
1 ��;8 A2 = {ub

1, g1(u
b
1), · · · ,

m−1∏
i=1

gm−i(u
b
1)}[ αA2 = {αub

1, αg1(u
b
1), · · · , α

m−1∏
i=1

gm−i(u
b
1)}�� A1

⋃
A2 7=^ �%
−−−−−→
A1

⋃
A2 = ua

1, g1(u
a
1), · · · ,

m−1∏

i=1

gm−i(u
a
1); u

b
1, g1(u

b
1), · · · ,

m−1∏

i=1

gm−i(u
b
1)z ˜N(u1)\(A1

⋃
A2

⋃
αA1

⋃
αA2) = ∅�} A1

⋃
A27=^= �OK% −−−−−→

A1

⋃
A2��}� ˜N(u1)\ (A1

⋃
A2

⋃
αA1

⋃
αA2) 6= ∅�,b 4 ^.Q uc

1 ∈
˜N(u1)\ (A1

⋃
A2

⋃

αA1
⋃

αA2)�%'D�z*;8 4^.QV� A1, A2, · · · , Ar, 1 ≤ r ≤ 2k��#*jRB> � −−−−−−−−−−−−−−→
A1

⋃
A2

⋃
· · ·

⋃
Ar�z ˜N(u1) \ (A1

⋃
A2

⋃
· · ·

⋃
Ar

⋃
αA1

⋃
αA2

⋃

· · ·
⋃

αAr) 6= ∅�},b 4^.Q ud
1 ∈

˜N(u1)\(A1
⋃

A2
⋃
· · ·

⋃
Ar

⋃
αA1

⋃
αA2

⋃
· · ·

⋃
αAr)�R0 4 ^.QV�

Ar+1 = {ud
1, g1(u

d
1), · · · ,

m−1∏

i=1

gm−i(u
d
1)}

αAr+1 = {αud
1, αg1(u

d
1), · · · , α

m−1∏

i=1

gm−i(u
d
1)}� Ar+1 7^= �

−−→
Ar+1 = ud

1, g1(u
d
1), · · · ,

m−1∏

i=1

gm−i(u
d
1).FR r+1⋃

j=1
Aj 7^= �OK%
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−−−→
r+1⋃

j=1

Aj =

−−−→r⋃

i=1

Ai;
−−→
Ar+1.9L

˜N(u1) = (
k⋃

j=1

Aj)
⋃

(α
k⋃

j=1

Aj)V Ak F ue
1 u0RVk Gu1 CKi;��#jRB 4 ^.Q�_ ˜N(u1) 7

k⋃
j=1

Aj ^= �OK −−−→
k⋃

j=1

Aj�R0QH u1 =�%
̺u1 = (C)(αC−1α),�1�

C = (ua
1, u

b
1, · · · , u

e
1; g1(u

a
1), g1(u

b
1), · · · , g1(u

e
1), · · · ,

m−1∏

i=1

(ua
1),

m−1∏

i=1

(ub
1), · · · ,

m−1∏

i=1

(ue
1)).dq/QH ui ∈ O1, 1 ≤ i ≤ k�� h ∈ G�'; h(u1) = ui�}R0QH ui =� ̺ui

%
̺ui

= ̺h
u1

= (Ch)(αC−1α−1).}FP O1 1 G u V (Γ) �=G9�9L
(

k∏

i=1

̺ui
)G =

k∏

i=1

̺ui
.+UD�R0G9 O2, · · · , Os 7QH=� ̺v1 , ̺v2 , · · · , ̺vl

, · · · , ̺w1, ̺w2 , · · · , ̺wt
���L

(
l∏

i=1

̺vi
)G =

l∏

i=1

̺vi
.

· · · · · · · · · · · · · · · · · · · · ·
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(

t∏

i=1

̺wi
)G =

t∏

i=1

̺wi
.PR01{

P = (
k∏

i=1

̺ui
) × (

l∏

i=1

̺vi
) × · · · × (

t∏

i=1

̺wi
)}FP O1, O2, · · · , Os 1 G u Γ �=CG9�L

PG = (
k∏

i=1

̺ui
)G × (

l∏

i=1

̺vi
)G × · · · × (

t∏

i=1

̺wi
)G

= (
k∏

i=1

̺ui
) × (

l∏

i=1

̺vi
) × · · · × (

t∏

i=1

̺wi
) = P.R0D	 M = (Xα,β,P)�} G % M =W�3k� ♮�j 3.2 � Γ {℄m�bj�� G � AutΓ�
 G 7a Γ {(	j',j=,Hw
'�Z`H7B ∀v ∈ V (Γ), �7G
 Gv � 〈v〉 7K�
��C )p7/ 3.1(i)�#y<1D�=�J/uR/ 3.1(i) !{73'QH�=rszq�# G %$�1 M =>[W�3k� ♮5%�yk=Vksl1�yk�FR/ 3.2 ,;8,KÆ\�Fu 3.1 � Γ {℄m�bj�
 Γ '℄mK�HwG
v{���a Γ {(	j',j=,Hw
�Fu 3.2 B��F n���℄ma n SK�j{(	j'0/,j M�.& Zn { M 'Hw
�R/ 3.1 [ 3.2 (B	=W�3Vk%,>%	�	=D	W�3k=
�D�y<�/Q [6] 7, Gardiner >p!{Bu�y<�z[%X�^ G u	�=�Gv�}av�"u%&,�	%	�	=d~D	�

4. �C��>,�(R%&	 Γ�>q/%;V	 P�5w��}V	�e�F�n�Z>~%	 Γ =
P - V	�X = E(Γ)�R0 Xα,β 7=V� A rL	v4 P�z A =	�	1	 Γ



Riemann �A� Hurwitz 8Æ(O�m� 177= P - V	�dPD	=W�3k�2oLKEOK��j 4.1 � Γ {℄m�bj�� G � AutΓ w ∀v ∈ V (Γ), �7G
 Gv �

〈v〉×〈α〉�
B 4 yQt. Xα,β /Sprp?- P 'G. A w}'.� A(P )�p
[|vG||v ∈ V (Γ)] | |G|Æ

|G|||A||A|���[a, b, · · ·] d1 a, b, · · · 'P0tYF��C )p1{k7=%&C#OK�d ∀v ∈ V (G) L |G| = |Gv||v
G|�9

|vG| | |G|��iL
[|vG||v ∈ V (Γ)] | |G|NF7/ 3.2�#k Gu 4^.Q�_ Xα,β �=C1,�}=�� ∀x ∈ Xα,β�L |Gx| = 1�P�Vk G u�_ A(P ) �=C�J/z A ∈ A(P )�}FP G ≤ AutΓ�9

∀g ∈ G,Ag) ∈ A(P )�� AG ⊆ A(P )�{�$�G u A(P ) �=C1�C=��i2o,^C G d A(P ) 7= 4 ^.Q[s�+�d ∀x, y ∈ A(P )�R0 x ∼ y 2VZ2"u g ∈ G�'; xg = y�)p |Gx| = 1�� |xG| = |G| # G u Xα,β �C=q℄%yG9=t^y%
|G|�NFP G u A(P ) �=C1�C=�9# G u A(P ) �C=q℄%yG9=t^"% |G|�J/ A(P ) 72L |A||A| & 4 ^.Q��iL

|G| | |A||A|. ♮bv4 P % Γ 7E=Æ�IV)P 2=V����}LKE�&LC=Æ\�Fu 4.1 � Γ {℄m�bj�� G � AutΓ w ∀v ∈ V (Γ), �7G
 Gv �

〈v〉 × 〈α〉�
Bj Γ /_3b�F{ 2 '+. T r2�p
|G| | (l|T r2|, l = |T | =

|T |

2
≥ 1, T ∈ T r2, ).DBj Γ /�_3b'+. T r1�p
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|G| | (2l|T r1|, l = |T | =

|T |

2
≥ 1, T ∈ T r1, ).[e,�� G {,j M 'Hw
�φ(i, j) d1,j M /�{{ i�h/if_F{ j '�F�
p

|G| | ((2i − j)φ(i, j), i, j ≥ 1)���(a, b, · · ·) d1 a, b, · · · 'P�t�F�Fu 4.2 � Γ {℄m�bj�� G � AutΓ w ∀v ∈ V (Γ), �7G
 Gv �

〈v〉 × 〈α〉�� T r {D.� T , 
p
|G| | (2ltl, l ≥ 1),���tl d1j Γ /_F{ l 'GDmF�Fu 4.3 � Γ{℄m�bj�G � AutΓw ∀v ∈ V (Γ),�7G
 Gv � 〈v〉×〈α〉�
p
|G| | (2ivi, i ≥ 1),���vi d1j Γ /�{ i '60mF�:C�EO\�2o,;8D	� Riemann �W�3=�Q��j 4.2 � Γ {℄m�bj�

(i) � G � AutΓ 7(	j{ Γ ',j M, g(M) ≥ 2 '=,Hw
�
p
|G| ≤ 84(g(M) − 1)

(ii) � G � AutΓ 7(	j{ Γ ',j M, g(M) ≥ 2 'Hw
�
p
|G| ≤ 168(g(M) − 1),���g(M) {,j M '�l��C R0D	 M =4y� ν(M) V4yv� φ(M) %�
ν(M) =

1

ν(M)

∑

i≥1

iνi



Riemann �A� Hurwitz 8Æ(O�m� 179

φ(M) =
1

φ(M)

∑

j≥1

jφj�1�ν(M)�φ(M)�φ(M) [ φj �NM* M 7=QHI�vI��% i =QHI[�% j =vI�}L ν(M)ν(M) = φ(M)φ(M) = 2ε(M)�9#�ν(M) = 2ε(M)

ν(M)
[ φ(M) =

2ε(M)

φ(M)
�)p Euler 0)

ν(M) − ε(M) + φ(M) = 2 − 2g(M)�1�ε(M), g(M) �NM*D	 M =EI[�%�}L
ε(M) =

2(g(M) − 1)

(1 − 2

ν(M)
− 2

φ(M)
)
.b�I k = ⌈ν(M)⌉ [ l = ⌈φ(M)⌉�}L

ε(M) ≤
2(g(M) − 1)

1 − 2
k
− 2

l

.5% 1 − 2
k
− 2

l
> 0�# k ≥ 3, l > 2k

k−2
�&K�[�# 1 − 2

k
− 2

l
=`)'%

21�VZ2 (k, l) = (3, 7) � (7, 3) #>W�7��iL
ε(M ≤ 42(g(M) − 1)).)pR/ 4.1�# |G| ≤ 4ε(M)��#�zk G %>[=�} |G| ≤ 2ε(M). 9#
|G| ≤ 168(g(M) − 1))Vk G %>[=�}
|G| ≤ 84(g(M) − 1)).>W�72VZ2 G = AutM, (k, l) = (3, 7) � (7, 3)� ♮d Riemann av=W�3k�LFu 4.4 B��l g ≥ 2 ' Riemann �� S�p
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4g(S) + 2 ≤ |Aut+S| ≤ 84(g(S) − 1)Æ
8g(S) + 4 ≤ |AutS| ≤ 168(g(S) − 1),�C )pR/ 4.2 [Æ\ 2.2 # |AutS| [ |Aut+S| =�Q�Pu!{>KQ�uq/%&�%% g ≥ 2 = Riemann av��2o3z%&d~D	 Mk =

(Xk,Pk)��1 k = 2g + 1�wK�
Xk = {x1, x2, · · · , xk, αx1, αx2, · · · , αxk, βx1, βx2, · · · , βxk, αβx1, αβx2, · · · , αβxk}

Pk = (x1, x2, · · · , xk, αβx1, αβx2, · · · , αβxk)(βxk, · · · , βx2, βx1, αxk, · · · , αx2, αx1).-# Mk %d~D	�V>>[W�3k Aut+Mk =< Pk >�&K![#2
k ≡ 0(mod2) #�Mk L 2 &v�i k ≡ 1(mod2) # Mk ZL 1 &v����)pÆ\ 2.1�#

|Aut+S| ≥ 2ε(Mk) ≥ 4g + 2.�#�
|AutS| ≥ 4ε(Mk) ≥ 8g + 4. ♮

5. �=~$
1. ^C__=zq�2o!{B Hurwitz R/��#!{B>>W�72VZ2>d:D	=QH�% 3, vt% 7��u$�QH�% 7 ivt% 3�V%d~D	��+d~D	="uv Macbeath u/Q [12] 7Pw����Hurwitz R/7�=J%+1q1�o7℄m�bj�ah{(	j',jHw
'P�S7C��hBj'p-�B|?',jp�X'Tw[���%+1q=Pw�Umd�x�j Riemann av�D	=W�3kL/0�
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2.*# Riemannav�=%doAW�3kL=�Q�5w�Harvey[7] [ Maclach-

lan[11] dP Riemann av��yW�3k[E{W�3k=L(B6Q�>�Q�N% 2(2g(S) + 1) [ 12(g(S) − 1)�Chetia [ Patra u/Q [4] (BÆE{kL=�Q�>d:=rL�)d~v=D	rL~�=v4�oND�do1�Z1d~D	��%+1q��N�kL7Cpo==9�0^C__zqd%PJI�7=%dO\P�__G^d>[sÆE�5(1__I�=%&=�=o�z[�
3. Klein av0R Riemann av��#rL}hV Riemann avUU=v4�5w�Klein av=W�3"1LS=�J/R/ 4.2 =!{7PkLC8D	=R[v4�9+U=zq,;8dVR[D	 M, g(M) ≥ 3 =W�3k�L

|Aut+M | ≤ 42(g(M) − 2)[
|AutM | ≤ 84(g(M) − 2).�#�dq℄%&VR[av S, g(S) ≥ 3�L
|Aut+S| ≤ 42(g(M) − 2)[
|AutS| ≤ 84(g(S) − 2).���>>W�72VZ2>QH�% 3, vt% 7��u$�QH�% 7 ivt%

3�V%VR[=d~D	��+D	1�"u�z"u1�VR[[r+U�L5Sh&�
4. Bujalance u/Q [3] 7(BVR[= Klein av��yW�3=`)L�V
Riemann av=[r+U�[%X�__=G^d�j>rL�)d~v=D	O3v4PC>�s Klein av1L/0=%&1q��aP`
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V�2t�s ∗gGs�/�|H�FHu�e|HOk��Vd 100080��z: _q)A'���[�"{��o℄mI<r�}{{℄mFH='����R�/H)f��℄=I<tMrS��VTNb�Hs>h3H���/�|H��6h3�Oka0��9�bp#	tMrS)��/�*"{�� 1985 R -2006 R��6|HOk'C6���["{�℄2Ok}�'&#���R�FHN��l)'\����
The Mathematical Steps of Mine

Abstract: This paper historically recalls each step that I passed from a

scaffold erector to a mathematician, including the period in a middle school,

in a construction company, in Northern Jiaotong University, also in Chinese

Academy of Sciences and in Guoxin Tendering Co.LTD. Achievements of mine

on mathematics and engineering management gotten in the period from 1985

to 2006 can be also found. There are many rough and bumpy, also delightful

matters on this road. The process for raising the combinatorial conjecture for

mathematics is also called to mind..U	: 7���-p�-�?/�S+��S+k�I�(�I�__vZX�
AMS(2000): 01A25,01A70m OO 8�8k}!%u�9 10�00 ��7J
�fI�VI�
��jf5!}��2=�On Automorphism Groups of Maps, surfaces and Smarandache

Geometries��0,j���0 Smarandache 4�'Hw
�=S+k5!w<
12006 � 3 j 26 t$S���66�g`��4 �
2e-print: www.K12.com.cn Z www.wyszx.cn
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�f�j�f3'B"�I�(�	0H?oCB<7%
	�12��Iseri ' Smarandache 4�D;�!+�A7�a+!'�v���jQy#�2��2M��y#��i^y#��DwOk� Iseri |r Smarandache )='L[?:���7d'Map Geometries7T'�AD;'l��o��a_qN�0TL�[e7N�,jTLBf1FH0eÆ)�}_>3Iul���2=�;>H�7�;8BJ�__D	�(�2=S+7�L�)H?==��,�12S+k5!L�7=%&ga�LBm!R�=�9�2�%+?H-p`:�%BI�(�L�7;8B}hJ��I�(=<lV"���270 7�#<%dI�'�d2uXxI��jzv=<Y�
({) �s*�21u_ 103 -�)|Y�uT���d7�R�VF_���=_��#�P
1976 �B#�2#F_���7^C=1�(2��W#q 103 -�)|Y�u�dR=℄2)-uut�";_�B##u1%2:IB}&�a��d7���d�7�[hA0��a��WXLMX�EW�W�=NV�8BhA0��a��7����1976 � 9 k -1978 � 7 k�2$8hA0��a℄�7 (?�2)�";2#H?I�=1�xG'�����}dyd GoldbachZXa�1+2�=1Qk�J�Q\Qd>[s)9��#<�oN1|�=5!/��": aZX�, '2dI�o�B�)o�u[x�7�FkswN�F�℄F��R#1s[I�'�\H%dI�1q�(12#�VL��8!�+*=�>+I��>�℄B��v=FqA2#2o�F=H
B�=Fq�Æ�qq"h�2u�R�*<)h#1ZC$P&�v=Fq�2u_�#GxOS�0[x7�k�	��kL#1sdOS�i�)Y�#1C$�F�Awu�7E%�<��%=I�����Em�<}��&�7I����>���7Em�~(�F�7����"12uk$[x�d7��7E%�<�5a)%RD`�7I�h|P	8|�=_5�

1977 �a)hR�7:��2I�;Be� 120 ��2#L%&L=ga�l1�{"u='�r%I�:u=LR&�L?�i2=P&1�j=�%0�
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�`_h>, doy1�a�℄�!=V��sl12# 103 -�)|Y℄2)-u= 5 +VF�dok$yu7J?HEm-�nI��-��7B#ka)hR���:�2�;BAIV=�Æ��V�dR�hR���:7=N 100 |���Z8�d7��F�N 50 |�7u 1 %�51-100 |u
2 %��i';2L
�8�dR7�� 80 � 1 %�F�5%I��Æ��;I�'�m7�=h��dV#(2B%H��q�oA=Pqzq>�PÆ82a)B 1979 �}k%RD`�7I�h|��;BD`E 18 |=�Æ��7#<2Gx℄%dI���℄<�w}�p=	�)4�N2
�=�f=	�)FHb�0Ok
�q℄+=	�W!�OYl
���z=	��_=Yl
��a�CH[	h)FH
�E%d�>�

1980 � 4 k2��h(F�dR&8`:m�, a)m��k}Æ?�. 2a)� 1980 ���kd=m���7#<=I�H\ÆH(��	�#&��*hD�:)R��=I�W4H\�i�dqH=I�'�}pBI��^��#�BZ���R/=�SV���N�#9>p�=�QR,�d*�%fI�=C��1AIÆ=�%$��z�}h��VGxI�=%&&K_51H�uB�#���
�V�a8��xO����%:��:�gf�x�)D�F�̀ k���: 60 �OG�dP��$M�}z�h1�&%$j�%$jp�&���%$j��p�LkL>d*V=pq��&R/C$jC�LkL*V=OK>>��#��7#<%$�"1��[sp�7.=#<��1HV�?&zvZ:7C=9=1q�
(�) W�)�
1980 � 7 kB2FT���dRd�zdm�. uB�iz8=BL�b8}dyf=	�)F0
(II)�8m�kN4;q℄+=KF	F0"h
�P1~(�F>7=Y��N, �#%��F�>I��P~(P&�ph&?	FHY��℄.
7%dFq�
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1980 � 12 kBa)-�87J?Hmn%0R2B%|-V-�a)2#hJ`)=�9oKuY`Ku?��5%�%*�%�-<Ns)%����FI�s��L%�uF<-�lHLTB�%+-p'���Y!2Jt�5%��%ug!OB��,k�$�%H=F<-#�-p��%'Vm2u�v$-V�Zm2uDvGVF<-[C(do�2#5℄A�)�6��'��P%vX�#)�H?�FF=	�)FH8P7u
%BPd>7Y��vpW�:P�;8d=w}�d"�B2u-p#<�5/��FI�=a�"G��B*,�k�A�pz*�md�pf%�B7�:d=�^, 2��W�=/Pd�B=oH�zq>d��B[sBY_7E�
1983 � 6 k2a)7J?Hmn%0R'�'�paU%�:��;E 1 |=�:�Æ�

(�) M�&FP�bB.+=''��1983 � 9 k/ 1987 � 7 k2u:_�?�a-#VzC?HK#? 83-1 %�F��`#<12[xI��j=��L`�5u�aI��Æ��1985 �:�u	/?FHOk
�oM�1��5�I�"5H{� RMI _}�/?FHOk�29-32,1�1985��2��FI�=H�s��/?FHOk�22-23,2�1985�?0/��� 1983 � 10 kC�L6��'�S��2u:_-#)���q'�)7KI��F�aI�K#=I�����&#<Lk�FB	FHY�
�	h)�F
�	a4�F
�	N�FH
�	j0
>���oN1	\�Fd77�2o%C�FFXO�v)��vq'��P_/-)�H?�r4=	-&j0
�w�4I�( Bollobas F��%C��BN?�, d2k$�.	\�j, u�TVzq�C8BM	C�u�F℄-+I~(#��q'�%2LBPBk\�duSV�$|B}&V�=K8�lkE{>7?&8V+1�1���&L�uI��~�wE����P1dub)�fK�123�V�132�?&1{PM���lo�Bk=����F�'2�l/PBI�=�4��$dP-QP	>P-Q�"{"BuI�zq��;Frs8�\=L��d2k$uI��j7�Pp1qP	�zqPw1qC8B&KC�L%v���q'�	$%0oMu	7K�HHT
�=\/�|rH/8



	(GI#- 187j/'4m7�m2r�℄%K�Pd2M��>#℄7�?mwiC��jdR
℄20���6℄%FH'Ok���u��q'�=)7K�LuÆla:!�2oP�0\/=OK,�T�&z[[sÆE���lT�fB}0\/�0	8�5�dy>�B~$��27L%0\/=��p1�vq'��d"#9BJ�L2��%&�	\�j=X��P$mt2�d!Y2w�4F|I�( Erdos L&5}GrZX�D�2��j%K�L�&k=�j�2;8B%&%'vOK�\lk�{BPw�&ZX�0�V=1q*A_ZX�EB��V 1987 ��hJE8T	\�DEN��u�Z&��~�2Xda)���3�l!\/�(B�vq'��dÆ82a)B���3�Pu��d�OK[sB5!�
1987 � 11 k�F7J
�f![7l�F	�jaS��2r&BJ�F|�:	\(�k$�%2=S+7�=7J
�f:CI�b=L�)H?�d?32��0\/	doM��V�#	9VFH
L%0<P__e>)=/�m�F	�ja�l�d�\/L(B2[s�j�2��kL�)|�F��."5i#9B2��%&p��0\/u	9VFH
�P 1990 ��)oM�2#:_�?�a='�Z#92GxI��oN17KN?�=�%$�u=Æ�7��'�%'"V?2�';2L
�=#1d:_	B�jl%dUC�d:_-#)�V��q'�%Cn\I�1q�a)J���o-=%dI�n\%�F�Aw 1986-1987 ��lLka)B�F	�ja�PumJ�E�=�Kac-Moody +In\%��:_-#)�mmH?�PZq)�H?�E�=��i/\�>:Cn\%�>��ddP2Vv�5�u%&AIEw=G^�,__1qC8BV_C�

(6) W�K01j
1987 � 8 k�2~8B7J?Hmn%0R��uB�0RE}-���o�D8q�Da�us#>E�1Ff�-_%�!��-z�[Pw-��-L�7P=�DÆq�2u 1989� -1991 � 8 ka):_℄i�f%<-�?�?/�1991 � 10 k
-1993 � 12 k�%�Dbt�a):_C_s\�>-�?��1994 � 1 k -12 kq7J?Hmn%0R}�0R�o�D

t�1994 � 3 k>8%\�%-���1995 � 1 k -1998 � 9 kq:_K9�oP^)|7lZ-����-�|-k>7%J(�P%A�-��1998 � 10 k -12 kq7qz℄`Z�Z-����%&#<I��j�%^7aL��%^,.Æ�-�DÆq%�q�Aw



188 8!O: H'^5<GI1�/dJ�5P�KfKHQ��-�D=�j�d)q~K�O3���D=�j>�Lku-��-?/7PwLV�=)=�DÆq�P~(uJ��-IZoM?H�D\/�Lku�-�D��-4�[�h?/zvoMB!h0\/�P:�a)B	I<r�%rN$�8+�jm;s
[	I<r�%r+�;s
E 2 d[E 7 d=Ff�\lw���FI��	8I�+�
/5=XqP)|H�/�;#:_7L:CI�K#�
=W��:�P1� 1991 � 4 k~(a):_7�>H\W��:�8 1995 � 6 k��B#&I�	8:_)�(o=:CI�K#�
/5[�+�+��%#<"ua)J�=%d�D�3�1988 �uvX~)�a)�=T7J__`DvJ$n\���1989 �u�TX6a)�hJEOT	\�DEN��>�
1993 �7<���q'�$m�m2Vd%CP 1994 � 8 kdg_a)�hJE�T	\�DEN�����2N�#1B℄ 4 �=I��j=k"C$�2�#=o*L8B hamiltonian 	=�j��Ld 1991 �oMuJ$	\q.� GouldH?%0YE/�=�F�U<\/=�℄�2T���B%.<P

hamiltonian 	=\/��Nu	g_
g�f�5
�	I��jV7\
>q.�oM�a)�hJE�T	\�DEN��=�#�2r&B��q'�=)����:_)�=|{ H?, d1J�+I	\=*�p�d=%&>H/Vsl<YT2�l1�^AC>��C>?:��XnPi��}��.

1989 Rp>���.*Zj0HBN)$���9x!�uzEP>�!_6�H��k
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1994 Rp>���.KZj0HBN)$����Vz���S��zn&k�&#<Lku	9VFH
�	FHOkub0
�	��FHujmFH
>�D<��oMB 5 0I�\/�
1994-1998 �2u:_K9�oP^)|7l-�-qZ�0Z-���S+L`oM=<P hamiltonian 	=%d\/%$�1u�%#<��=��7℄_aD� P'*!�℄_4Ss}'��2#�LV�<:.+�82�D�2ddo�1-��V8(�_5ykd�%��l=
��u:_)�:8S+�Æ��S�oP+I__\z[=�:
�2y�L�L=zoML\/�P1&po�%;?X�%Ra)H�'�[�s>h3H����� 1996 �C�2=�F,�LS+�x��:%�L�̀ :P 1998 ��bB:zE�)�/�fL�)H?=S+��

(W) *�{,sO
1999� 4k�2[xB:zE�)��F�~(B2=S+���ÆE%����&�FPV�vY
��#2=-<Izu7J?Hmn%0R�doV"�2=�F�5q℄��X{���Æ�F��zz�d'-�M,e\(�~"�1999� 1 k -2000 � 6 k�2-q7Jq��	?-08Z-���2000 � 7 k -2002�-qJmÆLLS{q0RZ�/���4wV�)�"?7B&p�5�#~�?;Q&z)��.?;-=��FA�u:zE�)�L�)H?)7K�2u_$	\	���~(B�:	\�__D	=�FV�j�5$E)$N2�:_)�|{ H?-=<YAI1=+I�u[xS+L`�F=Em�l^Ck\zqaB%&<P__D	!I=VOK�;8B7�=w}��&OKk$u	FHÆHT
�oM�w℄^CI�-rdPw%$-1q�1�.:CI�=p=�{[s
<



190 8!O: H'^5<GI1�/=�2001 ��2o�&���#�|BE��f�WM'�=���H�Nb�?��/'jm�=���s1��d���N�uU�K��l�ZLi�=���0V�1VC�:�&Kf%0��\/�~��k�2^C	\=zq�O_d=��fB%0<P02E��v=\/EB�d�2#"kv;~��l1��%n��i*�8<�#�2=�&��`?=!Y2;B 90 ��M%'��;8 80 �lV#B�dZ(dW�?&Kn�E�Ft=S+� 90 ��Æ�i2}1�I�=�u��=72K�2v;�0\/,	8J�%�E��5�oM���l�(B	/�t,HT
�OKuEm�loM$B��#9�l1Kn�E�=��u�voM/�"1AI�Æ=�FPu℄S+N*LB!h�=#&�*[�j
<��&S+\/�A cen-

sus of maps on surfaces with given underlying graphs�(0���o7(	j',j)1��2W�=Q&z)f$=, E�^CkC/\dav�__D	[s�+�!I�j��uJ$�"1�uN�=�\/��kE(J� 10 +H?7��O\y%Dy��27L%&L=ga�-qS+\/&I'a�EE=1J�F|I�(�7J
�f=hz0H?�u&IN 20 v�d!YL�)H?M�YVB2=\/��VV�mL�)'�=k�p�j���_R=&Il5qw<[sB�2�8Bhz0H?��2uS+\/7^C=zq��TV�k�;8=E�O\�J$�u�zv=[�>>[d[sBWJ=S��'L�~k�|QB%��r%2=QR[zqI$L�)H?,N)7=�&��LV=�k�O\L%R/\,'�P1hlfKBd\/=7X�Pl__DvIZd2p%d�j?3�

h30��a&k
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(q) {,�u^2W�v;S+\/7zL}h1q�Xqz�[%X%P�"z�%R=yf�#1d%P���uS+B#k~(:I.+aS+k�

2002 Rp>�4WFH=�$N��:$e��(=��Rlu�F��G#�	�����t���6�M
2002 � 11 k�u:_)�|{ H?E�=n\%��2B�A dynamic

talk on maps and graphs on surfaces–my group action idea��|r,juj����'s�'℄mTk - �'
Sm}0�=Y_v�j5!�,<;8J��s=Ew2&�
2002 �B�7J
�fI�VI�
��jfK�B2=S+k\�PjRPEm��~(S+k�j-�FP:_ 2003 ���}J�<Y�2&8 2003� 6 k\[x7J
�fI�VI�
��jf~(�j-�_7�x��ja�1J�	\�j-=M	p$%�d&pE��.O3	\=�j�2u℄S+N=}h<P hamiltonian 	=�j-y�d=<Y�E%�:v�x�'�ld2M��Q>'
$S'L2OkrS��i:�QH5gJ���';2L
\=#1�S+L`kL�j�=-�j���#&p&pXq~�k=�jIZ��"';2,z~7�=QR��ia%dk=�j-�.%!{�yR1d=�:d=�^�2u7J
�fI�VI�
��jfB=�5!��Active problems in maps and graphs on surfaces�(,ju
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 C3|�2004 R 8 �p>���.℄Zj0uN�FHHBN)$e��7K
+Ij�u�/9�k�p>��.Zj0HBN)$)�>=�℄A�O��)��7℄mr�����G�TJ�'`�P��̀ f�|H��6OkrS��S+B#,k�2%&uX,'V^
$��O9��4&R'odj0p*9m�UBFHpK2u"��?&1q"1J�}h�ss12=1q�5%L�)'�=}h
�-J�=p�VV�P1�!L�)'�=zqC8>eI�IZ�m*h=pBP�;zq��iÆE8>dIZa%d)=
��Kl�B2uS+kL`-==H�%��2u7
f<1�℄B)�=}__�	\zv=KF�w)v# ��℄�,fav�,f�℄�+IaT�Æ#5av>>�P~�BU<�j�E%0\/��k��V�~�.GZ/�|H�h3�rUuNuH|HB0X��lE(Bdo*���2S+k=E.z[�2u 2005 � 4 k��=S+k5!�On Automor-

phisms of Maps & Surfaces�*V1�__�	\z[=\/B�e%$�*aqB2=}hk\H��;\H"�T2=%;>H�l1u__I�(�$��℄=FHH|v�a_>N��'_>N�3I��;>Hu2=S+k5!7Z~B&��L)�=-z�da�S+k5!=`k%�l1u2=#&v#��5o ��℄�,f�℄7}h^C__zqz�d[%X�j=I�1q�
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2005� 6 k2a)B2005 j0uN�FHW.�Z���H�:HBN)$�PB�An introduction on Smarandache geometries on maps�=5!��05!V2u7J
�f=S+k5!�On Automorphism Groups of Maps, Surfaces and

Smarandache Geometries�k$�%BJ$p:�#
hB�P3 Smarandache �℄ 6 07C/Q7=?0a�/Q�S+k5!��k�2v;:�	d*�!2d__I�=�;>H[-p0W��Vu 2005 ���mJL%(*�[2gB�, 2l!S+k5!o(Bdo�doh�2=>H�?32u5!7�)L< Smarandache �℄=�v�L�)�x���BP 2005 � 6 kumJ American Research Press *��)*�
(	) h1s�JS+k�jOGk�:2=�^�J(p.Y�2&K�(~BJmÆLLS{q0R�P�;7J
�fI�VI�
��jf=�/�2sl%do�1=�jpa�.�j-�$b,�|�yR�%12VX�2u-�?�IZh��*=�V#&|H�l�2uhJ'D:J(Y'��7E?YnyL%d<P-�?/=Be�~>)h% �=a��m1�NJ�=
�s21q�oN1
�o#vQX=<Y�';	�
��j�/℄4�Vda"V�a%d)�K�J��N=
�s2&Kz�B
�-�,Q^\/I��\/=4a�N�Ve/a"V�d[s%d~�v=)=�j-���
��j=FW�~�v=�j%'z� 5-10�=#1\�oM\/�uJ����=
�payl>yqSB�u�;�/℄4QX<YK�uD#Vu
�
3�.I��j%$�1%�=�2&p=P31�m�m\�'p�IÆ�'FHOk�K℄`FHOk'7,���;>H�;8B7J
�fI�VI�
��jf="��z�oN)=1�mJ�+,Mm2uS+k5!7�)=�v�1J$I��j�%&k=�8H�F�,';I�#&�kHwWB)7�#+%�~Xo��i2uS+kL`=%d>H�VVdo=XqV�i[��N�zv*L=-PVh�2*[8BN��2��BV(BJ�}h�s�y�;V7�mJ PerzeS+7,M�Your book is very good. High research you have done.��qT�v)�%+H?7,MB=v#E��Ry�����?��0*h=1z�mJ���sBP2=QX[�&hh=z[�P1u 2005��2u:_=�b)��7J
�fI�VI�
��jf,�J�=%d�D�3��d2=�;I�__v>H�%d�j-[sB5!��;B%0V



194 8!O: H'^5<GI1�/7�Scientia Magna q.%�l�2u 2005 �a;?�5!�?0\/[sh/;SoM�O_2=__\� Smarandache�℄QX�2oP,d��I�[s)v#=ÆEV__��i7oB}hk=I�1q���uVmJ,M�mk�:�~(k=�j-�f�Lq1�Smarandache Multi-spaces Theory��Smarandache35�A0��d��+I��℄/\�</#�>�̂ C2=__>[sk=�jV=?�2&p=WB>1)J-QL}h&WB�L=Up�-�L=}UpEi�FPD℄p+=ps3z_5, D℄p+�Xr&Z�&WB1%<�Æ=., 5%D℄p+�V8=ghghB�2o�&WB=&I1 3�V>eWB�1LY�Ei�Ei=>e�1&I�1 3�"�)P 3����u�dWB7=Y�<4�p2o�&WB=4��02o�V8eo�5%eoV�u2o�;8=
3 &&,�=z[���l1�<4�<P�<4�2=>H1D℄�=p+V��;8�5%eoV�u2o>e;8=z[&���u�&�17=3��<:�AD℄�p=3����5%eo�=�1&IAD℄p=��u�H��2V�/�NNs=�;r%D℄p+,�LD℄%�zq�8�<4=>H��/\�B�Smarandache �℄0R Riemannian �℄��i0R�5NkE0Ud\�0w℄%P}%&kL
g�i2oP^C2=__\>H�},d>�0 �V9�}h�v[s=?VÆE���B*P 2006 � 3 kumJ*�mJ,Mu���0WB��B�,s�h/Kr�

2006 � 8 k, 2a)BEmThJ__I�V	\)�, u����, 2d2=I�__vZX�;8=+I��℄,�__zv=%dOK[sB5!, ;8BV��=%0V7, (V��%&=�=E*, �l1u7Jz�[%yI�__v=o�9R. i�"}�1'7J�%I�RJ=%yD$R.

(s) P=��q℄%&�/=
�-�Z-V~(p="�V<l�2"V5��2P 1990�u:_O���j 1993 ����um!h��.I��FV�j=L�7�;8B$W'&zv=<l��Wu2".C��W�=s%d2o�L��=<Y�i(��a=/P*1d2[�I��j9RC8BV�y=C�
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2004 R 8 �ugGÆUE�7K
+Ij&k,�12�%+;�?H-pLh�=3i�9`:[�I��j=V4t$R�L�\la�V���0*hD}1p�,'=sP�u�%&L�7�}h'��0 7�L`='��d2[��yp�9RC8BV�y= [C�2X��:�"1�&H\=FW�'t�wo #�uP�t
1985 �
1. �5�I�"5H{� RMI _}�/?FHOk�29-32,1�1985�
2. �FI�=H�s��/?FHOk�22-23,2�1985�
1990 �
1.The maximum size of r-partite subgraphs of a K3-free graph, 9VFH, 4�1990),417-424.

1992 �
1. :_℄i�f 100m3 KHQ��-��Dr��1�1992�
2.�Va�_F� :_�l`sa 50m LRJ��O3���-�I<|7�4�1992�
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1993 �
1.�Va�_F�:_�l`sa 62m 5�O℄:9���)=�-�I<|7�1�1993�
1994 �
1.�V��q_F�R(G)=3 =W7l	=eO3�j���FHujmFH�vol 10����(1994),88-98�
2.Hamiltonian graphs with constraints on vertices degree in a subgraphs pair,Vz)5H�HT�vol 15����(1994),79-90�
1995 �
1.�Va�_F�:_�l`saJ�������O3�-�I<7B�5�1995�
2. J��O3���-�D�/�+m|7}���1�95 *��1995�
3. ^C)e+r�JUQ�.KHQ��-�D�/�+m|7}���1�95 *��1995�
1996 �
1. L(R,gW7l	=`)EI��E2G|7�HHT�vol 23����(1996),

6-10�
2. �����_5�A�{5�I<|7�2�1996��
1997 �
1. ~�Ff�f?H�-�h{oz��I<E��11�1997�
1998 �
1.A localization of Dirac’s theorem for hamiltonian graphs,FHOkub0�vol.18,

2(1998),188-190.

2. �����_5�A�{5�I<7B�9�1998�
3. ~�Ff�f?H�-�h{oz��I<|7�1�1998�
1999 �
1. �a%<-��-_%Z�!�*�XEF�I<r�%rN$�8+�j



	(GI#- 197m;s�7J?H-#*��1999�
2. J��-��-_%�!�|([EF�I<r�%rN$�8+�jm;s�7J?H-#*��1999�
3. :_�l`saJ�������O3�-, 7J?H-�Z0RF�I<r�%r+�;s(2), 7J?H-#*��1999�
2000 �
1. nYv Fany<=%&ÆE��$R�HHT�H�|HN��vol 26�3(2000),

25-28�
2. :_K9�oP^7l�-4��2V?/�I<|7�2�2000��
3. :_K9�oP^7lM4-��-�I<r�%r+�;s(7), 7J?H-#*��1999�
2001 �
1.�VL�)_F�Mqkf	=%+k=nYv
�y<��$R�HHT�H�|HN��vol 27�2(2001),18-22�
2.(with Liu Yanpei)On the eccentricity value sequence of a simple graph, �M$R�HHT�H�|HN�,13-18,4(2001)�
3.(with Liu Yanpei)An approach for constructing 3-connected non-hamiltonian

cubic maps on surfaces,OR Transactions,1-7,4(2001).

2002 �
1.A census of maps on surfaces with given underlying graphs, A Doctorial Dis-

sertation, Northern Jiaotong University,2002.

2.On the panfactorical property of Cayley graphs, FHOkub0,383-390,3

(2002)�
3. �70E�_�v=JfFt�q�/�t,HT,88-91,3�2002��
4.Localized neighborhood unions condition for hamiltonian graphs, �M$R�HHT�H�|HN),16-22,1(2002)�
2003 �
1.(with Liu Yanpei) New automorphism groups identity of trees, FH_Æ,113-

117,5(2002)�
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2.(with Liu Yanpei)Group action approach for enumerating maps on surfaces,

J. Applied Math. & Computing, vol.13, No.1-2,201-215.

3.�VL�)_F�	=R[Px=L)Iv�FHÆHT,287-293,3�2003��
4.�VL�_F�QHs- ≥ 2 =nYvy<VMqkf	��M$R�HHT�H�|HN�,17-21,1(2003)

2004 �
1. (with Yanpei Liu)A new approach for enumerating maps on orientable sur-

faces, Australasian J. Combinatorics, vol.30(2004), 247-259.

2.�Vx�_F�Riemann av� Hurwitz R/=__ÆE�/�|H�h3�rUuNuH|HB0X0�.�2004 � 12 k,75-89�
2005 �
1.(with Feng Tian)On oriented 2-factorable graphs, J.Applied Math. & Com-

puting, vol.17, No.1-2. 25-38.

2.(with Liu Yanpei and Tian Feng)Automorphisms of maps with a given under-

lying graph and their application to enumeration,Acta.Math.Sinica, Vol.21, 2(2005),

225-236.

3.On Automorphisms of Maps and Klein Surfaces,/�|H�h3�Tk�2005.6.

4.A new view of combinatorial maps by Smarandache’ notion, e-print: arXiv:

math.GM/0506232.

5.Automorphism Groups of Maps, Surfaces and Smarandache Geometries, Amer-

ican Research Press, 2005.

6.On automorphism groups of maps, surfaces and Smarandache geometries,

Scientia Magna, Vol.1(2005), No.2,55-73.

7.Parallel bundles in planar map geometries, Scientia Magna, Vol.1(2005),

No.2,120-133.

8.On algebraic multi-ring spaces, arXiv:math.GM/05010478.

9.On algebraic multi-vector spaces, arXiv:math.GM/05010479.

2006 �
1.with Yanpei Liu and Erling Wei) The semi-arc automorphism group of a

graph with application to map enumeration, Graphs and Combinatorics, Vol.22,
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No.1(2006)93-101.

2.Smarandache Multi-Space Theory, Hexis, Phoenix,American 2006.

3./�r�I�+J%r�b7uuI�Y�� Smarandache 3�A�bD;�Xiquan Publishing House, 2006.

4.On algebraic multi-group spaces, Scientia Magna, Vol.2,No.1(2006), 64-70.

5.On multi-metric spaces, Scientia Magna, Vol.2,No.1(2006), 87-94

6. /\</7o=m!%-'I�� Smarandache =�1/\�/�|70��%�200607-91�
7. ÆL7,sI=I��q�^P�A, /�|70��%�200607-112�
8.Combinatorial speculation and the combinatorial conjecture for mathematics,

arXiv: math.GM/0606702 and Sciencepaper Online:200607-128, will also appear in

Scientia Magna.
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Abstract: The mathematics of the 21st century is the combinatorization with its gen-

eralization for classical mathematics, also a result for mathematics consistency with the

scientific research in the 21st century. This collection contains 10 papers finished by

the author or the author with other mathematicians for introducing mathematics of the

21st century, including the combinatorial conjecture for mathematics, Smarandache multi-

spaces, map geometries, enumeration of maps and a application of multi-spaces to bids

evaluation system in China, which can be seen as a combinatorial speculation for classical

mathematics, are also benefit for researchers working in mathematics of the 21st century.
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